JPH0537420A - Medical information radio transmission method - Google Patents

Medical information radio transmission method

Info

Publication number
JPH0537420A
JPH0537420A JP3213248A JP21324891A JPH0537420A JP H0537420 A JPH0537420 A JP H0537420A JP 3213248 A JP3213248 A JP 3213248A JP 21324891 A JP21324891 A JP 21324891A JP H0537420 A JPH0537420 A JP H0537420A
Authority
JP
Japan
Prior art keywords
signals
signal
radio wave
base station
mobile station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3213248A
Other languages
Japanese (ja)
Inventor
Fujio Sumi
富士雄 角
Susumu Nakabayashi
進 中林
Susumu Oka
享 岡
Hidenori Suzuki
英範 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COLLEEN DENSHI KK
FUJI TEC KK
Original Assignee
COLLEEN DENSHI KK
FUJI TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COLLEEN DENSHI KK, FUJI TEC KK filed Critical COLLEEN DENSHI KK
Priority to JP3213248A priority Critical patent/JPH0537420A/en
Publication of JPH0537420A publication Critical patent/JPH0537420A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To eliminate speaking leakage by transmitting signals from the side of a mobile station while modulating a carrier frequency with a synthesized multiple signal time-dividing, compressing and linking the signals of plural channels, and returning, the signals to source signals on the side of a base station by demodulating them, releasing the linkage and extending those signals. CONSTITUTION:On the side of a mobile station M, the signals of plural channels CH1 and CH2 composed of vital information VTLS and sounds are respectively time-divided, compressed and linked. A series of these synthesized multiple signals are transmitted by modulating the carrier frequency and using a radio wave fM of a single frequency. On the side of a base station F, the radio wave is received, the synthesized multiple signals are demodulated, and the demodulated signals of the channels CH1 and CH2 are obtained by releasing the linkage. Next, the signals are extended to be inverse-fold as large as a compressing ratio and returned to the source signals. The signals are normally and simply transmitted from the side of the base station F by using another radio wave fF modulated by sounds and demodulated at the mobile station M so as to be returned to the source signals. Thus, conversation with the side of the base station F is executed without any trouble while transmitting the vital information VTLS from the side of the mobile station M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、救急車など
から患者の心電図、脈波、脳波、血圧などの生体情報を
救急病院に送信しながら連絡通話を行なう場合等に使用
される狭帯域の医療情報無線伝送方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow band communication system used for making contact calls while transmitting biological information such as an electrocardiogram, pulse wave, brain wave and blood pressure of a patient from an ambulance to an emergency hospital. The present invention relates to improvement of a wireless medical information transmission method.

【0002】[0002]

【従来の技術】救急車(以下、移動局という)では、患
者の生体情報(バイタルサイン)を基地局経由で救急病
院(以下、基地局という)に送信しつつ、その送信がう
まく受信されているかどうかを確かめながら、緊急の連
絡通話を継続して行なう必要がある。この場合に提案さ
れている従来の無線伝送方法は、一般に図4に示すよう
に例えばそれぞれ、音声には〜2kHz、生体情報等に
は2〜3kHzの周波数を割り当てて帯域制限を施し、
これらを一体の信号として、モデムを使用して単一周波
数の電波にのせて送受信するものであったが、狭帯域の
ため音声と生体情報の分離が完全でなく、音声の高調波
が生体情報側に混入して漏話を生じ殆んど実用に至らな
かった。
2. Description of the Related Art In an ambulance (hereinafter referred to as a mobile station), while transmitting the patient's biometric information (vital sign) to an emergency hospital (hereinafter referred to as a base station) via the base station, is the transmission successfully received? It is necessary to continue making emergency contact calls while making sure. In the conventional wireless transmission method proposed in this case, generally, as shown in FIG. 4, for example, a frequency of ˜2 kHz is assigned to voice, a frequency of 2 to 3 kHz is assigned to biometric information, and band limitation is performed.
Although these signals were sent and received as a single signal on a radio wave of a single frequency using a modem, the separation of voice and biometric information is not complete due to the narrow band, and harmonics of voice are biometric information. It was mixed into the side and crosstalk occurred, and it was hardly practical.

【0003】[0003]

【発明が解決しようとする課題】この従来の方法には、
送受の双方に帯域制御回路、モデムを必要とし、装置を
大型、複雑かつ高価にするほか、上述の漏話の問題を残
す欠点があった。
This conventional method has the following problems.
A band control circuit and a modem are required for both transmission and reception, which makes the device large, complicated and expensive, and has the drawback of leaving the above-mentioned crosstalk problem.

【0004】この発明は、漏話がなく、装置を軽量、小
型で、かつ安価に構成できる狭帯域の医療情報無線伝送
方法を提供することを目的とする。
An object of the present invention is to provide a narrow band medical information wireless transmission method which is free from crosstalk, is light in weight, small in size, and inexpensive in construction.

