JPH0543248A - Method for controlling density of raw oxides for ferrite - Google Patents

Method for controlling density of raw oxides for ferrite

Info

Publication number
JPH0543248A
JPH0543248A JP22642991A JP22642991A JPH0543248A JP H0543248 A JPH0543248 A JP H0543248A JP 22642991 A JP22642991 A JP 22642991A JP 22642991 A JP22642991 A JP 22642991A JP H0543248 A JPH0543248 A JP H0543248A
Authority
JP
Japan
Prior art keywords
ferrite
density
wet
powder
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22642991A
Other languages
Japanese (ja)
Inventor
Kenji Kawahito
健二 川人
Yoshitaka Yamana
芳隆 山名
Kiyoshi Aritome
清 有留
Takehiko Okubo
武彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMIRITE Ltd
KEMIRAITO KOGYO KK
Nippon Steel Corp
Original Assignee
CHEMIRITE Ltd
KEMIRAITO KOGYO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEMIRITE Ltd, KEMIRAITO KOGYO KK, Nippon Steel Corp filed Critical CHEMIRITE Ltd
Priority to JP22642991A priority Critical patent/JPH0543248A/en
Publication of JPH0543248A publication Critical patent/JPH0543248A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain the raw oxides for ferrite having a fine grain diameter of <=1mum a feature of oxidating roasting and an optimum molding density and capable of being sintered to high density. CONSTITUTION:The fine raw oxides for ferrite obtained by oxidative roasting and having <=1mum grain diameter are dry-crushed and wet-crushed to change the aggregate state of the grains, and the density of the raw oxides for ferrite is controlled to continuously adjust the density of the compact to 2.6-3.2g/cm<3>. As a result, loss of power is drastically reduced, the control range of the compact density is widened, the core is shaped in accordance with a metallic mold, and the ferrite excellent in dimensional accuracy and magnetic characteristic is stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフェライト用原料酸化物
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material oxide for ferrite.

【0002】[0002]

【従来の技術】従来、フェライトの製造法はフェライト
を構成する金属の酸化物または炭酸塩等の単体を所定の
モル比で混合し、仮焼、粉砕、成型、焼成してフェライ
トとするが、微視的な組成の不均一性、製造時の不純物
の混入等の問題を有している。これらの問題を改善する
ために混合塩化物を焙焼して得られる混合酸化物をフェ
ライトの原料として使用することが特公昭47−115
50号公報で提案されている。また、上記課題を解決す
るために、有害な塩素の除去を可能にし、かつプレス成
形に好適な範囲の粒度を保持するフェライト用原料酸化
物の製造方法でフェライトを構成する主要金属元素を塩
化物の形で混合し、次いで酸化焙焼処理して酸化物の混
合物とし、この混合酸化物を600〜1000℃の温度
範囲に加熱することにより、効率良く残留塩素量を50
0mmp以下にすると共に、粒子径をプレス成形に最適
な0.9〜1.3μmに調整することで成型密度の向上
を図るものとして特開平2−271923号公報が知ら
れている。
2. Description of the Related Art Conventionally, ferrite is manufactured by mixing simple substances such as metal oxides or carbonates which compose ferrite at a predetermined molar ratio, and calcining, crushing, molding and firing to obtain ferrite. There are problems such as microscopic non-uniformity of composition and mixing of impurities during manufacturing. In order to solve these problems, it is preferable to use a mixed oxide obtained by roasting a mixed chloride as a raw material for ferrite.
No. 50 publication. Further, in order to solve the above problems, it is possible to remove harmful chlorine, and chloride the main metal element constituting the ferrite in the method for producing a raw material oxide for ferrite that maintains the grain size in a range suitable for press molding. In the form of a mixture, and then subjected to oxidative roasting treatment to form a mixture of oxides, and the mixed oxides are heated to a temperature range of 600 to 1000 ° C.
Japanese Unexamined Patent Publication (Kokai) No. 2-271923 discloses that the molding density is improved by adjusting the particle size to 0 mmp or less and adjusting the particle size to 0.9 to 1.3 μm, which is optimum for press molding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
特公昭47−11550号公報にあっては、酸化焙焼に
よって得られたこの混合酸化物は、粒度が0.8μm以
下と小さく、コアプレス成形時に充分高い成型密度が得
られず、そのため焼成時の焼結に伴う収縮が大きく最終
製品の寸法精度が得にくい上、更に1μm以下の微細な
粒子の特徴を活かすことが出来ない欠点がある。また、
特開平2−271923号公報にあっては、酸化焙焼の
特徴である1μm以下の微細な粒子径をプレス成形に最
適な0.9〜1.3μmと大きく調整しているため、仮
焼粉の結晶粒径に依存する焼成コア結晶粒径が大きくな
り、パワ−ロスの低減に限界がある等の欠点がある。
However, in the above Japanese Patent Publication No. 47-11550, the mixed oxide obtained by the oxidative roasting has a small particle size of 0.8 μm or less, and the core press molding is performed. In some cases, a sufficiently high molding density cannot be obtained, so that the shrinkage due to sintering during firing is large and it is difficult to obtain the dimensional accuracy of the final product, and further, the characteristics of fine particles of 1 μm or less cannot be utilized. Also,
In Japanese Unexamined Patent Application Publication No. 2-271923, the fine particle diameter of 1 μm or less, which is a characteristic of oxidative roasting, is adjusted to a large value of 0.9 to 1.3 μm, which is optimal for press molding. The grain size of the fired core depends on the grain size, and there is a drawback in that there is a limit to the reduction of power loss.

