JPH0546882B2 - - Google Patents

Info

Publication number
JPH0546882B2
JPH0546882B2 JP60142715A JP14271585A JPH0546882B2 JP H0546882 B2 JPH0546882 B2 JP H0546882B2 JP 60142715 A JP60142715 A JP 60142715A JP 14271585 A JP14271585 A JP 14271585A JP H0546882 B2 JPH0546882 B2 JP H0546882B2
Authority
JP
Japan
Prior art keywords
shape
rolled material
width direction
weighting coefficient
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60142715A
Other languages
Japanese (ja)
Other versions
JPS623605A (en
Inventor
Kazuhiko Gunda
Tokuo Mizuta
Yoshiaki Kikawa
Kyohiro Tani
Akira Teramoto
Hiroshi Okashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60142715A priority Critical patent/JPS623605A/en
Publication of JPS623605A publication Critical patent/JPS623605A/en
Publication of JPH0546882B2 publication Critical patent/JPH0546882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Metal Rolling (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧延機において、圧延材の形状の自動
制御を行うに際し、圧延材の幅方向の形状パター
ンを精度良く認識する方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for accurately recognizing the shape pattern in the width direction of a rolled material when automatically controlling the shape of the rolled material in a rolling mill. .

(発明の背景) 圧延機において、圧延材の形状を自動制御する
場合、一般に圧延材の形状不良に応じてその形状
修正のための操作量を計算機により演算し、作業
ロールの曲げ荷重を変えてロールキヤンバーを制
御する、所謂、ロールベンデイング等の操作端を
自動的に制御することが行われている。
(Background of the Invention) When automatically controlling the shape of a rolled material in a rolling mill, generally a computer calculates the amount of operation for correcting the shape depending on the shape of the rolled material, and then changes the bending load on the work rolls. Automatic control of an operating end for controlling a roll camber, so-called roll bending, etc., has been carried out.

このような制御を行うに際して、まず、圧延材
の幅方向の形状パターンを認識する必要があり、
そのための条件として、 (a) 形状パターンの認識が充分な精度で行えるこ
と。
When performing such control, it is first necessary to recognize the shape pattern of the rolled material in the width direction.
The conditions for this are: (a) Shape patterns must be recognized with sufficient accuracy.

(b) パラメータの数が少ないこと。(b) The number of parameters is small.

(c) 形状パターンの認識のための信号処理時間が
短いこと。
(c) Signal processing time for shape pattern recognition is short.

等が要求される。etc. are required.

通常、前記形状パターンの認識は、形状検出装
置によつて圧延材の幅方向における伸び率或いは
急峻度等をプロツト的に検出して形状パターンを
出力し、この出力を関数化処理装置によつて高次
関数等で近似して行つているが、板幅端部或いは
中央部等、局部的に精度が十分でない場合が生じ
る。
Normally, the shape pattern is recognized by a shape detection device that plots the elongation rate or steepness of the rolled material in the width direction, outputs the shape pattern, and converts this output into a function processing device. Although this is done by approximating using a high-order function, there may be cases where the accuracy is not sufficient locally, such as at the edge of the width of the plate or at the center.

このように、圧延材の幅方向の形状認識精度が
十分でないと、計算機で演算した時に制御量の過
不足が生じ、形状不良が十分に修正できなかつた
り、異なつた形の形状不良を生じることがあり、
次工程或いは使用用途上に問題点が生じる。
In this way, if the shape recognition accuracy in the width direction of the rolled material is not sufficient, the control amount will be too large or too small when calculated by a computer, and shape defects may not be sufficiently corrected or shape defects of different shapes may occur. There is,
Problems arise in the next process or usage.

(発明の目的) 本発明はこのような問題点に鑑みてなされたも
ので、圧延材の幅方向の形状認識が簡単且つ精度
よく行え、次工程或いは使用用途等の目的に適合
する形状の圧延材を得ることができる圧延材幅方
向の形状認識方法を提供するものである。
(Purpose of the Invention) The present invention was made in view of the above problems, and it is possible to easily and accurately recognize the shape of a rolled material in the width direction, and to roll the material into a shape that is suitable for the next process or purpose of use. The object of the present invention is to provide a method for recognizing the shape of a rolled material in the width direction.