【0005】[0005]

【課題を解決するための手段】本発明は、移動局側から
の送信は、生体情報と音声とよりなる複数チャンネルの
信号を夫々時分割した後、圧縮し、その両者を連結合成
して得られる一連の合成多重信号で搬送周波数を変調し
て単一周波数の電波を使って送信し、基地局側はその電
波を受信して前記合成多重信号を復調し、その連結を解
いて夫々のチャンネルの復調信号を得た後、それぞれを
前記圧縮の圧縮比の逆数倍に伸張して元の信号に戻す操
作を行なう。
According to the present invention, the transmission from the mobile station side is obtained by time-dividing signals of a plurality of channels consisting of biometric information and voice, respectively, and compressing and synthesizing them. The carrier frequency is modulated by a series of composite multiplex signals to be transmitted using a single frequency radio wave, and the base station side receives the radio waves and demodulates the composite multiplex signal and releases the connection to each channel. After obtaining the demodulated signals of, each is expanded to the reciprocal of the compression ratio of the compression and restored to the original signal.

【0006】そして基地局側からの送信は、通常の如く
単純に、音声で変調した先とは別の電波を使って送信
し、移動局でそれを受信し復調して元の音声に戻す。こ
うした新しい無線伝送方法によって移動局側から生体情
報を送りながら基地局側との会話を支障なく行なうとい
う前記の目的を達成したものである。
Then, the transmission from the base station side is simply carried out by using a radio wave different from the one modulated with voice as usual, and the mobile station receives it, demodulates it and restores it to the original voice. The new wireless transmission method achieves the above-mentioned object of communicating with the base station side without any trouble while sending biometric information from the mobile station side.

【0007】[0007]

【実施例】本発明の時間圧縮多重通信における音声信号
と生体情報信号の時間的流れを、図1の〜欄に示
す。横軸に時間をとっている。ここでは、基本となる音
声信号1チャンネルと生体情報信号1チャンネルの2チ
ャンネルの信号処理の場合を例にとっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The temporal flow of a voice signal and a biometric information signal in time compression multiplex communication of the present invention is shown in columns 1 to 1 of FIG. Time is plotted on the horizontal axis. Here, the case of signal processing of two channels of one basic audio signal channel and one biometric information signal channel is taken as an example.

【0008】図1において、はチャンネル1の音声信
号CH1 、はチャンネル2の生体情報信号CH2 であ
る。これら、のチャンネル信号は夫々、一定時間T
毎に、互いに半周期T/2の差を持たせてサンプリング
され、チャンネル1CH1 の信号はA,B,C,…
に、チャンネル2CH2 の信号はa,b,c,… に分
割される。これら分割された信号A,B,C,… と、
a,b,c,… を夫々1/2時間圧縮するときは、そ
れぞれ、の断続信号A2 ,B2 ,C2 ,… と、の
断続信号a2 ,b2 ,c2 ,… が得られる。
In FIG. 1, is a channel 1 audio signal CH1 and is a channel 2 biological information signal CH2. Each of these channel signals has a predetermined time T
The signals of channel 1CH1 are A, B, C, ...
, The signal of channel 2CH2 is divided into a, b, c, .... These divided signals A, B, C, ...
When a, b, c, ... Are compressed for 1/2 hour, respectively, intermittent signals A2, B2, C2, ... And intermittent signals a2, b2, c2 ,.

【0009】との断続信号を、元のチャンネル信号
とと較べるとき、その周波数は2倍で、サンプリン
グ時間Tの1/2毎に空白部を持つ断続的な信号になっ
ている。かつ、との信号は断続のタイミングが丁度
180゜ズレた形になっている。従って、との信号
を直接合成することによって、に示すような、両断続
的信号を時間的に混じり合うことなく一連に連結した合
成多重信号A2 ,a2,B2 ,b2 … を得ることができ
る。
When the intermittent signal of and is compared with the original channel signal, its frequency is doubled, and it is an intermittent signal having a blank portion every 1/2 of the sampling time T. And, the signals of and are in the form that the timing of the interruption is exactly 180 °. Therefore, by directly synthesizing the signals of and, it is possible to obtain a synthetic multiple signal A2, a2, B2, b2 ... As shown in (1) in which both intermittent signals are concatenated in series without temporal mixing.

