JPH0546106B2 - - Google Patents

Info

Publication number
JPH0546106B2
JPH0546106B2 JP57072428A JP7242882A JPH0546106B2 JP H0546106 B2 JPH0546106 B2 JP H0546106B2 JP 57072428 A JP57072428 A JP 57072428A JP 7242882 A JP7242882 A JP 7242882A JP H0546106 B2 JPH0546106 B2 JP H0546106B2
Authority
JP
Japan
Prior art keywords
film
electrode
tft
amorphous silicon
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57072428A
Other languages
Japanese (ja)
Other versions
JPS58190061A (en
Inventor
Toshio Aoki
Mitsushi Ikeda
Koji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7242882A priority Critical patent/JPS58190061A/en
Publication of JPS58190061A publication Critical patent/JPS58190061A/en
Publication of JPH0546106B2 publication Critical patent/JPH0546106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、アモルフアスシリコンを用いた半導
体装置とその製造方法に係り、特にオーミツク電
極部の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device using amorphous silicon and a method for manufacturing the same, and particularly relates to an improvement in an ohmic electrode portion.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、アモルフアスシリコン(a−Si)により
形成された薄膜電界効果トランジスタ(TFT)
が注目されている。特に、上記半導体薄膜が低温
で形成できるため、薄膜半導体装置を構成するた
めの基板が特に限定されず、又、従来の露光技
術、エツチング技術等のパターン形成法もそのま
ま使用でき大面積基板への集積化も可能であるな
どの利点を有するため、目的に応じて、多種多様
の構造の半導体装置が実現できる。これらの半導
体薄膜を用いた半導体装置の機能を十分に発揮す
るために、同一基板内にスイツチング素子や能動
回路素子として、上記半導体薄膜により形成され
たTFTを設けることが多い。これにより、半導
体薄膜を用いた半導体装置の機能的な集積化も可
能となり、その応用は極めて広くなる。
In recent years, thin film field effect transistors (TFTs) made of amorphous silicon (a-Si) have been developed.
is attracting attention. In particular, since the semiconductor thin film described above can be formed at low temperatures, the substrate for constructing the thin film semiconductor device is not particularly limited, and conventional pattern forming methods such as exposure technology and etching technology can be used as is, making it possible to form large-area substrates. Since it has advantages such as being able to be integrated, semiconductor devices with a wide variety of structures can be realized depending on the purpose. In order to fully exhibit the functions of semiconductor devices using these semiconductor thin films, TFTs formed from the above semiconductor thin films are often provided as switching elements or active circuit elements within the same substrate. This makes it possible to functionally integrate semiconductor devices using semiconductor thin films, and its applications become extremely wide-ranging.

第1図および第2図は従来のTFTの2つの基
本構造を概略的に示す図である。これらの図にお
いて、1は基板、2はa−Si膜、3はゲート絶縁
膜、4はゲート電極、5,6はそれぞれソース、
ドレイン電極である。第1図のものはa−Si膜2
の同じ面側にゲート電極とソース電極5およびド
レイン電極6が設けられ、第2図のものはa−Si
膜2の下面側にゲート電極4、上面側にソース電
極5およびドレイン電極6が設けられている。こ
れらのTFTは結晶シリコンを用いたいわゆる
MOSFETと類似の電気的特性を示すが、
MOSFETとの動作原理の根本的な違いは、トラ
ンジスタのチヤンネルのしや断条件が、
MOSFETではPN接合の逆方向特性を利用する
のに対し、TFTではa−Si膜2の高抵抗を利用
する点である。
FIGS. 1 and 2 are diagrams schematically showing two basic structures of conventional TFTs. In these figures, 1 is a substrate, 2 is an a-Si film, 3 is a gate insulating film, 4 is a gate electrode, 5 and 6 are sources, respectively.
This is the drain electrode. The one in Figure 1 is a-Si film 2.
A gate electrode, a source electrode 5, and a drain electrode 6 are provided on the same side of the
A gate electrode 4 is provided on the lower surface of the film 2, and a source electrode 5 and a drain electrode 6 are provided on the upper surface. These TFTs are made of crystalline silicon.
Shows similar electrical characteristics to MOSFETs, but
The fundamental difference in operating principle from MOSFET is that the transistor channel conditions are
The MOSFET uses the reverse direction characteristic of the PN junction, whereas the TFT uses the high resistance of the a-Si film 2.