(発明の構成) 上記目的を達成するために、本発明における圧
延材の幅方向形状認識方法は、圧延材の形状を自
動制御するに際して、圧延材の幅方向の形状パタ
ーンを形状検出装置からの出力を用いて重み付き
最小二乗法で未定係数が測定点の数より少ない関
数近似にて認識する時に、圧延材の幅方向の各位
置の出力に夫々重み係数を持たせ、認識したい板
幅部位に応じてその部位の重み係数を変化させる
ことを特徴とするもので、次工程或いは使用用途
等によつて圧延材の幅方向各部位の出力に異なる
重み係数を設定することにより、目的に応じた形
状パターンを認識可能にしたものである。
(Structure of the Invention) In order to achieve the above object, the method for recognizing the shape in the width direction of a rolled material in the present invention detects the shape pattern in the width direction of the rolled material from a shape detection device when automatically controlling the shape of the rolled material. When recognizing the weighted least squares method using the output using function approximation where the undetermined coefficient is smaller than the number of measurement points, a weighting coefficient is given to the output at each position in the width direction of the rolled material, and the width part of the plate to be recognized is determined. It is characterized by changing the weighting coefficient of the part according to the purpose. By setting different weighting coefficients for the output of each part in the width direction of the rolled material depending on the next process or usage, etc. This makes it possible to recognize shape patterns.

(実施例の説明) 本発明の実施例を従来方法と比較しながら第1
図〜第3図に基づいて説明をする。
(Explanation of Examples) First, while comparing Examples of the present invention with conventional methods.
Explanation will be given based on FIGS.

圧延材の幅方向の形状パターンを高次関数等で
近似するのに最小2乗法を用いた場合、次に示す
式を最小にするように関数形を決定するのが従
来の方法である。
When the least squares method is used to approximate the shape pattern in the width direction of a rolled material using a high-order function, the conventional method is to determine the function form so as to minimize the following equation.

oi=1 (yi−f(xi))2 …… 上式において、 xi:圧延材の幅方向位置、 yi:xiに対応する位置の伸び率或いは急峻度、 n:データ数、 f(x):近似すべき関数。 oi=1 (y i − f(x i )) 2 ... In the above formula, x i : Width direction position of the rolled material, y i : Elongation rate or steepness at the position corresponding to x i , n: Number of data, f(x): Function to be approximated.

これに対して本発明の実施例においては、圧延
材の幅方向の形状パターンを形状検出装置からの
出力を用いて関数近似にて認識する際、圧延材の
幅方向の各部位(位置)の出力に夫々重み係数を
持たせて次の式のように表し、この式を最小
にするように関数を決定する。
On the other hand, in the embodiment of the present invention, when recognizing the shape pattern in the width direction of the rolled material by function approximation using the output from the shape detection device, each part (position) in the width direction of the rolled material is recognized. Each output is given a weighting coefficient and expressed as in the following equation, and a function is determined to minimize this equation.

S′=oi=1 Wi(yi−f(xi))2 …… Wi:圧延材幅方向各部位(位置)の重み係数。 S′= oi=1 W i (y i −f(x i )) 2 ... W i : Weighting coefficient of each part (position) in the width direction of the rolled material.

例えば、圧延材の端伸びの形状をより良く認識
したい時には、式において圧延材の端部近傍の
重み係数を大きくし、又、圧延材の中伸び形状を
より良く認識したい時にはその中央部の重み係数
を大きくするものである。
For example, if you want to better recognize the edge elongation shape of a rolled material, increase the weighting coefficient near the end of the rolled material in the equation, and if you want to better recognize the mid-elongation shape of the rolled material, increase the weighting coefficient at the center. This increases the coefficient.

今、一例として、圧延材の幅方向におけるWS
クオータ部にビルトアツプ状の伸みが発生した時
の幅方向形状パターンを第1図に示す。この図
は、形状検出装置からの出力を伸び率に変換した
のちの値をプロツトしたものである。
Now, as an example, WS in the width direction of the rolled material
FIG. 1 shows the shape pattern in the width direction when a built-up elongation occurs in the quarter portion. This figure is a plot of the output from the shape detection device converted into an elongation rate.

第1図に示す結果から、従来方法の上記式に
より下記の式に示す4次関数で近似した値を示
すと、第2図において実線Aのようになる。
From the results shown in FIG. 1, the value approximated by the quartic function shown in the following equation using the above equation of the conventional method is shown as a solid line A in FIG.

f(x)=a0+a1x+a2x2+a3x3+a4x4 …… 上式において、 f(x):近似すべき関数、 x:圧延材の幅方向位置、 a0、a1、a2、a3、a4:未定係数。f(x)=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +a 4 x 4 ... In the above formula, f(x): Function to be approximated, x: Width direction position of rolled material, a 0 , a 1 , a2 , a3 , a4 : Undetermined coefficients.

この場合、圧延材の幅方向のDS端部の方がWS
端部よりも伸び率で0.34×10-4大きくなり、この
時の非対称形状の制御不感帯は0.2×10-4であつ
たため、WS端部の伸び率を大きくするように制
御し、その結果、第3図に示すようにWS端部の
方が伸びた形状となつた。
In this case, the DS edge in the width direction of the rolled material is
The elongation rate was 0.34×10 -4 larger than that at the end, and the control dead zone of the asymmetric shape at this time was 0.2×10 -4 , so the elongation rate at the WS end was controlled to be larger, and as a result, As shown in Figure 3, the WS end had an elongated shape.