【0004】本発明はこのような従来技術の欠点を解消
し、酸化焙焼法の特徴の一つである1μm以下の微細な
粒子径を保持しつゝ、最適成型密度を得る方法を提供せ
んとするものである。その要旨とするところは、酸化焙
焼によって得られた1μm以下の微細なフェライト用原
料酸化物を、乾式粉砕と湿式粉砕の両者を組合せて処理
することにより、粒子の凝集状態を変化させることで、
成形体の圧縮密度を2.6g/cm3〜3.2g/cm3
の範囲に連続的に制御することを特徴とするフェライト
用原料酸化物の密度制御方法にある。
The present invention does not provide a method for solving such drawbacks of the prior art and obtaining an optimum molding density while maintaining a fine particle size of 1 μm or less, which is one of the features of the oxidation roasting method. It is what The gist is to change the agglomeration state of the particles by treating the fine raw material oxide for ferrite of 1 μm or less obtained by oxidative roasting in combination with both dry pulverization and wet pulverization. ,
The compacted body has a compression density of 2.6 g / cm 3 to 3.2 g / cm 3.
It is a method of controlling the density of a raw material oxide for ferrite, which is characterized in that the density is controlled continuously within the range.

【0005】以下、本発明について図面に従って詳細に
説明する。図1(A)は従来技術であって、通常フェラ
イト焼結体を製造する工程として、例えば、三元系複合
酸化物微粒子からなるフェライト焼結体の場合には、塩
化鉄、塩化亜鉛及び塩化マンガンを含有する混合水溶液
を600℃以上の焙焼炉に噴霧し、熱分解によって生成
する酸化物粉末を分解生成ガスと共に取り出し集塵機で
捕集し、この酸化物の粉末を、図1(A)に示すような
焙焼粉を400℃〜1100℃で熱処理し、解砕して一
次平均粒子径を0.1μm〜0.8μmに調整して、い
わゆる、ソフトフェライト原料粉を製造し、このソフト
フェライト原料粉を圧縮、成形、焼成してフェライト製
品を得るものであるが、本発明はこの工程中の焙焼粉を
熱処理して粉砕後成形体に圧縮成形する場合に粉砕粒子
径と圧縮密度との関係に係る工程にある。しかして、こ
の工程について従来法は図1(A)に示すように、焙焼
粉を熱処理し、引続き湿式粉砕後スプレ−乾燥を経て仮
焼粉工程を経るものである。これに対して本発明は図1
(B)に示すように、焙焼粉を400℃〜1100℃で
熱処理する工程までは従来方法とは変わらないが、その
後、乾式粉砕と湿式粉砕を粒度に応じてこれら両者を組
合わせたところに最大の特徴がある。すなわち、本発明
の工程の第一は、熱処理した後乾式粉砕と湿式粉砕の組
合せという乾式粉砕の特徴と湿式粉砕の特徴の各々の特
徴を活かして圧縮密度の範囲を拡大するものである。そ
の後は通常のスプレ−乾燥して仮焼成粉を得る工程にあ
る。工程の第二は熱処理した後乾式粉砕のみを行い、そ
の後、スプレ−乾燥して仮焼成粉を得る工程にある。更
に工程の第三は熱処理した後乾式粉砕し、その後直接仮
焼成粉を得る工程によるこれら三つの工程をそれぞれ組
み合わせることによって、粒子の凝集状態を変化させる
ことで、同一粒子径でも、幅広く成型密度を制御可能と
し、その結果最適粒子を得、成型密度の幅を広く高めよ
うとするものである。なお、本発明に係る乾式粉砕機と
しては、乾式ボ−ルミル、振動ミル等があり、分散機能
及び凝集機能の両者を持つものであり、また、湿式粉砕
機としては、湿式ボ−ルミル、アトラタ−等があり、分
散機能のみを持つものである。
The present invention will be described in detail below with reference to the drawings. FIG. 1 (A) shows a conventional technique. As a process for producing a normal ferrite sintered body, for example, in the case of a ferrite sintered body made of ternary complex oxide fine particles, iron chloride, zinc chloride and chloride are used. The mixed aqueous solution containing manganese is sprayed into a roasting furnace at 600 ° C. or higher, and the oxide powder produced by thermal decomposition is taken out together with the decomposition product gas and collected by a dust collector. The oxide powder is shown in FIG. 1 (A). The roasted powder as shown in Fig. 1 is heat-treated at 400 ° C to 1100 ° C and crushed to adjust the primary average particle size to 0.1 µm to 0.8 µm to produce a so-called soft ferrite raw material powder. The ferrite raw material powder is compressed, molded, and fired to obtain a ferrite product.The present invention, when the roasted powder in this step is heat-treated and crushed and then compression-molded into a molded product, the crushed particle size and the compressed density Work related to There is. In this step, the conventional method is, as shown in FIG. 1 (A), heat-treating the roasted powder, followed by wet pulverization, spray-drying, and then a calcination powder step. In contrast, the present invention is shown in FIG.
As shown in (B), the process is the same as the conventional method up to the step of heat treating the roasted powder at 400 ° C to 1100 ° C, but after that, dry pulverization and wet pulverization were combined according to the particle size. Has the greatest feature. That is, the first step of the present invention is to expand the range of compression density by taking advantage of each of the characteristics of dry grinding and wet grinding, which is a combination of dry grinding and wet grinding after heat treatment. After that, it is a step of obtaining a calcined powder by ordinary spray-drying. The second step is a step of performing only dry pulverization after heat treatment and then spray-drying to obtain a calcined powder. In the third step, heat treatment, dry pulverization, and subsequent direct calcination powder combination are combined to change the agglomeration state of the particles. Is controlled, and as a result, optimum particles are obtained to broaden the range of molding density. The dry crusher according to the present invention includes a dry ball mill, a vibration mill, and the like, which have both a dispersing function and an aggregating function, and a wet crusher includes a wet ball mill and an attritor. -, Etc., and has only a distributed function.