チヤンネルの導通状態は共に、電界効果による
半導体表面の反転あるいはキヤリア蓄積を利用す
る。従つて、これらのTFTを構成するためには、
a−Si膜2の非導通状態での抵抗がチヤンネル形
成時の抵抗に比べ十分高いことが必要である。
Both channel conduction states utilize inversion or carrier accumulation on the semiconductor surface due to field effects. Therefore, to configure these TFTs,
It is necessary that the resistance of the a-Si film 2 in a non-conducting state is sufficiently higher than the resistance during channel formation.

なお、第1図、第2図のTFTにおいて、ソー
ス電極5、ドレイン電極6とa−Si膜2のコンタ
クト部に不純物ドープにより抵抗を下げたa−Si
膜を設けて、良好なオーミツクコンタクトをとり
TFT特性を向上させる場合もある。又、基板1
が導電性材料であるときは、その表面に絶縁層を
設けて絶縁性基板として用いる。
In addition, in the TFTs shown in FIGS. 1 and 2, the contact portions between the source electrode 5, the drain electrode 6, and the a-Si film 2 are doped with impurities to lower the resistance.
A film is provided to ensure good ohmic contact.
It may also improve TFT characteristics. Also, substrate 1
When is a conductive material, an insulating layer is provided on its surface and used as an insulating substrate.

ところで、a−Siを用いたTFTでは、Pチヤ
ンネル及びNチヤンネルのTFT動作が可能であ
るが、電界効果移動度がNチヤンネルの方が1〜
2桁大きいことから、通常Nチヤンネル動作とし
て利用されることが多い。この場合、ソース、ド
レイン電極の材料としてはAlを用いる場合が多
い。しかしながら、Alを電極材料とする場合、
第3図に示すような非オーミツク特性を示し、と
きには破線のようにヒステリシス特性を示すこと
がある。このような非オーミツク特性は、Pをド
ープしたn+型a−Si膜を電極下地として形成する
ことによりかなり改善されるが、それでも非オー
ミツク特性となる場合がある。このような特性
は、主にa−Si TFTを製造する過程での熱処
理、汚染等が原因と考えられる。良好な特性のa
−Si TFTを得るためには、従つて十分に管理さ
れた製造工程が必要であるが、同一条件と思われ
る製造工程管理の下でも、TFTが良好な特性を
示すとは限らないことが実験的に明らかになつて
いる。
By the way, in TFT using a-Si, P channel and N channel TFT operation is possible, but the field effect mobility of N channel is 1~1.
Since it is two orders of magnitude larger, it is usually used for N-channel operation. In this case, Al is often used as the material for the source and drain electrodes. However, when using Al as the electrode material,
It exhibits non-ohmic characteristics as shown in FIG. 3, and sometimes exhibits hysteresis characteristics as shown by the broken line. Although such non-ohmic characteristics can be considerably improved by forming a P-doped n + -type a-Si film as the electrode base, non-ohmic characteristics may still occur. Such characteristics are thought to be mainly caused by heat treatment, contamination, etc. during the process of manufacturing the a-Si TFT. good characteristics a
-In order to obtain Si TFTs, a well-controlled manufacturing process is required, but experiments have shown that even under the same manufacturing process control conditions, TFTs do not necessarily exhibit good characteristics. It is becoming clear that

〔発明の目的〕[Purpose of the invention]

本発明の目的は、a−Si膜を用いた素子のオー
ミツク電極部の特性改善を図つた半導体装置を提
供することにある。
An object of the present invention is to provide a semiconductor device in which the characteristics of an ohmic electrode portion of an element using an a-Si film are improved.

〔発明の概要〕[Summary of the invention]

