JPH0547279B2 - - Google Patents

Info

Publication number
JPH0547279B2
JPH0547279B2 JP62057069A JP5706987A JPH0547279B2 JP H0547279 B2 JPH0547279 B2 JP H0547279B2 JP 62057069 A JP62057069 A JP 62057069A JP 5706987 A JP5706987 A JP 5706987A JP H0547279 B2 JPH0547279 B2 JP H0547279B2
Authority
JP
Japan
Prior art keywords
sulfate
manganese sulfate
activated sludge
added
iron sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62057069A
Other languages
Japanese (ja)
Other versions
JPS63278597A (en
Inventor
Tetsuzo Tomioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMIOKA KAGAKU KK
Original Assignee
TOMIOKA KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMIOKA KAGAKU KK filed Critical TOMIOKA KAGAKU KK
Priority to JP62057069A priority Critical patent/JPS63278597A/en
Publication of JPS63278597A publication Critical patent/JPS63278597A/en
Publication of JPH0547279B2 publication Critical patent/JPH0547279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、活性汚泥法によつて有機汚染性の
廃液を処理する際に、その処理効率を顕著に増進
させる方法に関する。 (従来の技術) 水質汚染防止のための生物化学的処理法におい
て、活性汚泥法は有機性汚染物質の分解を微生物
で行う。一般家庭からの生活廃水、下水、有機化
学工場廃水などは、一般に嫌気性発酵法で1次処
理を行い、ついで2次処理として活性汚泥法を適
用してから清澄処理水を放流する。また、河川な
どの水質環境の悪化を防止するとともに廃液の再
生利用のためには、汚濁物質に応じた3次処理が
必要であり、この処理の中には固定層装置や移動
層装置による活性炭吸着処理または凝集沈澱処理
などが含まれている。 前記の活性汚泥法では、一般に曝気水槽中へ希
釈水とともに適量の汚水を流入させ、曝気によつ
て酸素を供給しながら、微生物によつて汚水中の
有機物を分解・除去している。この際に、曝気水
槽中には微生物の栄養源として、各種のリン酸
塩、カリ類、アンモニウム類を加えている。 (発明が解決しようとする問題点) 活性汚泥法は、廃水処理法としては極めて一般
的で合理的な方法であるけれども、処理効率が一
般に低く、しかも運用に当たつては日々多量の希
釈水や電力などを必要とする。活性汚泥法の後に
活性炭吸着処理を組み合わせた場合には、比較的
清澄な処理水が得られるにしても、処理効率はい
つそう悪くなり、多額の設備資金と運転資金を要
する。一方、活性汚泥法において、微生物の栄養
源としてリン酸塩、カリ類、アンモニウム類を加
えても、微生物の活性はあまり上昇せず、その処
理効率を顕著に高めるには至つていない。このた
めに、活性汚泥法において金属塩を添加する実績
は、現状において殆ど存在しない。 (問題点を解決するための手段) 本発明者は、活性汚泥法に関して種々研究を行
つた結果、微生物の生育促進について硫酸鉄、硫
酸マンガン、チオ尿素が重要な役割を果たし、一
方、塩化鉄や塩化マンガンなどの塩化物は硫酸鉄
や硫酸マンガンと比べて効果が少ないことを見い
だした。また硫酸鉄、硫酸マンガン、チオ尿素ま
たはこれらの混合物を炭素粉末と併用すると、有
機汚染濃度の比較的高い廃液を活性炭単独よりも
安価に処理できることも見いだした。 本発明に係る処理効率増進方法では、活性汚泥
法によつて廃液を処理する際に、曝気水槽中に硫
酸鉄、硫酸マンガンまたはチオ尿素類のうちの少
なくとも1種を微量添加して、曝気水槽中の微生
物の生育を促進させる。また、有機汚染濃度の比
較的高い廃液を処理する際には、曝気水槽中に硫
酸鉄、硫酸マンガンまたはチオ尿素類のうちの少
なくとも1種を微量添加し、さらに微量の炭素粉
末と併用すればよい。典型的には、硫酸鉄、硫酸
マンガンまたはこの両者を炭素粉末と併用する
か、またはさらにチオ尿素類を加えておく。本発
明方法で使用する炭素粉末は、主として活性炭で
あると好ましい。この活性炭は市販のものでもよ
く、粒状や破砕状に比べて粉状の方が効果的であ
る。炭素粉末例えば活性炭の投入量は、1日当た
り希釈廃水250トンに対して10数Kgであればよく、
硫酸鉄や硫酸マンガンの添加量に応じて減らすこ
とができる。 本発明に係る処理効率増進方法は、標準の活性
汚泥法に適用できることはもとより、例えば長時
間曝気法、高速曝気法、接触安定化法などの変法
にも使用できる可能性がある。処理可能な廃液と
しては、一般家庭からの生活廃水、下水、有機化
学工場からの農厚廃液、し尿、抗生物質製造培養
廃液、パルプ木釜蒸煮薬液、アルコールや蒸留酒
酸造廃液などが例示できる。有機薬品を含まない
生活廃水や澱粉工場の廃水などは、硫酸鉄または
硫酸マンガンだけでも処理効率が高くなる。チオ
尿素は、廃液中のCOD値とBOD値を下げる効果
は無いが、微生物の沈降速度を高めかつ廃液の清
澄度が他の薬品に比べて増加し、チオ尿素の誘導
体でも同様の効果が得られるものと推定できる。
有機薬品などを含む有機汚染濃度の高い廃液に
は、硫酸鉄、硫酸マンガンまたはこの両者を炭素
粉末と併用して処理し、さらにチオ尿素を加えて
凝集沈澱を高めると好ましい。 本発明方法では、硫酸鉄、硫酸マンガンまたは
チオ尿素類を活性汚泥装置の曝気水槽中に投入
し、所望に応じて炭素粉末も同時に添加して自由
に水中に分散させるにすぎない。これによつて、
これらの粉末はエアレータで気泡とともに水中を
移動して攪拌され、さらに曝気水槽にスタテイツ
クミキサや補助羽根を備える場合にはいつそう攪
拌が促進される。 (作用) 本発明方法に関連して、好気性微生物に対する
金属塩の影響を調べるために、ある種の好気性微
生物を粉乳水溶液で培養する際に、硫酸鉄または
硫酸マンガンを微量添加すると、微生物の発育が
著しく促進されて厚い菌膜が発生する。特に硫酸
マンガンの添加では、厚い菌膜の発生とともに培
養液中にメラミンの思われる黒色色素が生じる。
これに対し、粉乳水溶液だけで培養すると、培養
液表面に薄い菌膜ができる程度で微生物は殆ど発
育しない。またある種の青かびにおいては、十分
に糖分などの栄養を加えた寒天培地にチオ尿素を
0.1%添加して培養すると、30日以上に亙つて胞
子を結ばず、白い菌糸のままで生育を続ける。こ
れに対し、チオ尿素を添加しない寒天培地では、
青かびは数日で青い胞子を結んで老衰してしま
う。 本発明方法では、実施例1または実施例2に示
すように、硫酸鉄、硫酸マンガンまたはこの両者
の添加によつて活性汚泥法の処理効率を増進さ
せ、かつ活性炭などの炭素粉末との間に相乗効果
が存在する。またチオ尿素を添加すると、微生物
の活性化が進むものと推定され、微生物の沈降速
度を著しく高めて廃液の清澄度が増加する。従つ
て老化した微生物の流出が減少し、硫酸アルミニ
ウムなどの凝集剤の添加が少なくて済み、凝集汚
泥を減らすことができる。 (実施例) 次に本発明を実施例によつて説明するが、工場
的規模の実験において使用した曝気水槽は毎日操
業中のものであり、無添加の場合を除いて、既に
活性炭を毎日5〜10Kg添加された状態のものであ
る。 実施例 1 富岡化学(株)の有機合成工場(大阪府堺市築港新
町に所在)の曝気水槽中からCOD約110の微生物
を含んだ水液を採取し、4個の1シリンダに約
800c.c.づつ入れた。個々のシリンダに、硫酸鉄、
硫酸マンガンまたはチオ尿素を第1表の量だけ添
加し、24時間曝気してその結果を調べた。
