JPH0541522A - Insulated-gate bipolar transistor - Google Patents

Insulated-gate bipolar transistor

Info

Publication number
JPH0541522A
JPH0541522A JP19457191A JP19457191A JPH0541522A JP H0541522 A JPH0541522 A JP H0541522A JP 19457191 A JP19457191 A JP 19457191A JP 19457191 A JP19457191 A JP 19457191A JP H0541522 A JPH0541522 A JP H0541522A
Authority
JP
Japan
Prior art keywords
region
type
type region
electrode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19457191A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hisamoto
好明 久本
Keiji Inoue
敬二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19457191A priority Critical patent/JPH0541522A/en
Publication of JPH0541522A publication Critical patent/JPH0541522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain an insulated-gate bipolar transistor wherein 2 resistance inside a second-conductivity-type region near a first-conductivity-type region formed inside the second-conductivity-type region is reduced and it is possible to prevent a latch-up. CONSTITUTION:The title bipolar transistor is featured in the following manner: N<+> type source regions 17 are formed in each of a plurality of p-type regions 4 which have been formed selectively in a first semiconductor substrate 3 of a first conductivity type; a p-n junction is formed; and an Al-Si electrode 18 is buried in the p-type region 4 down to the rear surface or lower of said N<+> type source regions 17 although it comes into contact with the side face where the p-n junction is exposed. Thereby, since the A(-Si electrode is formed so as to come into contact with the exposed face of the p-n junction in the n<+> type source regions 17, a resistance near the n<+> type source region inside the p-type region 4 is reduced, and it is possible to prevent a latch-up phenomenon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁ゲート型バイポー
ラトランジスタ(以下、IGBTと略する)に係り、特
に、高速性で高耐圧,大電流にすぐれた電極構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate bipolar transistor (hereinafter abbreviated as "IGBT"), and more particularly to an electrode structure excellent in high speed, high breakdown voltage and large current.

【0002】[0002]

【従来の技術】図7および図8は従来のIGBTの一部
分を模式的に示した断面図である。以下、その製造方法
について説明する。図7,図8において、まず基板とな
るウエハはp+ 型基板1を用いる。例えば、このp+
基板1の主表面部に低比抵抗からなるn+ 型基板2と、
さらに連続的にn- 型基板3を形成する。なお、以下の
説明では必要により、これら各基板1,2,3を総称し
てウエハ10ということにする。このpn接合からなる
ウエハ10を用いてIGBTを製造するもので、n-
基板3の主表面に絶縁膜を形成し、その開口部からp型
不純物をイオン注入し、2重拡散してp型領域4を段状
に複数個形成する。さらに、p型領域4が形成された表
面にゲート絶縁膜5を形成し、このゲート絶縁膜5を介
してポリシリコン層を形成してポリシリコンゲート電極
(以下、ゲート電極という)6を0.3〜0.5μmの
厚みで形成する。次に、写真製版技術およびドライエッ
チング技術を用いてゲート電極6にパターニングを行
い、この開口部からn+ 型ソース領域7をp型領域4内
に形成する。次に、n+ 型ソース領域7を形成後、全面
に保護膜8を形成する。そして、この保護膜8に写真製
版技術を用いて開口部を形成し、n+ 型ソース領域7と
p型領域4の露出部にAl−Si電極9を形成する。ウ
エハ10の裏面部においても金属電極11を形成してI
GBTを製造する。なお、図8における8aは、保護膜
8から形成されたサイドウォールである。
2. Description of the Related Art FIGS. 7 and 8 are sectional views schematically showing a part of a conventional IGBT. The manufacturing method will be described below. In FIGS. 7 and 8, the p + type substrate 1 is used as the substrate wafer. For example, on the main surface of the p + type substrate 1, an n + type substrate 2 having a low specific resistance,
Further, the n type substrate 3 is formed continuously. In the following description, these substrates 1, 2, and 3 will be generically referred to as a wafer 10, if necessary. An IGBT is manufactured using the wafer 10 having the pn junction. An insulating film is formed on the main surface of the n type substrate 3, p type impurities are ion-implanted from the opening, and double diffusion is performed to form p. A plurality of mold regions 4 are formed stepwise. Further, a gate insulating film 5 is formed on the surface where the p-type region 4 is formed, a polysilicon layer is formed through the gate insulating film 5, and a polysilicon gate electrode (hereinafter, referred to as a gate electrode) 6 is formed. It is formed with a thickness of 3 to 0.5 μm. Next, the gate electrode 6 is patterned by using the photoengraving technique and the dry etching technique, and the n + type source region 7 is formed in the p type region 4 from this opening. Next, after forming the n + type source region 7, a protective film 8 is formed on the entire surface. Then, an opening is formed in the protective film 8 by using a photoengraving technique, and an Al-Si electrode 9 is formed in the exposed part of the n + type source region 7 and the p type region 4. The metal electrode 11 is formed on the back surface of the wafer 10 to
Manufacturing GBT. 8a in FIG. 8 is a sidewall formed of the protective film 8.