本発明は、a−Si膜を用いたTFTのソース、
ドレインのオーミツク電極の下地層として、不純
物ドープのn+型a−Si膜とMo膜の積層膜を介在
させることを特徴とする。
The present invention provides a TFT source using an a-Si film,
A feature is that a laminated film of an impurity-doped n + type a-Si film and a Mo film is interposed as the underlying layer of the drain ohmic electrode.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、n+型a−Si膜とMo膜からな
る下地層を設けることにより、a−Si膜に対する
オーミツク電極の特性は優れたものとなり、
TFT等の素子に適用して安定した素子特性が得
られる。
According to the present invention, by providing a base layer consisting of an n + type a-Si film and a Mo film, the properties of the ohmic electrode with respect to the a-Si film are excellent.
Stable device characteristics can be obtained when applied to devices such as TFT.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例のTFTを示す断面
図である。11はガラス基板等の絶縁性基板であ
り、この上にゲート電極12を形成した後、全面
にゲート絶縁膜となるSiO2膜13を設け、この
上にアンドープa−Si膜14を堆積し、Al膜に
よるソース電極171およびドレイン電極172
形成している。ソース電極171およびドレイン
電極172の下地層として、これらとa−Si膜1
4との間にPドープのn+型a−Si膜15とMo膜
16の積層膜を介在させている。Mo膜16は、
余り厚くすると応力によるはがれが生ずるため、
例えばa−Si膜14と15の合計厚みに対して1/
2以下の厚みにすることが好ましい。
FIG. 4 is a sectional view showing a TFT according to an embodiment of the present invention. 11 is an insulating substrate such as a glass substrate, and after forming a gate electrode 12 on this, a SiO 2 film 13 serving as a gate insulating film is provided on the entire surface, and an undoped a-Si film 14 is deposited on this. A source electrode 17 1 and a drain electrode 17 2 are formed of an Al film. These and the a-Si film 1 are used as a base layer for the source electrode 17 1 and the drain electrode 17 2 .
A laminated film of a P-doped n + type a-Si film 15 and a Mo film 16 is interposed between the film and the film 4 . The Mo film 16 is
If it is too thick, it will peel off due to stress, so
For example, the total thickness of a-Si films 14 and 15 is 1/
The thickness is preferably 2 or less.

次にこのTFTの具体的な製造工程を第5図a
〜dを参照して説明する。絶縁性基板11に750
Åのゲート電極12を所定パターンで形成した
後、全面を2500ÅのSiO2膜13でおおい、この
上にプラズマ分解法でアンドープa−Si膜14を
4000Å堆積し、続いて500ÅのPドープn+型a−
Si膜15を堆積し、更にスパツタ法により500Å
のMo膜16を蒸着するa。次にPEP工程によ
り、Mo膜16、a−Si膜15および14の3層
積層膜を素子領域にのみ残してパターニングする
b。次に全面に1μmのAl膜17を蒸着するc。
そしてPEP工程によりこのAl膜17およびMo膜
16をエツチングしてソース電極171およびド
レイン電極172を形成し、最後にこれらソース
電極171およびドレイン電極172をマスクとし
てチヤンネル領域上に残つているn+型a−Si膜1
5をエツチング除去して完成するd。
Next, the specific manufacturing process of this TFT is shown in Figure 5a.
This will be explained with reference to d. 750 on insulating substrate 11
After forming a gate electrode 12 with a thickness of 2500 Å in a predetermined pattern, the entire surface is covered with a SiO 2 film 13 with a thickness of 2500 Å, and an undoped a-Si film 14 is formed on this using a plasma decomposition method.
4000 Å deposited followed by 500 Å P-doped n + type a-
A Si film 15 is deposited, and then 500Å is deposited by sputtering method.
Depositing a Mo film 16 of a. Next, the three-layer laminated film of the Mo film 16, the a-Si films 15 and 14 is patterned by a PEP process, leaving it only in the element region b. Next, a 1 μm thick Al film 17 is deposited on the entire surface c.
Then, the Al film 17 and the Mo film 16 are etched by a PEP process to form a source electrode 17 1 and a drain electrode 17 2 .Finally, the source electrode 17 1 and the drain electrode 17 2 are used as masks to remain on the channel region. n + type a-Si film 1
5 is completed by etching away d.

こうして得られたTFTの特性評価を行つた結
果、優れた特性を示すことが確認された。第6図
はその電圧−電流特性であり、電流の立上り部分
で良好なオーミツク特性を示している。またヒス
テリシスは現われず、相互コンダクタンスgmも
従来のTFTに比べて1桁程度大きいものとなつ
ている。
As a result of evaluating the characteristics of the TFT thus obtained, it was confirmed that it exhibited excellent characteristics. FIG. 6 shows its voltage-current characteristics, showing good ohmic characteristics at the rising edge of the current. Further, hysteresis does not appear, and the mutual conductance gm is about one order of magnitude larger than that of conventional TFTs.