(Industrial Application Field) The present invention relates to a method for significantly improving the treatment efficiency when treating organic polluting waste liquid by an activated sludge method. (Prior Art) Among biochemical treatment methods for preventing water pollution, the activated sludge method uses microorganisms to decompose organic pollutants. Domestic wastewater, sewage, organic chemical factory wastewater, etc. from ordinary households are generally treated primarily by an anaerobic fermentation method, then activated sludge method is applied as a secondary treatment, and then the clarified treated water is discharged. In addition, in order to prevent the deterioration of water quality environments such as rivers and to recycle waste liquid, tertiary treatment is required depending on the pollutant, and this treatment includes activated carbon using fixed bed equipment or moving bed equipment. This includes adsorption treatment or coagulation and precipitation treatment. In the activated sludge method described above, an appropriate amount of wastewater is generally introduced into an aeration tank along with dilution water, and while oxygen is supplied through aeration, organic matter in the wastewater is decomposed and removed by microorganisms. At this time, various phosphates, potash, and ammonium are added to the aeration tank as nutritional sources for microorganisms. (Problems to be solved by the invention) Although the activated sludge method is an extremely common and rational method for treating wastewater, it generally has low treatment efficiency and requires a large amount of diluted water every day during operation. and electricity. When the activated sludge method is followed by activated carbon adsorption treatment, even if relatively clear treated water can be obtained, the treatment efficiency deteriorates and a large amount of equipment and working capital is required. On the other hand, in the activated sludge method, even if phosphates, potash, and ammonium are added as nutritional sources for microorganisms, the activity of the microorganisms does not increase much, and the treatment efficiency has not been significantly increased. For this reason, there is currently almost no experience of adding metal salts in the activated sludge method. (Means for Solving the Problems) As a result of conducting various studies on the activated sludge method, the present inventor found that iron sulfate, manganese sulfate, and thiourea play an important role in promoting the growth of microorganisms, while iron chloride They found that chlorides such as ferrous sulfate and manganese chloride were less effective than iron sulfate and manganese sulfate. It has also been found that when iron sulfate, manganese sulfate, thiourea, or a mixture thereof is used in combination with carbon powder, wastewater with a relatively high concentration of organic contaminants can be treated more cheaply than activated carbon alone. In the treatment efficiency improvement method according to the present invention, when treating waste liquid by the activated sludge method, a trace amount of at least one of iron sulfate, manganese sulfate, or thioureas is added to the aeration water tank. Promotes the growth of microorganisms inside. In addition, when treating waste liquid with a relatively high concentration of organic contamination, it is possible to add a small amount of at least one of iron sulfate, manganese sulfate, or thioureas to the aeration tank, and to use it together with a small amount of carbon powder. good. Typically, iron sulfate, manganese sulfate, or both are used in combination with carbon powder, or thioureas are added. The carbon powder used in the method of the invention is preferably primarily activated carbon. This activated carbon may be commercially available, and powdered carbon is more effective than granular or crushed activated carbon. The amount of carbon powder, for example, activated carbon, may be 10 kg per 250 tons of diluted wastewater per day.