【0003】次に、図8に示す従来例によって、その動
作を説明する。まず、ソース電極であるAl−Si電極
9にマイナスバイアス、ドレインである金属電極11に
プラスバイアスを印加した状態でゲート電極6にプラス
電圧を印加して、これがしきい値電圧iR=0.6V以
上の高い正電圧になると、p型領域4の主表面近傍にチ
ャネル領域4aができる。そして、破線Xで示すように
金属電極11からpn領域を通ってチャネル領域4a,
さらにn+ 型ソース領域7を通ってAl−Si電極9へ
コレクタ電流が流れてMOS動作を開始する。そして、
このMOS電流がpnpトランジスタのベース電流とな
ってバイポーラトランジスタがオン状態となり、破線Y
のように金属電極11からのpn領域を通ってAl−S
i電極9へメイン電流が流れることになる。このとき、
+ 型ソース領域7からp型領域4内へe- の注入が行
われる。また、n+ 型ソース領域7の下部の横方向近傍
および側方の縦方向近傍のp型領域4内にはそれぞれ抵
抗Cおよび抵抗Dが存在するが、その大きさはn+ 型ソ
ース領域7の大きさに比例する。
Next, the operation will be described with reference to the conventional example shown in FIG. First, a positive voltage is applied to the gate electrode 6 while a negative bias is applied to the Al-Si electrode 9 that is the source electrode and a positive bias is applied to the metal electrode 11 that is the drain, and this is the threshold voltage iR = 0.6V. With the above high positive voltage, a channel region 4a is formed in the vicinity of the main surface of p type region 4. Then, as indicated by a broken line X, the metal electrode 11 passes through the pn region and the channel region 4a,
Further, a collector current flows through the n + type source region 7 to the Al-Si electrode 9 to start the MOS operation. And
This MOS current becomes the base current of the pnp transistor and the bipolar transistor is turned on.
Through the pn region from the metal electrode 11 as shown in FIG.
The main current will flow to the i-electrode 9. At this time,
The implantation of e is performed from the n + type source region 7 into the p type region 4. Further, the resistance C and the resistance D are present in the p-type region 4 in the vicinity of the lower portion of the n + -type source region 7 in the lateral direction and in the vicinity of the lateral vertical direction thereof, but the size thereof is n + -type source region 7. Proportional to the size of.

【0004】[0004]

【発明が解決しようとする課題】従来のIGBTは、以
上のようにAl−Si電極9がp型領域4とn+ 型ソー
ス領域7を金属電極11で短絡した構造になっており、
このn+ 型ソース領域7近傍のp型領域4内における抵
抗C,Dが大きいと、コレクタ電流が流れ込んで電流と
抵抗の積iRが接合電位約0.6V以上で、n+ 型ソー
ス領域7からe-が注入されてトランジスタがオン状態
となると、ラッチアップ現象(コレクタ電流をカットし
てもドレインからソースへ電流が流れ続けて制御不能に
なること)を起して素子を破壊してしまうという問題点
があった。
As described above, the conventional IGBT has a structure in which the Al-Si electrode 9 short-circuits the p-type region 4 and the n + -type source region 7 with the metal electrode 11.
If the resistance C in the n + -type source region 7 near the p-type region 4, D is large, a current and the product of the resistance iR junction potential of about 0.6V or higher flows collector current, n + -type source region 7 When the transistor is turned on by injecting e from e.g., latch-up phenomenon (current continues to flow from the drain to the source and becomes uncontrollable even if the collector current is cut) is caused, and the element is destroyed. There was a problem.