【0010】この多重信号A2 ,a2 ,B2 ,b2 …
が送信されて受信された場合、それは、前述と完全に逆
の操作を行なうことで元の音声信号に戻すことができ
る。図2はその有様を説明する図である。即ち図2にお
いて、受信・復調された多重信号A2 ,a2 ,B2 ,b
2 … 即ち’は、前記の送信に同期してこれをT/2
の時間幅でサンプリングし交互に振り分けることで、
’のチャンネル1CH1の断続する音声信号A2 ,B2
,C2 ,… と、’のチャンネル2CH2 の断続する
生体情報信号a2 ,b2 ,c2 ,… に2分される。そ
して夫々の断続の信号部分を2倍に伸張すると、’と
’に示すような元の信号に戻される。
The multiplexed signals A2, a2, B2, b2 ...
When is transmitted and received, it can be restored to the original audio signal by performing the opposite operation to the above. FIG. 2 is a diagram for explaining the situation. That is, in FIG. 2, the received / demodulated multiple signals A2, a2, B2, b
2… That's T / 2 in sync with the transmission
By sampling in the time width of
'Channel 1 CH1 intermittent audio signals A2 and B2
, C2, ..., And the divided biometric information signals a2, b2, c2 ,. Then, when each intermittent signal portion is doubled, it is restored to the original signal as shown by'and '.

【0011】さて、これら図1、図2に示した時間圧
縮、時間伸張処理を施す無線多重通信機としては、図3
の構成を挙げることができる。図3において、移動局M
の送信機TXM は、マイクロホンMIC1 からの音声信
号CH1 と生体情報VTLSからの生体情報信号CH2
をそれぞれ1/2圧縮した後これを一連にした、図1の
のような合成多重信号で周波数fM を変調して、その
電波を基地局Fへ送る。そして基地局Fは、周波数fM
の電波を受信機RXF で受信し、これから図2の合成多
重信号’を復調して取り出し、それを分割・伸張処理
してチャンネル1CH1 の音声信号’とチャンネル2
CH2 の生体情報信号’に戻す。
Now, as a wireless multiplex communication device for performing the time compression and time expansion processing shown in FIGS. 1 and 2, FIG.
Can be mentioned. In FIG. 3, the mobile station M
Of the transmitter TXM of the voice signal CH1 from the microphone MIC1 and the biometric information signal CH2 from the biometric information VTLS.
The frequency fM is modulated with a composite multiplex signal as shown in FIG. Then, the base station F determines the frequency fM
2 is received by the receiver RXF, and the composite multiplex signal'of FIG. 2 is demodulated and taken out from this, and it is subjected to division / expansion processing and channel 1 CH1 audio signal 'and channel 2'.
Return to the biological information signal 'of CH2.

【0012】一方、上記に平行して行なわれる基地局F
の送信機TXF と、移動局Mの受信機RXM の間の通信
は通常のように、別の周波数の電波fF を使って、分割
も圧縮も多重化もしない通常の変調、復調方式で行なわ
れる。
On the other hand, the base station F carried out in parallel with the above.
The communication between the transmitter TXF and the receiver RXM of the mobile station M is normally performed by using the radio wave fF of another frequency by the normal modulation and demodulation method without division, compression or multiplexing. ..

【0013】さて、上述した通信方法は、このままでは
まだ次の問題を残している。即ち、音声信号を1/2時
間圧縮するために最大変調周波数(無線通信の場合は一
般に3kHz)が2倍になり、変調した時に電波の占有
周波数帯域幅が広がって、狭帯域無線通信の場合には、
法規的に実用の範囲を逸脱することになる。
The communication method described above still has the following problems as it is. That is, the maximum modulation frequency (generally 3 kHz in the case of wireless communication) is doubled in order to compress the audio signal for 1/2 hour, and the occupied frequency bandwidth of the radio wave is widened when modulated, and in the case of narrow band wireless communication. Has
It is legally outside the scope of practical use.

【0014】この問題は、次の方法によって解決でき
る。即ち、音声信号を変調に用いる前に、低域フィルタ
を用いて、その音声信号の高音域(上記では、周波数
1.5〜3kHz)をカットする(即ち1.5kHz以
下にする)、これによって電波の占有周波数帯域幅を狭
めるのである。なお生体情報信号は1.5kHz以下な
のでその必要はない。
This problem can be solved by the following method. That is, before using the audio signal for modulation, a high-pass range (in the above, a frequency of 1.5 to 3 kHz) of the audio signal is cut (that is, 1.5 kHz or less) by using a low-pass filter. It narrows the occupied frequency bandwidth of radio waves. The biological information signal is not necessary because it is 1.5 kHz or less.

【0015】こうして、変調の前に、低域フィルタを用
いて音声信号の高音域をカットすると、電波の占有周波
数帯域幅が狭められて法規上の問題は解消する。音声信
号は高音域(1.5〜3kHz)がカットされても、通
話の了解度は十分使用に耐えるものである。
In this way, if the high frequency band of the audio signal is cut by using the low frequency filter before the modulation, the occupied frequency band width of the radio wave is narrowed and the legal problem is solved. Even if the high frequency range (1.5 to 3 kHz) of the voice signal is cut, the intelligibility of the call can be sufficiently used.