It can be reduced depending on the amount of iron sulfate or manganese sulfate added. The method for improving treatment efficiency according to the present invention can be applied not only to the standard activated sludge method, but also to modified methods such as a long-time aeration method, a high-speed aeration method, and a contact stabilization method. Examples of wastewater that can be treated include household wastewater, sewage, agricultural wastewater from organic chemical factories, human waste, antibiotic production culture wastewater, pulp wood boiling chemical solution, alcohol and distilled liquor acid production wastewater, etc. . For domestic wastewater that does not contain organic chemicals, wastewater from starch factories, etc., treatment efficiency can be increased by using iron sulfate or manganese sulfate alone. Although thiourea does not have the effect of lowering the COD and BOD values in wastewater, it increases the sedimentation rate of microorganisms and increases the clarity of wastewater compared to other chemicals, and thiourea derivatives have similar effects. It can be assumed that the
It is preferable to treat a waste liquid containing organic chemicals and the like with a high concentration of organic contamination by using iron sulfate, manganese sulfate, or both in combination with carbon powder, and further add thiourea to increase coagulation and precipitation. In the method of the present invention, iron sulfate, manganese sulfate, or thioureas are simply introduced into the aeration tank of the activated sludge equipment, and if desired, carbon powder is also added at the same time to allow it to be freely dispersed in the water. By this,
These powders are stirred by moving through the water with air bubbles in an aerator, and further, if the aeration tank is equipped with a static mixer or auxiliary blades, the agitation is facilitated. (Effect) In connection with the method of the present invention, in order to investigate the effect of metal salts on aerobic microorganisms, when culturing certain aerobic microorganisms in an aqueous milk powder solution, adding a small amount of iron sulfate or manganese sulfate, the microorganisms The growth of the bacteria is significantly accelerated and a thick bacterial film develops. In particular, when manganese sulfate is added, a thick fungal film develops and a black pigment that appears to be melamine is produced in the culture solution.
On the other hand, when culturing with only an aqueous powdered milk solution, microorganisms hardly grow except that a thin bacterial film forms on the surface of the culture solution. In addition, for some types of blue mold, thiourea is added to an agar medium containing sufficient nutrients such as sugar.
When cultured with the addition of 0.1%, spores do not form and the mycelia continue to grow as white hyphae for over 30 days. On the other hand, in agar medium without thiourea,
Blue mold forms blue spores and dies in a few days. In the method of the present invention, as shown in Example 1 or Example 2, the treatment efficiency of the activated sludge method is improved by adding iron sulfate, manganese sulfate, or both, and There is a synergistic effect. It is also assumed that the addition of thiourea promotes the activation of microorganisms, significantly increasing the sedimentation rate of microorganisms and increasing the clarity of the waste liquid. Therefore, the outflow of aged microorganisms is reduced, the addition of flocculants such as aluminum sulfate is reduced, and flocculated sludge can be reduced. (Example) Next, the present invention will be explained with reference to an example. The aeration tank used in the factory-scale experiment was in operation every day, and except for cases where no additives were used, activated carbon was already added at 50% per day. ~10Kg is added. Example 1 A water solution containing microorganisms with a COD of approximately 110 was collected from an aeration tank at an organic synthesis factory of Tomioka Chemical Co., Ltd. (located in Chikko Shinmachi, Sakai City, Osaka Prefecture), and approximately
I put in 800 c.c. each. In each cylinder, iron sulfate,
Manganese sulfate or thiourea was added in the amounts shown in Table 1, and the results were examined after aeration for 24 hours.