【0005】本発明は、上記のような問題点を解消する
ためになされたもので、n+ 型ソース領域の近傍のp型
領域内における抵抗を小さくするとともに、n+ 型ソー
ス領域からのe- の注入を抑えてラッチアップ現象を防
止した絶縁ゲート型バイポーラトランジスタを得ること
を目的とする。
[0005] The present invention has been made to solve the above problems, as well as reduce the resistance in the p-type region near the n + -type source region, e from n + -type source region The purpose of the present invention is to obtain an insulated gate bipolar transistor which suppresses the injection of-and prevents the latch-up phenomenon.

【0006】[0006]

【課題を解決するための手段】本発明に係るIGBT
は、ソース電極を、第1導電型領域の他側面に接しなが
ら第1導電型領域の下面以下まで第2導電型領域中に埋
め込んだものである。
The IGBT according to the present invention
Is the one in which the source electrode is in contact with the other side surface of the first conductivity type region and is buried in the second conductivity type region up to and including the lower surface of the first conductivity type region.

【0007】[0007]

【作用】本発明におけるIGBTは、第2導電型領域内
に形成された第1導電型領域によりpn接合が構成さ
れ、このpn接合の側面が第2導電型領域の主表面に対
し略垂直に露出されるとともに、この露出面と第1導電
型領域の中央部にわたってソース電極が埋め込まれてい
ることから、第1導電型領域近傍の第2導電型領域内の
抵抗が減少する。
In the IGBT of the present invention, the pn junction is formed by the first conductivity type region formed in the second conductivity type region, and the side surface of this pn junction is substantially perpendicular to the main surface of the second conductivity type region. Since the source electrode is buried over the exposed surface and the central portion of the first conductivity type region as well as being exposed, the resistance in the second conductivity type region near the first conductivity type region decreases.

【0008】[0008]

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本発明の一実施例を示すIGBTの構造断面
図である。この図において、1ないし4および11は従
来例と同一構成部分を示すので、その説明を省略する
が、ここではp型領域4が第2導電型領域に相当する。
12はゲート絶縁膜、13はポリシリコンゲート電極
(以下、ゲート電極という)、14は絶縁膜からなる保
護膜、15は窒化膜、16aはサイドウオール、17は
+ 型ソース領域で、これが第1導電型領域となる。1
8はAl−Si電極である。なお、n+ 型基板2とn-
型基板3は第1導電型の第1の半導体基板を構成し、p
+ 型基板1は第2導電型の第2の半導体基板となる。次
に、図1のIGBTの製造方法を、図2(a)〜(c)
および図3(a)〜(c)により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a structural sectional view of an IGBT showing an embodiment of the present invention. In this figure, reference numerals 1 to 4 and 11 indicate the same components as those of the conventional example, so the description thereof is omitted, but the p-type region 4 corresponds to the second conductivity type region here.
Reference numeral 12 is a gate insulating film, 13 is a polysilicon gate electrode (hereinafter referred to as a gate electrode), 14 is a protective film made of an insulating film, 15 is a nitride film, 16a is a sidewall, and 17 is an n + type source region. It becomes one conductivity type region. 1
8 is an Al-Si electrode. The n + type substrate 2 and n
The mold substrate 3 constitutes a first semiconductor substrate of the first conductivity type, and p
The + type substrate 1 becomes a second semiconductor substrate of the second conductivity type. Next, a method for manufacturing the IGBT shown in FIG. 1 will be described with reference to FIGS.
And FIG. 3 (a)-(c) demonstrates.