【0006】[0006]

【作用】更に本発明の特徴を図2によって説明する。図
2は本発明に係る比表面積と圧縮密度との関係を示す図
である。すなわち、本発明に係る乾式粉砕と湿式粉砕の
両者を組合せたことに大きな意義がある。その理由につ
いては、図2からわかるように1μm以下の微細な粒子
に対して成形圧力1t/cm2を基準としたときに湿式
粉砕によれば圧縮密度は2.8g/cm3が最大上限と
なる。すなわち、比表面積3m2/g、圧縮密度2.6
g/cm3の原紛を湿式粉砕したときには、2.65〜
2.8g/cm3の範囲の圧縮密度に限られる。従っ
て、湿式粉砕にあってはこれ以上は不可能である。一
方、乾式粉砕の場合は逆に3.0g/cm3が最下限値
であって、これ以下は不可能であり、3.0g/cm3
〜3.2g/cm3の範囲の圧縮密度に制限される。ま
た、乾式粉砕と湿式粉砕の組合せの場合は、2.8g/
cm3〜3.0g/cm3の圧縮密度が得られる。そこで
これらの方式の各々を組合せることによって2.6g/
cm3〜3.2g/cm3の範囲の圧縮密度が得られるこ
とが判明した。これらのことから、乾式粉砕及び湿式粉
砕の各々単独粉砕のみの場合並びに両者を組合せ使用す
る三通りの組合せによって各々の特徴を活かした幅広い
圧縮密度範囲での連続圧縮密度制御を可能にした。次に
実施例に基づいて本発明を詳細に説明する。
The features of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing the relationship between the specific surface area and the compressed density according to the present invention. That is, it is of great significance to combine both dry grinding and wet grinding according to the present invention. The reason for this is that, as can be seen from FIG. 2, when the compacting pressure is 1 t / cm 2 for fine particles of 1 μm or less, the maximum upper limit of the compression density is 2.8 g / cm 3 according to wet pulverization. Become. That is, the specific surface area is 3 m 2 / g and the compression density is 2.6.
When the original powder of g / cm 3 is wet pulverized, it is 2.65
Limited to a compressed density in the range of 2.8 g / cm 3 . Therefore, wet milling is impossible. On the other hand, in the case of dry pulverization, conversely 3.0 g / cm 3 is the lower limit value, and below this is impossible, and 3.0 g / cm 3
It is limited to the compression density ranging from ~3.2g / cm 3. In the case of a combination of dry crushing and wet crushing, 2.8 g /
A compressed density of cm 3 to 3.0 g / cm 3 is obtained. Therefore, by combining each of these methods, 2.6 g /
It has been found that compression densities in the range of cm 3 to 3.2 g / cm 3 can be obtained. From these facts, continuous compression density control in a wide compression density range that makes the most of each characteristic was made possible by dry pulverization and wet pulverization alone, and by three combinations using both pulverizations. Next, the present invention will be described in detail based on examples.

【0007】[0007]