【表】 である。
工場汚泥槽内の状態は毎日変化するので、日に
よつて若干の差異はあるが、平均して第1表の結
果を得た。第1表の結果から、硫酸鉄または硫酸
マンガンは、極めて高い処理効率を示す。またチ
オ尿素は、廃液中のCOD値とBOD値を下げる効
果は無いが、僅少の添加で微生物の沈降速度を著
しく高めかつ水液上部の清澄度の増加が他の薬品
に比べて抜群である。このため、チオ尿素は、凝
集沈澱を高めるために、曝気水槽に毎日または
時々微量加えるのが良いと思われる。 この実施例における実験は、有機合成工場の水
液を用いて行つたものであるから、有機薬品を含
まない生活廃水や澱粉工場の廃水などに関して
は、硫酸鉄または硫酸マンガンだけでも高い処理
効率を得るものと推定できる。 実施例 2 実施例1と同様の実験によつて、硫酸鉄、硫酸
マンガンまたはこの両者を活性炭と併用した結果
を、活性炭のみ添加した場合と比較した。その結
果を第2表に示す。
[Table]
Since the conditions inside the factory sludge tank change every day, there are slight differences depending on the day, but on average the results shown in Table 1 were obtained. From the results in Table 1, iron sulfate or manganese sulfate shows extremely high treatment efficiency. Furthermore, thiourea does not have the effect of lowering the COD and BOD values in waste liquid, but even with a small amount of addition, it significantly increases the sedimentation rate of microorganisms and increases the clarity of the upper part of the liquid, which is outstanding compared to other chemicals. . For this reason, it seems to be a good idea to add a small amount of thiourea to the aeration tank daily or occasionally to increase coagulation and sedimentation. Since the experiment in this example was conducted using water from an organic synthesis factory, iron sulfate or manganese sulfate alone can provide high treatment efficiency for household wastewater that does not contain organic chemicals or wastewater from starch factories. It can be estimated that this will be obtained. Example 2 In an experiment similar to Example 1, the results of using iron sulfate, manganese sulfate, or both together with activated carbon were compared with the case of adding only activated carbon. The results are shown in Table 2.