【0009】まず、n- 型基板3の主表面にゲート絶縁
膜12を形成し、この主表面に順次ゲート電極13およ
び保護膜14、さらに、窒化膜15を形成する。そし
て、写真製版技術とドライエッチング技術または化学エ
ッチングで開口部を形成し、この開口部からp型不純物
をイオン注入し、2重拡散して第2導電型領域であるp
型領域4を形成する(図2(a))。その後、全面にわ
たってリンを含む絶縁膜16を低温の常圧CVD法によ
って形成する(図2(b))。次に、プラズマドライエ
ッチング技術によって絶縁膜16をエッチングしてゆ
き、サイドウォール(側壁)16aを形成する(図2
(c))。さらに、このサイドウォール16aに含まれ
たリン不純物を熱拡散によって拡散し、第1導電型領域
であるn+ 型ソース領域17を形成する(図3
(a))。そして、さらに、このサイドウォール16a
をマスクにしてp型領域4をn+ 型ソース領域17下面
以下までエッチングする(図3(b))。最後に、p型
領域4の凹部全体にソース電極であるAl−Si電極1
8をn+ 型ソース領域17とp型領域4を短絡した状態
で形成する(図3(c))。
First, the gate insulating film 12 is formed on the main surface of the n -- type substrate 3, and the gate electrode 13, the protective film 14 and the nitride film 15 are sequentially formed on the main surface. Then, an opening is formed by photolithography and dry etching or chemical etching, p-type impurities are ion-implanted from this opening, and double diffusion is performed to form a second conductivity type region p.
The mold region 4 is formed (FIG. 2A). After that, an insulating film 16 containing phosphorus is formed on the entire surface by a low temperature atmospheric pressure CVD method (FIG. 2B). Next, the insulating film 16 is etched by the plasma dry etching technique to form sidewalls 16a (FIG. 2).
(C)). Further, the phosphorus impurity contained in the sidewall 16a is diffused by thermal diffusion to form the n + type source region 17 which is the first conductivity type region (FIG. 3).
(A)). And, further, this side wall 16a
Is used as a mask to etch the p-type region 4 down to the lower surface of the n + -type source region 17 or less (FIG. 3B). Finally, the Al-Si electrode 1 serving as the source electrode is formed over the entire recess of the p-type region 4.
8 is formed with the n + type source region 17 and the p type region 4 short-circuited (FIG. 3C).

【0010】上記のようにして形成されたIGBTの動
作を図4,図5によって説明する。まず、本発明は、微
細化のIGBTチップを実現するため、サイドウォール
(側壁)構造を利用してn+ 型ソース領域17を形成す
るもので、このn+ 型ソース領域17の一側面が露出さ
れてAl−Si電極18が埋め込まれているため、従来
例に比してこの領域の一側方近傍のp型領域4の抵抗が
なくなり、ラッチアップが防止できる。また、Al−S
i電極18がn+ 型ソース領域17よりも深い位置にあ
るため、ホールのAl−Si電極18への到達距離が短
くなり、p型領域4内を通る部分の抵抗を小さくできる
ので、iR値が小さくなり、e- の注入が抑えられる。
もちろん、n+ 型ソース領域17を小さくすれば、それ
に比例してその近傍のp型領域4内の抵抗が小さくな
り、ラッチアップに対する耐量が向上する。
The operation of the IGBT formed as described above will be described with reference to FIGS. First, according to the present invention, in order to realize a miniaturized IGBT chip, an n + type source region 17 is formed by utilizing a sidewall structure, and one side surface of the n + type source region 17 is exposed. Since the Al-Si electrode 18 is buried in the p-type region 4, the resistance of the p-type region 4 near one side of this region is eliminated as compared with the conventional example, and latch-up can be prevented. Also, Al-S
Since the i electrode 18 is located deeper than the n + type source region 17, the distance that holes reach the Al-Si electrode 18 is shortened, and the resistance of the portion passing through the p type region 4 can be reduced. Becomes smaller and the injection of e is suppressed.
Of course, if the size of the n + type source region 17 is reduced, the resistance in the p type region 4 in the vicinity thereof is reduced in proportion to it, and the resistance against latch-up is improved.

【0011】すなわち、図4において、n+ 型ソース領
域17の横断面積をB、その側面積をAとしたとき、そ
の面積比B/Aと、ラッチアップに対する短絡耐量との
関係線図は図5のようになる。この図において、従来例
による構造(図7)のときの面積比をB/A=1.0と
したときの本発明による効果を表したもので、従来比B
/A=1.0のとき、短絡耐量=1.0、本発明の場合
B/A=0.5で、その時の短絡耐量=2.0であり、
この図からも明らかなように横断面積Bが小さい方が短
絡耐量が大となる。ただし、横断面積をB=0にする
と、MOS,IGBTとしてのトランジスタ作用がなく
なるので、その比率の選択が重要となる。ここで、短絡
耐量は比率で表している。
That is, in FIG. 4, when the cross-sectional area of the n + type source region 17 is B and its side area is A, the relational diagram of the area ratio B / A and the short-circuit withstand capability against latch-up is shown in FIG. It becomes like 5. In this figure, the effect of the present invention when the area ratio of the structure according to the conventional example (FIG. 7) is B / A = 1.0 is shown.
When /A=1.0, the short circuit resistance = 1.0, in the case of the present invention, B / A = 0.5, and the short circuit resistance at that time = 2.0.
As is clear from this figure, the smaller the cross-sectional area B, the greater the short circuit withstand capability. However, when the cross-sectional area is set to B = 0, the transistor action as the MOS and the IGBT disappears, so that the selection of the ratio becomes important. Here, the short-circuit tolerance is expressed as a ratio.