【実施例】【Example】

実施例1 FeCl2,MnCl2及びZnCl2の水溶液を所定の
モル比で混合した後、800℃で噴霧焙焼した。得られ
た酸化物組成は、Fe23:MnO:ZnO=68.1
0:27.7:4.2(wt%)であった。次にこの酸
化物をロ−タリ−キルンで600〜1000℃の温度範
囲で空気気流中で40分間熱処理した後解砕し、比表面
積3m2/g、圧縮密度2.6g/cm3の原粉を得、こ
の混合物の粉砕処理を施された。粉砕処理はボ−ル12
kg、粉体2kgの湿式ボ−ルミルにより粉砕し、スプ
レ−乾燥を行って造粒品を得る。このときの粉砕品は、
図2に示す●印曲線である。比表面積3〜5m2/g、
圧縮密度2.7g/cm3〜2.8g/cm3であった。
その後圧縮成形し、焼成して寸法精度及び磁気特性の優
れたフェライト製品を得た。
Example 1 An aqueous solution of FeCl 2 , MnCl 2 and ZnCl 2 was mixed at a predetermined molar ratio, and then spray roasted at 800 ° C. The obtained oxide composition was Fe 2 O 3 : MnO: ZnO = 68.1.
It was 0: 27.7: 4.2 (wt%). Next, this oxide was heat-treated in a rotary kiln in the temperature range of 600 to 1000 ° C. for 40 minutes in an air stream and then crushed to obtain a raw material having a specific surface area of 3 m 2 / g and a compression density of 2.6 g / cm 3 . A powder was obtained and the mixture was milled. Ball 12 for crushing
kg and powder 2 kg are pulverized by a wet ball mill and spray-dried to obtain a granulated product. The crushed product at this time is
It is a curve marked with ● shown in FIG. Specific surface area 3-5 m 2 / g,
It was pressed density 2.7g / cm 3 ~2.8g / cm 3 .
Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0008】実施例2 実施例1と同様の水溶液を所定のモル比に混合した後、
同じく同−条件で噴霧焙焼し、同一酸化物組成であっ
た。次にこの酸化物をロ−タリ−キルンで600〜10
00℃の温度範囲で空気気流中で40分間熱処理した
後、この混合物の粉砕処理を施された。粉砕処理はボ−
ル25kg、粉体10kg/hrの乾式ボ−ルミルによ
り粉砕し、スプレ−乾燥を行って造粒品を得る。このと
きの粉砕品は、図2に示す△印曲線である。比表面積
4.5〜7m2/g、圧縮密度3.0g/cm3〜3.2
g/cm3であった。その後圧縮成形し、焼成して寸法
精度及び磁気特性の優れたフェライト製品を得た。
Example 2 The same aqueous solution as in Example 1 was mixed in a predetermined molar ratio,
Similarly, spray roasting was performed under the same conditions, and the same oxide composition was obtained. Next, this oxide is 600-10 in a rotary kiln.
After heat treatment for 40 minutes in an air stream in the temperature range of 00 ° C., the mixture was pulverized. The crushing process is
25 kg of powder and 10 kg / hr of powder are pulverized by a dry ball mill and spray-dried to obtain a granulated product. The crushed product at this time is the Δ-marked curve shown in FIG. Specific surface area 4.5 to 7 m 2 / g, compression density 3.0 g / cm 3 to 3.2
It was g / cm 3 . Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0009】実施例3 実施例1と同様の水溶液を所定のモル比に混合した後、
同じく同−条件で噴霧焙焼し、同一酸化物組成であっ
た。次にこの酸化物をロ−タリ−キルンで600〜10
00℃の温度範囲で空気気流中で40分間熱処理した
後、この混合物の粉砕処理を施された。粉砕処理は乾式
ボ−ルミルおよび湿式ボ−ルミルにより粉砕し、スプレ
−乾燥を行って造粒品を得る。このときの粉砕品は、図
2に示す×印直線である。比表面積4.0〜6.2m2
/g、圧縮密度2.8g/cm3〜3.0g/cm3であ
った。その後圧縮成形し、焼成して寸法精度及び磁気特
性の優れたフェライト製品を得た。
Example 3 After mixing the same aqueous solution as in Example 1 in a predetermined molar ratio,
Similarly, spray roasting was performed under the same conditions, and the same oxide composition was obtained. Next, this oxide is 600-10 in a rotary kiln.
After heat treatment for 40 minutes in an air stream in the temperature range of 00 ° C., the mixture was pulverized. In the crushing process, a dry ball mill and a wet ball mill are crushed and spray-dried to obtain a granulated product. The crushed product at this time is a straight line marked with x shown in FIG. Specific surface area 4.0-6.2 m 2
/ G, and a pressed density 2.8g / cm 3 ~3.0g / cm 3 . Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、1
μm以下の微粒子のままで、成型密度を制御でき焼成コ
ア結晶粒子径を小さく保ったまま、高密度焼成が可能と
なり、パワ−ロスの低減が大幅に可能となる。また、成
型密度の制御範囲が広くなり、金型に応じたコアの造り
別けが可能となり、寸法精度及び磁気特性の優れたフェ
ライトを安定して製造できる実用上の効果は極めて大き
い。
As described above, according to the present invention, 1
With the fine particles of μm or less as it is, the molding density can be controlled, and the high-density firing becomes possible while keeping the fired core crystal grain size small, and the power loss can be greatly reduced. In addition, the control range of the molding density is widened, the core can be manufactured according to the mold, and the practical effect of stably manufacturing ferrite having excellent dimensional accuracy and magnetic properties is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来技術におけるフェライト焼結体
を製造する工程図、
FIG. 1 is a process diagram of manufacturing a ferrite sintered body according to the present invention and the prior art;

【図2】本発明に係る比表面積と圧縮密度との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a specific surface area and a compressed density according to the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月20日[Submission date] August 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Name of item to be corrected] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 フェライト用原料酸化物の密度制御方
Title: Density control method for raw material oxide for ferrite

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフェライト用原料酸化物
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material oxide for ferrite.

【0002】[0002]