一方、第1図に示す結果を、式を用いて板幅
方向の両端部の重み係数を大きくして式に示す
4次関数で近似した。その結果を第2図において
破線Bで示す。
On the other hand, the results shown in FIG. 1 were approximated by a quartic function shown in the equation by increasing the weighting coefficients at both ends in the board width direction using the equation. The results are shown by broken line B in FIG.

この場合、やはりDS端部の方がWS端部よりも
伸びた形となつたが、その伸び率は0.14×10-4
あつて非対称形状の制御不感帯である0.2×10-4
の値内に入り、そのため、制御は行われず両端部
の形状を悪化させることはない。
In this case, the DS end was also more elongated than the WS end, but the elongation rate was 0.14×10 -4 , which was 0.2×10 -4 , which was the control dead zone of the asymmetric shape.
Therefore, no control is performed and the shapes of both ends are not deteriorated.

上記重み係数の決定方法について述べると、圧
延指令が与えられた時に、次工程や用途が判明す
るが、次工程での通板性あるいは用途上から、端
伸び形状が不可あるいは中伸び形状が不可などが
要求される。従つて、これらに応じて、より制御
する必要のある部位の重み係数を大きくするので
ある。
Regarding the method for determining the above weighting coefficients, when a rolling command is given, the next process and application are known, but due to the threadability or the purpose of the next process, end elongated shapes or mid-elongated shapes are not possible. etc. are required. Therefore, the weighting coefficients of parts that need to be controlled more are increased accordingly.

例えば、端伸び形状が不可の場合には、端伸び
形状が発生しないように制御する必要があり、こ
のためには、中央部に比べて特に板幅端部の形状
認識が重要となる。この場合、形状検出器からの
出力を、板幅方向で同じ重み係数で関数近似すれ
ば、他の部位の出力に影響を受けて、端部形状
は、第2図の実線Aで示すように実際とは異なつ
た形状認識となる。このため、形状制御を行つて
も、端伸び形状が残存したり、新たに発生したり
する。
For example, if an edge elongated shape is not possible, it is necessary to control so that the edge elongated shape does not occur, and for this purpose, it is especially important to recognize the shape of the edge of the sheet width compared to the center. In this case, if the output from the shape detector is approximated as a function with the same weighting coefficient in the board width direction, the end shape will be affected by the outputs of other parts, as shown by the solid line A in Figure 2. This results in shape recognition that is different from reality. For this reason, even if shape control is performed, edge elongation shapes may remain or may newly occur.

これに対して、板幅端部での重み係数を大きく
すれば、他の部位の出力の影響は小さくなり、板
幅端部の形状認識を、第2図の破線Bで示示した
ように、より正確なものとすることができる。こ
の方法を用いて制御を行えば、端伸び形状のない
製品を得ることができるのである。
On the other hand, if the weighting coefficient at the edge of the plate width is increased, the influence of the output from other parts will be reduced, and the shape recognition of the edge of the plate will be improved, as shown by the broken line B in Figure 2. It can be made more accurate. If controlled using this method, it is possible to obtain a product without edge elongation.

(発明の効果) 以上のように本発明における圧延材の幅方向の
形状認識方法によれば、圧延材の幅方向の形状パ
ターンを、形状検出装置からの出力信号を用いて
重み付き最小二乗法で未定係数が測定点の数より
少ない関数近似にて認識する際に、圧延材の幅方
向の各位置の出力に夫々の重み係数を持たせ、目
的に応じて重み係数を変化させることを特徴とす
るものであるから、圧延材の所望位置の簡単且つ
精度良く認識することができ、従つて、次工程或
いは使用用途等の目的に合つた圧延材が得られる
ものである。
(Effects of the Invention) As described above, according to the shape recognition method in the width direction of a rolled material according to the present invention, the shape pattern in the width direction of the rolled material is determined using the weighted least squares method using the output signal from the shape detection device. When recognizing by function approximation where the undetermined coefficient is smaller than the number of measurement points, the output of each position in the width direction of the rolled material is given a respective weighting coefficient, and the weighting coefficient is changed according to the purpose. Therefore, the desired position of the rolled material can be easily and accurately recognized, and therefore, the rolled material can be obtained that is suitable for the purpose of the next process or intended use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は形状検出装置の出力プロツト図、第2
図は本発明の実施例と従来例による関数近似値
図、第3図は従来例の形状パターン図である。 A……従来例の関数近似値線図、B……本発明
による関数近似値線図。
Figure 1 is the output plot of the shape detection device, Figure 2
The figures are function approximation diagrams according to an embodiment of the present invention and a conventional example, and FIG. 3 is a shape pattern diagram of the conventional example. A...Function approximation diagram of the conventional example, B...Function approximation diagram according to the present invention.