【0012】なお、上記実施例では、n+ 型ソース領域
17の形成をサイドウォール16aのリン不純物拡散に
よって形成する方法について述べたが、n+ 型ソース領
域17の形成方法としては、上記実施例の他に、図6に
示すように、従来方法(図7に示す)と同様の方法でn
+ 型ソース領域17をp型領域4の主表面に形成したの
ち、保護膜14に領域パターン(開口部)を形成する。
この開口部から保護膜14をマスクにして、p型領域4
をn+ 型ソース領域17の下面以下までエッチダウンす
る。その後、Al−Si電極18を形成するようにして
もよい。なお、その他は、図7,図8と同様に行う。
[0012] In the above embodiment, although the formation of the n + -type source region 17 has been described a method of forming the phosphorus impurity diffusion sidewalls 16a, as a method for forming the n + -type source region 17, the embodiment In addition, as shown in FIG. 6, n is obtained by the same method as the conventional method (shown in FIG. 7).
After the + type source region 17 is formed on the main surface of the p type region 4, a region pattern (opening) is formed in the protective film 14.
Using the protective film 14 as a mask from this opening, the p-type region 4 is formed.
Is etched down to below the lower surface of the n + type source region 17. After that, the Al-Si electrode 18 may be formed. Others are the same as those in FIGS. 7 and 8.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
第2導電型領域内に形成された低比抵抗の第1導電型領
域により、pn接合を形成して露出させ、この露出面と
第2導電型領域の中央部にわたってソース電極を埋込む
構成としたので、第1導電型領域からのe- の注入が抑
えられるとともに、ホールのソース電極に流れ込む距離
が短くなるので、その間の抵抗が小さくなり、ラッチア
ップ現象を防止でき、性能の向上および安定が図れると
いう効果がある。
As described above, according to the present invention,
A low conductivity type first conductivity type region formed in the second conductivity type region forms and exposes a pn junction, and a source electrode is buried over the exposed surface and the center of the second conductivity type region. As a result, the injection of e from the first conductivity type region is suppressed, and the distance that the holes flow into the source electrode is shortened, so the resistance between them is reduced, and the latch-up phenomenon can be prevented, improving performance and stabilizing performance. There is an effect that can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すIGBTの構造断面図
である。
FIG. 1 is a structural sectional view of an IGBT showing an embodiment of the present invention.

【図2】図1のIGBTの製造方法を説明するための工
程断面図である。
2A to 2D are process cross-sectional views for explaining the method for manufacturing the IGBT in FIG.

【図3】図2に引き続く工程を示す断面図である。FIG. 3 is a cross-sectional view showing a step that follows FIG.

【図4】本発明の作用を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining the operation of the present invention.

【図5】n+ 型ソース領域の横断面積と側面積の面積比
とラッチアップに対する短絡耐量との関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between an area ratio of a cross-sectional area and a side area of an n + type source region and a short circuit withstand capability against latch-up.

【図6】第1導電型領域の形成方法の他の例を示す断面
図である。
FIG. 6 is a cross-sectional view showing another example of the method of forming the first conductivity type region.

【図7】従来のIGBTの断面図である。FIG. 7 is a cross-sectional view of a conventional IGBT.

【図8】従来の他の例を示すIGBTの断面図である。FIG. 8 is a sectional view of an IGBT showing another conventional example.