【従来の技術】従来、フェライトの製造法はフェライト
を構成する金属の酸化物または炭酸塩等の単体を所定の
モル比で混合し、仮焼、粉砕、成型、焼成してフェライ
トとするが、微視的な組成の不均一性、製造時の不純物
の混入等の問題を有している。これらの問題を改善する
ために混合塩化物を焙焼して得られる混合酸化物をフェ
ライトの原料として使用することが特公昭47−115
50号公報で提案されている。また、上記課題を解決す
るために、有害な塩素の除去を可能にし、かつプレス成
形に好適な範囲の粒度を保持するフェライト用原料酸化
物の製造方法でフェライトを構成する主要金属元素を塩
化物の形で混合し、次いで酸化焙焼処理して酸化物の混
合物とし、この混合酸化物を600〜1000℃の温度
範囲に加熱することにより、効率良く残留塩素量を50
0mmp以下にすると共に、粒子径をプレス成形に最適
な0.9〜1.3μmに調整することで成型密度の向上
を図るものとして特開平2−271923号公報が知ら
れている。
2. Description of the Related Art Conventionally, ferrite is manufactured by mixing simple substances such as metal oxides or carbonates which compose ferrite at a predetermined molar ratio, and calcining, crushing, molding and firing to obtain ferrite. There are problems such as microscopic non-uniformity of composition and mixing of impurities during manufacturing. In order to solve these problems, it is preferable to use a mixed oxide obtained by roasting a mixed chloride as a raw material for ferrite.
No. 50 publication. Further, in order to solve the above problems, it is possible to remove harmful chlorine, and chloride the main metal element constituting the ferrite in the method for producing a raw material oxide for ferrite that maintains the grain size in a range suitable for press molding. In the form of a mixture, and then subjected to oxidative roasting treatment to form a mixture of oxides, and the mixed oxides are heated to a temperature range of 600 to 1000 ° C.
Japanese Unexamined Patent Publication (Kokai) No. 2-271923 discloses that the molding density is improved by adjusting the particle size to 0 mmp or less and adjusting the particle size to 0.9 to 1.3 μm, which is optimum for press molding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
特公昭47−11550号公報にあっては、酸化焙焼に
よって得られたこの混合酸化物は、粒度が0.8μm以
下と小さく、コアプレス成形時に充分高い成型密度が得
られず、そのため焼成時の焼結に伴う収縮が大きく最終
製品の寸法精度が得にくい上、更に1μm以下の微細な
粒子の特徴を活かすことが出来ない欠点がある。また、
特開平2−271923号公報にあっては、酸化焙焼の
特徴である1μm以下の微細な粒子径をプレス成形に最
適な0.9〜1.3μmと大きく調整しているため、仮
焼粉の結晶粒径に依存する焼成コア結晶粒径が大きくな
り、パワーロスの低減に限界がある等の欠点がある。
However, in the above Japanese Patent Publication No. 47-11550, the mixed oxide obtained by the oxidative roasting has a small particle size of 0.8 μm or less, and the core press molding is performed. In some cases, a sufficiently high molding density cannot be obtained, so that the shrinkage due to sintering during firing is large and it is difficult to obtain the dimensional accuracy of the final product, and further, the characteristics of fine particles of 1 μm or less cannot be utilized. Also,
In Japanese Unexamined Patent Application Publication No. 2-271923, the fine particle diameter of 1 μm or less, which is a characteristic of oxidative roasting, is adjusted to a large value of 0.9 to 1.3 μm, which is optimal for press molding. There is a defect that the grain size of the fired core depends on the grain size of (1) and the power loss is limited.

【0004】本発明はこのような従来技術の欠点を解消
し、酸化焙焼法の特徴の一つである1μm以下の微細な
粒子径を保持しつゝ、最適成型密度を得る方法を提供せ
んとするものである。その要旨とするところは、酸化焙
焼によって得られた1μm以下の微細なフェライト用原
料酸化物を、乾式粉砕と湿式粉砕の両者を組合せて処理
することにより、粒子の凝集状態を変化させることで、
成形体の圧縮密度を2.6g/cm〜3.2g/cm
(atlt/cm の範囲に連続的に制御することを
特徴とするフェライト用原料酸化物の密度制御方法にあ
る。
The present invention does not provide a method for solving such drawbacks of the prior art and obtaining an optimum molding density while maintaining a fine particle size of 1 μm or less, which is one of the features of the oxidation roasting method. It is what The gist is to change the agglomeration state of the particles by treating the fine raw material oxide for ferrite of 1 μm or less obtained by oxidative roasting in combination with both dry pulverization and wet pulverization. ,
The compression density of the molded product is 2.6 g / cm 3 to 3.2 g / cm.
3 (atlt / cm 2 ) It is a method for controlling the density of a raw material oxide for ferrite, which is characterized by continuously controlling the range.