Claims (1)

【特許請求の範囲】 1 圧延材の形状を自動制御するに際して、圧延
材の幅方向の形状パターンを形状検出装置からの
出力を用いて下記の式で示す重み付き最小二乗法
で未定係数が測定点の数より少ない関数近似にて
認識する時に、圧延材の幅方向の各位置の出力に
夫々重み係数を持たせ、認識したい板幅部位に応
じてその部位の重み係数を変化させることを特徴
とする圧延材の幅方向の形状認識方法。 記 oi=1 Wi(yi−f(xi))2 上式において、 xi:圧延材の幅方向位置、 yi:xiに対応する位置の伸び率、或いは急峻度、 n:データ数、 f(x):近似すべき関数、 Wi:圧延材幅方向各部位(位置)の重み係数。
[Claims] 1. When automatically controlling the shape of a rolled material, an undetermined coefficient is measured using the weighted least squares method expressed by the following formula using the output from a shape detection device for the shape pattern in the width direction of the rolled material. When recognizing using a function approximation that is smaller than the number of points, a weighting coefficient is given to the output at each position in the width direction of the rolled material, and the weighting coefficient for that part is changed depending on the part of the sheet width that is to be recognized. A method for recognizing the shape of rolled material in the width direction. Note oi=1 W i (y i −f(x i )) 2 In the above formula, x i : Width direction position of the rolled material, y i : Elongation rate or steepness at the position corresponding to x i , n: number of data, f(x): function to be approximated, W i : weighting coefficient of each part (position) in the width direction of the rolled material.
JP60142715A 1985-06-29 1985-06-29 Method for recognizing shape in breadthwise direction of rolling material Granted JPS623605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142715A JPS623605A (en) 1985-06-29 1985-06-29 Method for recognizing shape in breadthwise direction of rolling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142715A JPS623605A (en) 1985-06-29 1985-06-29 Method for recognizing shape in breadthwise direction of rolling material

Publications (2)

Publication Number Publication Date
JPS623605A JPS623605A (en) 1987-01-09
JPH0546882B2 true JPH0546882B2 (en) 1993-07-15

Family

ID=15321890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142715A Granted JPS623605A (en) 1985-06-29 1985-06-29 Method for recognizing shape in breadthwise direction of rolling material

Country Status (1)

Country Link
JP (1) JPS623605A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187147A (en) * 1986-02-13 1987-08-15 丸井産業株式会社 Cement material
JP2601718B2 (en) * 1989-04-03 1997-04-16 エムイーシーエンジニアリングサービス 株式会社 Automatic measurement equipment for barge loading soil volume

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529482A (en) * 1975-07-14 1977-01-25 Toyo Kohan Co Ltd Automatic flow detector of different thickness coated tin plate
JPS5810604A (en) * 1981-07-13 1983-01-21 Toshiba Corp Plate thickness measuring apparatus
JPS58190709A (en) * 1982-04-30 1983-11-07 Kawasaki Steel Corp Automatic high spot detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529482A (en) * 1975-07-14 1977-01-25 Toyo Kohan Co Ltd Automatic flow detector of different thickness coated tin plate
JPS5810604A (en) * 1981-07-13 1983-01-21 Toshiba Corp Plate thickness measuring apparatus
JPS58190709A (en) * 1982-04-30 1983-11-07 Kawasaki Steel Corp Automatic high spot detecting method

Also Published As

Publication number Publication date
JPS623605A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
ATE14535T1 (en) PROCESSING OF STRIP MATERIAL.
US6161405A (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JPH0546882B2 (en)
JP3069001B2 (en) Feedback control method of sheet crown / shape model
JP2588233B2 (en) Rolled material flatness control device
JPS5852724B2 (en) Metal rolling machine and setting method
JPS56160819A (en) Controlling method for thickness of front end of steel sheet
JP3275802B2 (en) Shape control method in sheet rolling
KR100368231B1 (en) Shape Control Method of Steel Strip in Hot Rolling Process
JP2719215B2 (en) Edge drop control method for sheet rolling
JPH0150485B2 (en)
JP2513866B2 (en) Shape control method
JPS62127111A (en) Plate width control device for hot rolling mill
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPS5815201B2 (en) Method for controlling the shape of metal strips
JPS5584211A (en) Shape control method of metal strip
JPS60145210A (en) Shape controlling method in hot strip rolling
JPS619914A (en) Method for controlling crown in sheet rolling
JPS6134882B2 (en)
JPS5722810A (en) Method for correcting camber of material to be rolled
JPH0714528B2 (en) Rolled material shape control device
JPH0787934B2 (en) Rolled material shape control device
JPS60124412A (en) Equipment for controlling sheet thickness in hot rolling
JPS62292212A (en) Automatic shape control method for rolling mill
JPH023642B2 (en)