【表】 第2表の結果から、硫酸鉄、硫酸マンガンまた
はこの両者は、活性炭と併用した場合に処理効率
の相乗効果を有することが判明した。 この結果から、現実的には高価な活性炭に安価
な硫酸鉄や硫酸マンガンを併用して、処理費用を
低減化させることができる。 実施例 3 300トン容量の曝気水槽中に、1日当たり250ト
ンの割合で工業用水を1昼夜に亙つて平均に流入
させ、この中に毎日活性炭6Kgおよび硫酸鉄60Kg
を投入する。この中に、有機化学工場からの
COD約3000ppmの廃液を毎日8〜10トン流入さ
せても、排水中のCOD値を25〜30ppmに保つこ
とができた。 実施例3から明らかなように、工場的規模での
処理は、実施例1および実施例2のような実験室
規模の場合に比べてかなり少ない薬品量で所期の
目的を達成できる。この理由は、毎日薬品が継続
的に添加され、かつ曝気量が大きいためである。 比較例 実施例3と同様の処理条件下において、活性炭
および硫酸鉄の投入なしに実施例3と同様の廃液
を曝気槽中に流入させて、排水のCOD値が常に
25〜30ppmになるように廃水の流入量を調整す
る。この結果、廃水の流入可能量は僅かに1日当
たり2000Kgにすぎず、実施例3に比べて1/4〜1/5
の流入量である。 実施例 4 実施例3と同様の処理条件下において、活性炭
6Kgおよび硫酸マンガン30Kgを曝気水槽中に毎日
投入する。この結果、実施例1とほぼ同様に、
COD約3000ppmの廃液を毎日10〜13トン流入さ
せても、排水のCOD値を20〜30ppmに保つこと
ができる。 実施例 5 実施例3または実施例4において、曝気水槽中
にさらにチオ尿素3Kgを毎日加えて、SV100を下
げることができた。また廃液上部の透明度が上が
り、アミン系廃液による黄色度も減らすことがで
きた。 排水中には、活性炭や硫酸塩などは認められ
ず、最後の凝集沈澱で除去されるものと推定でき
る。 (発明の効果) 本発明方法を利用すると、活性汚泥装置の曝気
水槽中に…活性炭などの炭素粉末…の代わりに、
硫酸鉄、硫酸マンガンまたはこの両者を用いるこ
とにより、活性汚泥装置の処理費用を低減するこ
とが可能になる。現実的には、安価な硫酸鉄や硫
酸マンガンを高価な活性炭と併用させて処理費用
を低減させ、凝集沈澱をいつそう高める場合にチ
オ尿素も微量加えることになる。本発明方法によ
つて、さらに安価な処理費用で化学工場その他に
おいて設置されている活性汚泥装置の処理効率を
上げ、今後設置される活性汚度設備を縮小すると
ともに、膨大な設備費や設備場所などを減少させ
ることが可能である。しかも、活性汚泥装置にお
ける使用電力および使用水を減量させることによ
り、多大の収益を関連工場その他にもたらすこと
ができる。
[Table] From the results in Table 2, it was found that iron sulfate, manganese sulfate, or both had a synergistic effect on treatment efficiency when used in combination with activated carbon. From this result, it is actually possible to reduce treatment costs by using expensive activated carbon in combination with inexpensive iron sulfate or manganese sulfate. Example 3 Industrial water was fed into an aeration tank with a capacity of 300 tons at a rate of 250 tons per day over the course of the day and night, and 6 kg of activated carbon and 60 kg of iron sulfate were added each day.
Insert. In this, there is a
Even when 8 to 10 tons of wastewater with a COD of about 3,000 ppm was injected every day, the COD value in the wastewater could be maintained at 25 to 30 ppm. As is clear from Example 3, processing on a factory scale can achieve the intended purpose with a significantly smaller amount of chemicals than in the case of a laboratory scale such as Examples 1 and 2. The reason for this is that chemicals are continuously added every day and the amount of aeration is large. Comparative Example Under the same treatment conditions as in Example 3, the same waste liquid as in Example 3 was flowed into the aeration tank without adding activated carbon and iron sulfate, and the COD value of the waste water was constantly maintained.
Adjust the amount of wastewater inflow to 25-30ppm. As a result, the amount of wastewater that can flow is only 2000 kg per day, which is 1/4 to 1/5 compared to Example 3.
is the inflow amount. Example 4 Under the same treatment conditions as in Example 3, 6 kg of activated carbon and 30 kg of manganese sulfate are introduced into the aeration tank daily. As a result, almost the same as in Example 1,
Even if 10 to 13 tons of wastewater with a COD of about 3,000 ppm is injected every day, the COD value of the wastewater can be maintained at 20 to 30 ppm. Example 5 In Example 3 or Example 4, it was possible to lower the SV100 by adding an additional 3 kg of thiourea to the aeration tank every day. In addition, the transparency of the upper part of the waste liquid increased, and the yellowing caused by amine-based waste liquid was also reduced. Activated carbon and sulfates were not found in the wastewater, and it can be assumed that they were removed during the final coagulation and sedimentation. (Effect of the invention) When the method of the present invention is used, instead of using carbon powder such as activated carbon in the aeration tank of the activated sludge equipment,
By using iron sulfate, manganese sulfate, or both, it is possible to reduce processing costs for activated sludge equipment. In reality, cheap iron sulfate and manganese sulfate are used in combination with expensive activated carbon to reduce treatment costs, and if the coagulation and precipitation is to be significantly increased, a small amount of thiourea is also added. By the method of the present invention, the processing efficiency of activated sludge equipment installed in chemical factories and other places can be improved at a lower processing cost, and the activated sludge equipment to be installed in the future can be reduced, and the huge equipment cost and equipment space can be reduced. etc. can be reduced. Moreover, by reducing the amount of power and water used in the activated sludge apparatus, a large amount of profit can be brought to related factories and others.