【0005】以下、本発明について図面に従って詳細に
説明する。図1(A)は従来技術であって、通常フェラ
イト焼結体を製造する工程として、例えば、三元系複合
酸化物微粒子からなるフェライト焼結体の場合には、塩
化鉄、塩化亜鉛及び塩化マンガンを含有する混合水溶液
を600℃以上の焙焼炉に噴霧し、熱分解によって生成
する酸化物粉末を分解生成ガスと共に取り出し集塵機で
捕集し、この酸化物の粉末を、図1(A)に示すような
焙焼粉を400℃〜1100℃で熱処理し、解砕して一
次平均粒子径を0.1μm〜0.8μmに調整して、い
わゆる、ソフトフェライト原料粉を製造し、このソフト
フェライト原料粉を圧縮、成形、焼成してフェライト製
品を得るものであるが、本発明はこの工程中の焙焼粉を
熱処理して粉砕後成形体に圧縮成形する場合に粉砕粒子
径と圧縮密度との関係に係る工程にある。しかして、こ
の工程について従来法は図1(A)に示すように、焙焼
粉を熱処理し、引続き湿式粉砕後スプレー乾燥を経て仮
焼粉工程を経るものである。これに対して本発明は図1
(B)に示すように、焙焼粉を400℃〜1100℃で
熱処理する工程までは従来方法とは変わらないが、その
後、乾式粉砕と湿式粉砕を粒度に応じてこれら両者を組
合わせたところに最大の特徴がある。すなわち、本発明
の工程の第一は、熱処理した後乾式粉砕と湿式粉砕の組
合せという乾式粉砕の特徴と湿式粉砕の特徴の各々の特
徴を活かして圧縮密度の範囲を拡大するものである。そ
の後は通常のスプレー乾燥して仮焼粉を得る工程にあ
る。工程の第二は熱処理した後乾式粉砕のみを行い、そ
の後、スプレー乾燥して仮焼粉を得る工程にある。更に
工程の第三は熱処理した後乾式粉砕し、その後直接仮焼
を得る工程によるこれら三つの工程をそれぞれ組み合
わせることによって、粒子の凝集状態を変化させること
で、同一粒子径でも、幅広く成型密度を制御可能とし、
その結果最適粒子を得、成型密度の幅を広く高めようと
するものである。なお、本発明に係る乾式粉砕機として
は、乾式ボールミル、振動ミル等があり、分散機能及び
凝集機能の両者を持つものであり、また、湿式粉砕機と
しては、湿式ボールミル、アトラター等があり、分散機
能のみを持つものである。
The present invention will be described in detail below with reference to the drawings. FIG. 1 (A) shows a conventional technique. As a process for producing a normal ferrite sintered body, for example, in the case of a ferrite sintered body made of ternary complex oxide fine particles, iron chloride, zinc chloride and chloride are used. The mixed aqueous solution containing manganese is sprayed into a roasting furnace at 600 ° C. or higher, and the oxide powder produced by thermal decomposition is taken out together with the decomposition product gas and collected by a dust collector. The oxide powder is shown in FIG. 1 (A). The roasted powder as shown in Fig. 1 is heat-treated at 400 ° C to 1100 ° C and crushed to adjust the primary average particle size to 0.1 µm to 0.8 µm to produce a so-called soft ferrite raw material powder. The ferrite raw material powder is compressed, molded, and fired to obtain a ferrite product.The present invention, when the roasted powder in this step is heat-treated and crushed and then compression-molded into a molded product, the crushed particle size and the compressed density Work related to There is. In the conventional method, as shown in FIG. 1 (A), the roasted powder is subjected to heat treatment, followed by wet pulverization, spray drying, and then a calcination powder step. In contrast, the present invention is shown in FIG.
As shown in (B), the process is the same as the conventional method up to the step of heat treating the roasted powder at 400 ° C to 1100 ° C, but after that, dry pulverization and wet pulverization were combined according to the particle size. Has the greatest feature. That is, the first step of the present invention is to expand the range of compression density by taking advantage of each of the characteristics of dry grinding and wet grinding, which is a combination of dry grinding and wet grinding after heat treatment. After that, it is in a step of obtaining a calcined powder by ordinary spray drying. The second step is a step in which after heat treatment, only dry pulverization is performed, and then spray drying is performed to obtain calcined powder . The third step is heat treatment, dry pulverization, and then direct calcination.
By combining these three steps of the step of obtaining powder , by changing the agglomeration state of the particles, it is possible to control the molding density widely even with the same particle size,
As a result, optimum particles are obtained and the range of molding density is broadly increased. The dry crusher according to the present invention includes a dry ball mill, a vibration mill, and the like, and has both a dispersing function and an aggregating function.The wet crusher includes a wet ball mill, an attritor, and the like. It has only a distributed function.

【0006】[0006]

【作用】更に本発明の特徴を図2によって説明する。図
2は本発明に係る比表面積と圧縮密度との関係を示す図
である。すなわち、本発明に係る乾式粉砕と湿式粉砕の
両者を組合せたことに大きな意義がある。その理由につ
いては、図2からわかるように1μm以下の微細な粒子
に対して成形圧力1t/cmを基準(以下同基準)
したときに湿式粉砕によれば圧縮密度は2.8g/cm
が最大上限となる。すなわち、比表面積3m/g、
圧縮密度2.6g/cmの原紛を湿式粉砕したときに
は、2.65〜2.8g/cmの範囲の圧縮密度に限
られる。従って、湿式粉砕にあってはこれ以上は不可能
である。一方、乾式粉砕の場合は逆に3.0g/cm
が最下限値であって、これ以下は不可能であり、3.0
g/cm〜3.2g/cmの範囲の圧縮密度に制限
される。また、乾式粉砕と湿式粉砕の組合せの場合は、
2.8g/cm〜3.0g/cmの圧縮密度が得ら
れる。そこでこれらの方式の各々を組合せることによっ
て2.6g/cm〜3.2g/cmの範囲の圧縮密
度が得られることが判明した。これらのことから、乾式
粉砕及び湿式粉砕の各々単独粉砕のみの場合並びに両者
を組合せ使用する三通りの組合せによって各々の特徴を
活かした幅広い圧縮密度範囲での連続圧縮密度制御を可
能にした。次に実施例に基づいて本発明を詳細に説明す
る。
The features of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing the relationship between the specific surface area and the compressed density according to the present invention. That is, it is of great significance to combine both dry grinding and wet grinding according to the present invention. The reason for this is that, as can be seen from FIG. 2, when the compacting pressure of 1 μm or less is used as the standard (hereinafter the same standard) with a molding pressure of 1 t / cm 2 , the compression density is 2.8 g / cm 2 by wet pulverization.
3 is the maximum upper limit. That is, a specific surface area of 3 m 2 / g,
When raw powder having a compressed density of 2.6 g / cm 3 is wet-ground, the compressed density is limited to a range of 2.65 to 2.8 g / cm 3 . Therefore, wet milling is impossible. On the other hand, in the case of dry grinding, conversely 3.0 g / cm 3
Is the lower limit value, and cannot be less than 3.0.
It is limited to the compression density in the range of g / cm 3 ~3.2g / cm 3 . Also, in the case of a combination of dry grinding and wet grinding,
Compressed density of 2.8g / cm 3 ~3.0g / cm 3 is obtained. Therefore compression density in the range of 2.6g / cm 3 ~3.2g / cm 3 can be obtained is found by combining each of these schemes. From these facts, continuous compression density control in a wide compression density range that makes the most of each characteristic was made possible by dry pulverization and wet pulverization alone, and by three combinations using both pulverizations. Next, the present invention will be described in detail based on examples.