【符号の説明】[Explanation of symbols]

1 p+ 型基板 2 n+ 型基板 3 n- 型基板 4 p型領域 4a チャネル領域 10 ウエハ 11 金属電極 12 ゲート絶縁膜 13 ゲート電極 14 保護膜 15 窒化膜 16 絶縁膜 16a サイドウォール 17 n+ 型ソース領域 18 Al−Si電極1 p + type substrate 2 n + type substrate 3 n type substrate 4 p type region 4a channel region 10 wafer 11 metal electrode 12 gate insulating film 13 gate electrode 14 protective film 15 nitride film 16 insulating film 16a sidewall 17 n + type Source region 18 Al-Si electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の第1の半導体基板と、この第
1の半導体基板の主面に選択的に複数個形成された第2
導電型領域と、この第2導電型領域の露出面に形成され
た第1導電型領域と、この第1導電型領域の一側面と前
記第2導電型領域の一側面との間に形成されたチャネル
領域と、このチャネル領域の直上方にゲート絶縁膜を介
して設けられたゲート電極と、前記チャネル領域と反対
側の前記第1導電型領域に続く前記第2導電型領域との
露出面間に跨がって設けられたソース電極と、前記第1
の半導体基板の反対側の主面に設けられた第2導電型の
第2の半導体基板と、この第2の半導体基板の露出面に
設けられたドレイン電極とから構成された絶縁ゲート型
バイポーラトランジスタにおいて、前記ソース電極を、
前記第1導電型領域の他側面に接しながら前記第1導電
型領域の下面以下まで前記第2導電型領域中に埋め込ん
だことを特徴とする絶縁ゲート型バイポーラトランジス
タ。
1. A first semiconductor substrate of a first conductivity type, and a plurality of second semiconductors selectively formed on a main surface of the first semiconductor substrate.
A conductive type region, a first conductive type region formed on an exposed surface of the second conductive type region, and a side face of the first conductive type region and a side face of the second conductive type region. And an exposed surface of the channel region, a gate electrode provided immediately above the channel region via a gate insulating film, and the second conductivity type region continuing from the first conductivity type region on the side opposite to the channel region. The source electrode provided between the first electrode and the first electrode;
Insulated-gate bipolar transistor including a second semiconductor substrate of the second conductivity type provided on the opposite main surface of the semiconductor substrate and a drain electrode provided on the exposed surface of the second semiconductor substrate. In, the source electrode,
An insulated gate bipolar transistor, which is buried in the second conductivity type region up to a lower surface of the first conductivity type region while being in contact with the other side surface of the first conductivity type region.
JP19457191A 1991-08-03 1991-08-03 Insulated-gate bipolar transistor Pending JPH0541522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19457191A JPH0541522A (en) 1991-08-03 1991-08-03 Insulated-gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19457191A JPH0541522A (en) 1991-08-03 1991-08-03 Insulated-gate bipolar transistor

Publications (1)

Publication Number Publication Date
JPH0541522A true JPH0541522A (en) 1993-02-19

Family

ID=16326752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19457191A Pending JPH0541522A (en) 1991-08-03 1991-08-03 Insulated-gate bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0541522A (en)

Similar Documents

Publication Publication Date Title
JP2728671B2 (en) Manufacturing method of bipolar transistor
US4508579A (en) Lateral device structures using self-aligned fabrication techniques
US6815769B2 (en) Power semiconductor component, IGBT and field-effect transistor
US4393573A (en) Method of manufacturing semiconductor device provided with complementary semiconductor elements
JPH038343A (en) Bipolar transistor and manufacture thereof
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
US4743565A (en) Lateral device structures using self-aligned fabrication techniques
US4819055A (en) Semiconductor device having a PN junction formed on an insulator film
KR910000020B1 (en) Manufacture of semiconductor device
US5065209A (en) Bipolar transistor fabrication utilizing CMOS techniques
JPH0541522A (en) Insulated-gate bipolar transistor
JPH06163905A (en) Fabrication of insulated gate semiconductor
JPH05347410A (en) Semiconductor device and its manufacture
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JPS61218169A (en) Semiconductor device and manufacture thereof
JPS6237543B2 (en)
JPH0541523A (en) Semiconductor device
JPS6214103B2 (en)
JPS61269377A (en) Semiconductor device
JPH0358482A (en) Turn-off gate thyristor
JPH02152240A (en) Manufacture of semiconductor device
JPS5980968A (en) Manufacture of semiconductor integrated circuit device
JPH04241422A (en) Semiconductor integrated circuit device
JPS6122476B2 (en)
JPS62281469A (en) Semiconductor device