Claims (1)

【特許請求の範囲】 1 活性汚泥法によつて有機汚染性の廃液を処理
する際に、曝気水槽中に硫酸マンガンもしくは硫
酸マンガンと硫酸鉄とを添加するか、または硫酸
鉄、硫酸マンガンもしくはこの両者とチオ尿素類
とを微量添加することによつて、生理作用を有す
る硫酸塩の介在により曝気水槽中の微生物の生育
を促進させることを特徴とする活性汚泥法におけ
る処理効率増進方法。 2 活性汚泥法によつて有機汚染濃度の比較的高
い廃液を処理する際に、曝気水槽中に硫酸鉄、硫
酸マンガンまたはチオ尿素類のうちの少なくとも
1種を微量添加し、さらに微量の炭素粉末を併用
することを特徴とする活性汚泥法における処理効
率増進方法。 3 硫酸鉄、硫酸マンガンまたはこの両者を炭素
粉末と併用する特許請求の範囲第2項に記載の方
法。 4 硫酸鉄、硫酸マンガンまたはこの両者ならび
にチオ尿素を炭素粉末と併用する特許請求の範囲
第2項に記載の方法。
[Scope of Claims] 1. When treating organic polluting waste liquid by the activated sludge method, manganese sulfate or manganese sulfate and iron sulfate are added to the aeration water tank, or iron sulfate, manganese sulfate or these are added. A method for improving treatment efficiency in an activated sludge method, characterized in that the growth of microorganisms in an aeration tank is promoted through the intervention of sulfate, which has a physiological effect, by adding trace amounts of both and thioureas. 2. When treating waste liquid with a relatively high concentration of organic contamination by the activated sludge method, a trace amount of at least one of iron sulfate, manganese sulfate, or thioureas is added to the aeration tank, and a trace amount of carbon powder is added. A method for improving treatment efficiency in an activated sludge method, characterized by the combined use of. 3. The method according to claim 2, in which iron sulfate, manganese sulfate, or both are used in combination with carbon powder. 4. The method according to claim 2, in which iron sulfate, manganese sulfate, or both, and thiourea are used in combination with carbon powder.
JP62057069A 1987-03-12 1987-03-12 Method for increasing treating efficiency in activated sludge process Granted JPS63278597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057069A JPS63278597A (en) 1987-03-12 1987-03-12 Method for increasing treating efficiency in activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057069A JPS63278597A (en) 1987-03-12 1987-03-12 Method for increasing treating efficiency in activated sludge process