【0007】[0007]

【実施例】 実施例1 FeCl,MnCl及びZnClの水溶液を所定
のモル比で混合した後、800℃で噴霧焙焼した。得ら
れた酸化物組成は、Fe:MnO:ZnO=
8.1:27.7:4.2(wt%)であった。次にこ
の酸化物をロータリーキルンで600〜1000℃の温
度範囲で空気気流中で40分間熱処理した後解砕し、比
表面積3m/g、圧縮密度2.6g/cmの原粉を
得、この混合物の粉砕処理を施された。粉砕処理はボー
ル12kg、粉体2kgの湿式ボールミルにより粉砕
し、スプレー乾燥を行って造粒品を得る。このときの粉
砕品は、図2に示す●印曲線である。比表面積3〜5m
/g、圧縮密度2.7g/cm〜2.8g/cm
であった。その後圧縮成形し、焼成して寸法精度及び磁
気特性の優れたフェライト製品を得た。
Example 1 An aqueous solution of FeCl 2 , MnCl 2 and ZnCl 2 was mixed at a predetermined molar ratio, and then spray roasted at 800 ° C. The obtained oxide composition was Fe 2 O 3 : MnO: ZnO = 6.
It was 8.1 : 27.7: 4.2 (wt%). Next, this oxide was heat-treated in a rotary kiln in the temperature range of 600 to 1000 ° C. for 40 minutes in an air stream and then crushed to obtain a raw powder having a specific surface area of 3 m 2 / g and a compression density of 2.6 g / cm 3 . The mixture was crushed. In the pulverization process, 12 kg of balls and 2 kg of powder are pulverized by a wet ball mill and spray-dried to obtain a granulated product. The crushed product at this time is a curve marked with ● shown in FIG. Specific surface area 3-5m
2 / g, compression density 2.7 g / cm 3 to 2.8 g / cm 3
Met. Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0008】実施例2 実施例1と同様の水溶液を所定のモル比に混合した後、
同じく同一条件で噴霧焙焼し、同一酸化物組成であっ
た。次にこの酸化物をロータリーキルンで600〜10
00℃の温度範囲で空気気流中で40分間熱処理した
後、この混合物の粉砕処理を施された。粉砕処理はボー
ル25kg、粉体10kgの乾式ボールミルにより粉砕
し、スプレー乾燥を行って造粒品を得る。このときの粉
砕品は、図2に示す△印曲線である。比表面積4.5〜
7m/g、圧縮密度3.0g/cm〜3.2g/c
であった。その後圧縮成形し、焼成して寸法精度及
び磁気特性の優れたフェライト製品を得た。
Example 2 The same aqueous solution as in Example 1 was mixed in a predetermined molar ratio,
Similarly, spray roasting was performed under the same conditions and the same oxide composition was obtained. Next, this oxide is 600-10 in a rotary kiln.
After heat treatment for 40 minutes in an air stream in the temperature range of 00 ° C., the mixture was pulverized. In the crushing process, a dry ball mill of 25 kg of balls and 10 kg of powder is crushed and spray-dried to obtain a granulated product. The crushed product at this time is the Δ-marked curve shown in FIG. Specific surface area 4.5 ~
7 m 2 / g, compression density 3.0 g / cm 3 to 3.2 g / c
It was m 3 . Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0009】実施例3 実施例1と同様の水溶液を所定のモル比に混合した後、
同じく同一条件で噴霧焙焼し、同一酸化物組成であっ
た。次にこの酸化物をロータリーキルンで600〜10
00℃の温度範囲で空気気流中で40分間熱処理した
後、この混合物の粉砕処理を施された。粉砕処理は乾式
ボールミルおよび湿式ボールミルにより粉砕し、スプレ
ー乾燥を行って造粒品を得る。このときの粉砕品は、図
2に示す×印直線である。比表面積4.0〜6.2m
/g、圧縮密度2.8g/cm〜3.0g/cm
あった。その後圧縮成形し、焼成して寸法精度及び磁気
特性の優れたフェライト製品を得た。
Example 3 After mixing the same aqueous solution as in Example 1 in a predetermined molar ratio,
Similarly, spray roasting was performed under the same conditions and the same oxide composition was obtained. Next, this oxide is 600-10 in a rotary kiln.
After heat treatment for 40 minutes in an air stream in the temperature range of 00 ° C., the mixture was pulverized. In the crushing process, a dry ball mill and a wet ball mill are crushed and spray-dried to obtain a granulated product. The crushed product at this time is a straight line marked with x shown in FIG. Specific surface area 4.0 to 6.2 m 2
/ G, and a pressed density 2.8g / cm 3 ~3.0g / cm 3 . Then, compression molding and firing were performed to obtain a ferrite product having excellent dimensional accuracy and magnetic properties.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、1
μm以下の微粒子のままで、成型密度を制御でき焼成コ
ア結晶粒子径を小さく保ったまま、高密度焼成が可能と
なり、パワーロスの低減が大幅に可能となる。また、成
型密度の制御範囲が広くなり、金型に応じたコアの造り
別けが可能となり、寸法精度及び磁気特性の優れたフェ
ライトを安定して製造できる実用上の効果は極めて大き
い。
As described above, according to the present invention, 1
With the fine particles of μm or less as it is, the molding density can be controlled, and the high-density firing can be performed while keeping the fired core crystal grain size small, and the power loss can be greatly reduced. In addition, the control range of the molding density is widened, the core can be manufactured according to the mold, and the practical effect of stably manufacturing ferrite having excellent dimensional accuracy and magnetic properties is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来技術におけるフェライト焼結体
を製造する工程図、
FIG. 1 is a process diagram of manufacturing a ferrite sintered body according to the present invention and the prior art;