第7図は本発明の手法を抵抗素子に応用した参
考例である。その製造工程を説明すると次のとお
りである。絶縁性基板21上にSiH4のグロー放
電分解法により、不純物をドープしないa−Si膜
22を3000Å、続いてPドープn+型a−Si膜23
を500Å堆積させる。しかる後、Siエツチングに
より所望の抵抗素子パターンを形成し、厚さ1000
ÅのMo膜24、続いて厚さ5000ÅのAl膜25を
真空蒸着法にて堆積する。そして、パターニング
法により、AlとMoをリン酸系のエツチング液に
より同時にエツチングし、端子電極251,252
を形成してこの電極パターンをマスクとして、P
ドープa−Si膜23をCDE法にてエツチングし
て抵抗素子を完成させる。
FIG. 7 is a reference example in which the method of the present invention is applied to a resistance element. The manufacturing process will be explained as follows. An a-Si film 22 not doped with impurities is formed on an insulating substrate 21 to a thickness of 3000 Å using a SiH 4 glow discharge decomposition method, and then a P-doped n + type a-Si film 23 is formed on the insulating substrate 21.
Deposit 500Å. After that, the desired resistance element pattern is formed by Si etching, and the thickness is 1000mm.
A Mo film 24 with a thickness of 5000 Å and subsequently an Al film 25 with a thickness of 5000 Å are deposited by vacuum evaporation. Then, using a patterning method, Al and Mo are simultaneously etched using a phosphoric acid-based etching solution, and the terminal electrodes 25 1 , 25 2 are etched at the same time.
and using this electrode pattern as a mask, P
The doped a-Si film 23 is etched using the CDE method to complete the resistor element.

このようにして試作された抵抗素子の電流電圧
特性を測定した結果、直線性に優れたものである
ことが明らかになつた。
As a result of measuring the current-voltage characteristics of the resistance element prototyped in this way, it was revealed that it had excellent linearity.

本発明は上記各実施例に限定されるものではな
い。例えば電極材料はAlに限らず、Al−Si、Al
−Si−Cu等の化合物でもよく、又、Al以外の
Au、Ni等一般的な金属でよい。ただし、Moと
同一工程でエツチングが行なえる材料が望まし
い。又、TFTの場合、第1図に示すような構造
のものであつてもよい。この場合にも、ソース、
ドレイン電極の下地層として上記実施例と同様に
n+型a−Si膜とMo膜の積層膜を用いることで、
上記実施例と同様の効果が得られる。
The present invention is not limited to the above embodiments. For example, the electrode material is not limited to Al, but also Al-Si, Al
It may be a compound such as -Si-Cu, or it may be a compound other than Al.
Common metals such as Au and Ni may be used. However, it is desirable to use a material that can be etched in the same process as Mo. Further, in the case of TFT, it may have a structure as shown in FIG. In this case too, the source,
As the base layer of the drain electrode, as in the above example.
By using a laminated film of n + type a-Si film and Mo film,
The same effects as in the above embodiment can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のTFTの代表的構
造を示す図、第3図は従来のTFTの電圧−電流
特性例を示す図、第4図は本発明の一実施例の
TFTの構造を示す図、第5図a〜dはその製造
工程を示す図、第6図は得られたTFTの電圧−
電流特性を示す図、第7図は参考例の抵抗素子の
構造を示す図である。 11……絶縁性基板、12……ゲート電極、1
3……SiO2膜、14……アンドープa−Si膜、
15……Pドープn+型a−Si膜、16……Mo
膜、17……Al膜、171……ソース電極、172
……ドレイン電極。
1 and 2 are diagrams showing a typical structure of a conventional TFT, FIG. 3 is a diagram showing an example of voltage-current characteristics of a conventional TFT, and FIG. 4 is a diagram showing an example of the voltage-current characteristics of a conventional TFT.
Figures showing the structure of the TFT, Figures 5a to 5d are diagrams showing the manufacturing process, and Figure 6 shows the voltage of the obtained TFT.
A diagram showing the current characteristics, and FIG. 7 is a diagram showing the structure of a resistive element as a reference example. 11... Insulating substrate, 12... Gate electrode, 1
3...SiO 2 film, 14... Undoped a-Si film,
15...P-doped n + type a-Si film, 16...Mo
Film, 17... Al film, 17 1 ... Source electrode, 17 2
...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板上に形成されたアモルフアスシリ
コン膜の下面側または上面側にゲート電極が形成
され、前記アモルフアスシリコン膜の表面に選択
的にコンタクトするソース、ドレインのオーミツ
ク電極が形成された薄膜電界効果トランジスタを
備えた半導体装置において、前記オーミツク電極
の下地層として、不純物をドープしたn+型アモ
ルフアスシリコン膜とMo膜の積層膜を有するこ
とを特徴とするアモルフアスシリコン半導体装
置。
1 A thin film in which a gate electrode is formed on the lower surface side or upper surface side of an amorphous silicon film formed on an insulating substrate, and source and drain ohmic electrodes are formed in selective contact with the surface of the amorphous silicon film. An amorphous silicon semiconductor device comprising a field effect transistor, characterized in that the ohmic electrode has a laminated film of an n + type amorphous silicon film doped with an impurity and a Mo film as a base layer of the ohmic electrode.
JP7242882A 1982-04-28 1982-04-28 Amorphous silicon semiconductor device and manufacture thereof Granted JPS58190061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242882A JPS58190061A (en) 1982-04-28 1982-04-28 Amorphous silicon semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7242882A JPS58190061A (en) 1982-04-28 1982-04-28 Amorphous silicon semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58190061A JPS58190061A (en) 1983-11-05
JPH0546106B2 true JPH0546106B2 (en) 1993-07-13