Publications (2)

Publication Number Publication Date
JPS63278597A JPS63278597A (en) 1988-11-16
JPH0547279B2 true JPH0547279B2 (en) 1993-07-16

Family

ID=13045157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057069A Granted JPS63278597A (en) 1987-03-12 1987-03-12 Method for increasing treating efficiency in activated sludge process

Country Status (1)

Country Link
JP (1) JPS63278597A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144197A (en) * 1988-11-21 1990-06-01 Tetsuzo Tomioka Method for reducing pollution value in activated sludge process
CA2095804A1 (en) * 1992-06-19 1993-12-20 John K. Berrigan, Jr. Combined metals and carbonaceous components removal in a biophysical treatment system
CN1157344C (en) * 2001-04-18 2004-07-14 中国石油化工股份有限公司 Biochemical procss for treating waste water with nano material
AU2010305308A1 (en) * 2009-10-06 2012-05-03 University Of Technology, Sydney Method for enhancing biological water treatment
JP6742069B2 (en) * 2014-12-19 2020-08-19 日鉄環境株式会社 Biological treatment method of water containing organic matter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107157A (en) * 1977-03-01 1978-09-18 Kubota Ltd Method of disposing waste water in excrements system
JPS53130860A (en) * 1977-04-19 1978-11-15 Hitachi Chem Co Ltd Method of completely removing nitrogen contained in waste water
JPS5522303A (en) * 1978-08-04 1980-02-18 Nippon Solid Co Ltd Activated sludge treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107157A (en) * 1977-03-01 1978-09-18 Kubota Ltd Method of disposing waste water in excrements system
JPS53130860A (en) * 1977-04-19 1978-11-15 Hitachi Chem Co Ltd Method of completely removing nitrogen contained in waste water
JPS5522303A (en) * 1978-08-04 1980-02-18 Nippon Solid Co Ltd Activated sludge treatment

Also Published As

Publication number Publication date
JPS63278597A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
US7731851B2 (en) Waste water treatment
Huang et al. Excess sludge reduction induced by Tubifex tubifex in a recycled sludge reactor
CN104211162A (en) Sewage treating agent for treating heavy metal wastewater
CN101723512A (en) Ammonia-contained waste water high-efficiency biochemical processing method
CN110526486A (en) A kind of pharmacy wastewater treatment method with high salt
NO132231B (en)
CN105198161B (en) A kind of processing preparation suitable for high-concentration hardly-degradable waste water
CN111747538A (en) Black and odorous bottom mud repairing agent and application thereof
CN103373766B (en) Wastewater biochemical treatment method for simultaneously realizing sludge reduction
CN105152478B (en) Treatment method of industrial wastewater produced during preparation of sodium glutamate through concentration isoelectric process
JPH0547279B2 (en)
CN105833832B (en) A kind of biochemical preparation for administering glutamic acid fermentation sewage
US3941691A (en) Method of biological purification of industrial effluents from chromates and bichromates
CN106316690A (en) Method for produce liquid organic fertilizer with starch wastewater to improve saline and alkaline land
CN105132326B (en) A kind of biological prosthetic preparation for concentrating isoelectric point technology and preparing industrial wastewater caused by sodium glutamate
CN104944671A (en) Treatment method for molecular sieve catalyst wastewater
JP2005013915A (en) Waste water treatment method
CN104556405B (en) A kind of Biological compound flocculant containing ferric ion and application thereof
CN105621576A (en) Composite aluminum-iron water purifier and production method thereof
CN106892539A (en) The processing method and processing unit of high concentration saliferous high chroma sewage high
DE60111939T2 (en) PROCESS FOR BIOLOGICAL CLEANING OF WASTEWATER
CN106630190B (en) Fungus agent for degrading COD and preparation method thereof
KR19980019537A (en) (N) and phosphorus (P) from the drainage disposal in the rotating disc process,
CN1187295C (en) High concentration organic composite phosphorus fertilizer and its use
Wididana Preliminary experiment of EM technology on waste water treatment