【図2】本発明に係る比表面積と圧縮密度との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a specific surface area and a compressed density according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有留 清 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 大久保 武彦 東京都中央区銀座7−12−14 ケミライト 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyo Aridome 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Takehiko Okubo 7-12-14 Ginza, Chuo-ku, Tokyo Chemilight Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化焙焼によって得られた1μm以下の
微細なフェライト用原料酸化物を、乾式粉砕と湿式粉砕
の両者を組合せて処理することにより、粒子の凝集状態
を変化させることで、成形体の圧縮密度を2.6g/c
3〜3.2g/cm3の範囲に連続的に制御することを
特徴とするフェライト用原料酸化物の密度制御方法。
1. A compacted raw material oxide for ferrite having a size of 1 μm or less obtained by oxidative roasting is treated by a combination of both dry pulverization and wet pulverization to change the agglomeration state of particles, thereby forming The compressed density of the body is 2.6 g / c
A method for controlling the density of a raw material oxide for ferrite, which comprises continuously controlling in the range of m 3 to 3.2 g / cm 3 .
JP22642991A 1991-08-13 1991-08-13 Method for controlling density of raw oxides for ferrite Withdrawn JPH0543248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22642991A JPH0543248A (en) 1991-08-13 1991-08-13 Method for controlling density of raw oxides for ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22642991A JPH0543248A (en) 1991-08-13 1991-08-13 Method for controlling density of raw oxides for ferrite

Publications (1)

Publication Number Publication Date
JPH0543248A true JPH0543248A (en) 1993-02-23

Family

ID=16844981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22642991A Withdrawn JPH0543248A (en) 1991-08-13 1991-08-13 Method for controlling density of raw oxides for ferrite

Country Status (1)

Country Link
JP (1) JPH0543248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105589A (en) * 2009-10-23 2011-06-02 Nippon Shokubai Co Ltd Method for producing scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the method, and scandia-stabilized zirconia sintered powder
JP2013250455A (en) * 2012-05-31 2013-12-12 Toda Kogyo Corp Magnetic carrier for electrophotographic developer and production method of the same, and two-component developer
JP2016075953A (en) * 2016-01-07 2016-05-12 戸田工業株式会社 Magnetic carrier for electrophotographic developer, manufacturing method of the same, and two-component developer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105589A (en) * 2009-10-23 2011-06-02 Nippon Shokubai Co Ltd Method for producing scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the method, and scandia-stabilized zirconia sintered powder
US9601795B2 (en) 2009-10-23 2017-03-21 Nippon Shokubai Co., Ltd. Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilized zirconia sintered powder
JP2013250455A (en) * 2012-05-31 2013-12-12 Toda Kogyo Corp Magnetic carrier for electrophotographic developer and production method of the same, and two-component developer
JP2016075953A (en) * 2016-01-07 2016-05-12 戸田工業株式会社 Magnetic carrier for electrophotographic developer, manufacturing method of the same, and two-component developer

Similar Documents

Publication Publication Date Title
JPH09260124A (en) Ferrite magnet and manufacturing method thereof
CN110818402B (en) Preparation method of superfine ferrite powder
JPH0543248A (en) Method for controlling density of raw oxides for ferrite
JP2708160B2 (en) Ferrite manufacturing method
US3895092A (en) Continuous process for producing barium and strontium hard ferrites starting from iron oxides
JP3310019B2 (en) Method of manufacturing pellets with high strength of preheated pellets
JPH0797217A (en) Production of raw material for ferrite magnet
JPH0927430A (en) Manufacture of ferrite magnet
KR100440678B1 (en) Fabrication method of hard ferrite using mill scale added oxidant
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
KR100428559B1 (en) Simple fabrication method of hard ferrite powder using mill scale
JPH03123004A (en) Manufacture of highly efficient sr ferrite magnet
KR20040023835A (en) Fabrication method of hard ferrite permanent magnet using mill scale
JPH024535B2 (en)
JPH0891942A (en) Production of powder for ferrite
JPH0940456A (en) Manufacture of soft ferrite core
EP0149758B1 (en) Process of preparing ferrite with a predetermined ferrous content
JPH0564751A (en) Production of ferrite
JPH07126015A (en) Production of ni-zn ferrite powder
JPH0529122A (en) Production of magnetic powder for ferrite magnet
JPH07297021A (en) Manufacture of low-loss oxide magnetic material
JPH05135933A (en) Production of material oxide for soft ferrite
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
JPH06112033A (en) Manufacture of ferrite material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112