Family

ID=13489004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242882A Granted JPS58190061A (en) 1982-04-28 1982-04-28 Amorphous silicon semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58190061A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968975A (en) * 1982-10-12 1984-04-19 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS59124162A (en) * 1982-12-29 1984-07-18 Sharp Corp Thin film transistor
JPS6014473A (en) * 1983-07-05 1985-01-25 Asahi Glass Co Ltd Electrode structure for thin film transistor
JPH0682839B2 (en) * 1984-08-21 1994-10-19 セイコー電子工業株式会社 Manufacturing method of display panel
JPS61193485A (en) * 1985-02-22 1986-08-27 Matsushita Electric Ind Co Ltd Manufacture of thin film transistor array
US4855806A (en) * 1985-08-02 1989-08-08 General Electric Company Thin film transistor with aluminum contacts and nonaluminum metallization
US4933296A (en) * 1985-08-02 1990-06-12 General Electric Company N+ amorphous silicon thin film transistors for matrix addressed liquid crystal displays
JPS6292371A (en) * 1985-10-18 1987-04-27 Hitachi Ltd Thin-film transistor and manufacture thereof
JPS6490560A (en) * 1987-10-01 1989-04-07 Casio Computer Co Ltd Thin-film transistor
US5188974A (en) * 1987-10-31 1993-02-23 Canon Kabushiki Kaisha Method of manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868171A (en) * 1971-12-20 1973-09-17
JPS50125683A (en) * 1974-03-20 1975-10-02
JPS51147290A (en) * 1975-06-13 1976-12-17 Nec Corp Semiconductor device
JPS5687364A (en) * 1979-12-18 1981-07-15 Nec Corp Semiconductor device
JPS56135938A (en) * 1980-03-28 1981-10-23 Yoshie Hasegawa Fixed probe board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868171A (en) * 1971-12-20 1973-09-17
JPS50125683A (en) * 1974-03-20 1975-10-02
JPS51147290A (en) * 1975-06-13 1976-12-17 Nec Corp Semiconductor device
JPS5687364A (en) * 1979-12-18 1981-07-15 Nec Corp Semiconductor device
JPS56135938A (en) * 1980-03-28 1981-10-23 Yoshie Hasegawa Fixed probe board

Also Published As

Publication number Publication date
JPS58190061A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
US4942441A (en) Thin film semiconductor device and method of manufacturing the same
JPH0752776B2 (en) Thin film transistor and manufacturing method thereof
EP0449539A2 (en) Ohmic contact for thin film transistor
JPH0546106B2 (en)
JPH1195256A (en) Active matrix substrate
JPH059941B2 (en)
TW201813000A (en) Thin film transistor substrate and manufacturing method thereof
JPH0746728B2 (en) Method for manufacturing semiconductor device
KR19990006206A (en) Thin film transistor and method of manufacturing same
JP2592044B2 (en) Manufacturing method of vertical thin film transistor
JP3420301B2 (en) Method for manufacturing thin film transistor
JPH08172195A (en) Thin film transistor
JPS5833872A (en) Manufacture of thin film field effect transistor
JPH0322064B2 (en)
JPH11274505A (en) Thin film transistor structure and its manufacture
EP0156647A2 (en) Thin film transistor and method of making the same
JPS6144468A (en) Semiconductor device and manufacture thereof
JPH02189935A (en) Manufacture of thin-film transistor
JPH09307115A (en) Thin film transistor
JPH059940B2 (en)
JPS5818966A (en) Manufacture of thin film field-effect transistor
KR100318532B1 (en) Amorphous Silicon Thin Film Transistor and Manufacturing Method
JP2635950B2 (en) Method for manufacturing semiconductor device
JPH06244199A (en) Thin film transistor and its manufacture
JPS58190058A (en) Manufacture of thin film field effect transistor