【0016】さて、本発明の医療情報無線伝送方法に用
いられる無線通信機には、図3のように、特に移動局M
の送信機の内部と基地局Fの受信機の内部の構成に改良
が加えられるので、それを次に説明する。図5は移動局
Mの送信機TXM の基本的な内部構成を示した図であ
る。図5において、マイクロフォンMIC1 より入力さ
れたチャンネル1の音声信号CH1 はバンドパスフィル
タBPF1Mにより、その帯域が0.3〜1.5kHzに
制限され(以下ではこれも音声信号CH1 と呼ぶ)、チ
ャンネル2の生体情報信号CH2 (心電図の場合は0.
05〜100Hzの帯域幅をもつ)の方はそのまま入力
信号として用いられる。
Now, as shown in FIG. 3, the wireless communication device used in the medical information wireless transmission method of the present invention is, in particular, a mobile station M.
Improvements are made to the internal structure of the transmitter of the base station and the internal receiver of the base station F, which will be described below. FIG. 5 is a diagram showing a basic internal configuration of the transmitter TXM of the mobile station M. In FIG. 5, the band 1 of the audio signal CH1 input from the microphone MIC1 is limited to 0.3 to 1.5 kHz by the bandpass filter BPF1M (hereinafter also referred to as the audio signal CH1), and the channel 2 Biological information signal CH2 (0.
The one having a bandwidth of 05 to 100 Hz) is used as it is as an input signal.

【0017】しかし無線機は一般に0.3〜3kHzを
通過帯域にしているのと、位相変調を採用する場合が多
く、心電図のように100Hz以下の帯域に重要な情報
がある場合は、変調したときその帯域の伝送レベルが低
くなり、重要な情報が欠けて実用に供しえない。このた
め、CH2 では、例えば、1.1kHzのサブキャリア
を設け、これを小さい変調指数でFM変調するという対
策をとる。こうすれば図7に示すように、それら100
Hz以下の帯域に対しても十分に対処できて所期の目的
を達することができる。図3、図5、図6の、サブキャ
リア変調器SH、サブキャリア復調器SFはその場合に
設けられるものである。
However, radio devices generally use 0.3 to 3 kHz as a pass band, and phase modulation is often adopted. If there is important information in a band of 100 Hz or less as in an electrocardiogram, modulation is performed. At that time, the transmission level of the band becomes low, and important information is lacking, so that it cannot be put to practical use. Therefore, for CH2, for example, a subcarrier of 1.1 kHz is provided and FM modulation is performed with a small modulation index. In this way, as shown in FIG.
It is possible to sufficiently deal with the band below Hz and achieve the intended purpose. The subcarrier modulator SH and the subcarrier demodulator SF shown in FIGS. 3, 5, and 6 are provided in that case.

【0018】これ以後の音声多重処理をやや詳細に説明
すると次のようになる。図5において、チャンネル信号
CH1 、CH2 は、夫々、アナログ・ディジタル変換器
ADC1M、ADC2Mを経てディジタル信号となり、ラン
ダムアクセスメモリRAM1M、RAM2Mに入力された
後、ディジタル・アナログ変換器DAC1M、DAC2Mに
読み出され、それぞれを経由した後、更にバンドパスフ
ィルタBPF1M'、BPF2M'を経由して加算器MULに
入力され、ここで合成されて一連の時間圧縮多重信号C
HHとなるのであるが、この時、これらの各処理に対し
て、図示するように、マイクロコンピュータを内蔵する
音声圧縮コントローラCCCの発する指令信号C1M、C
2M、C5M、C6M、アドレス信号C3M、C4M、及び同期信
号C7 が用いられ、処理は有機的に制御されて図1の多
重化処理が実現され、時間圧縮多重信号CHHとして図
1のの信号が得らるようになっている。即ち、チャン
ネル信号CH1 とCH2 は、夫々、圧縮コントローラC
CCの定める周期Tで、互いにT/2の位相差をもって
時分割(図1のと)された後、ランダムアクセスメ
モリRAM1M、RAM2Mに書き込まれ、書き込みがT/
2時間行なわれた時点から2倍の早さでディジタル・ア
ナログ変換器DAC1M、DAC2Mに読み出されて、1/
2に時間圧縮(図1のと)された断続信号となっ
て、バンドパスフィルタBPF1M'、BPF2M'を経由し
て加算器MULに入力され、一連の時間圧縮多重信号C
HH(図1の)に合成されて出力される。時間圧縮多
重信号CHHは、同期信号C7 とともに送信機の高周波
数部THFに入力されて変調に用いられ、アンテナAN
TM から電波fM に乗って発射される。但し生体情報の
CH2 は先に述べた如く変調指数の小さなFM変調され
たものになっている。
The audio multiplexing process thereafter will be described in a little more detail as follows. In FIG. 5, the channel signals CH1 and CH2 are converted into digital signals through the analog / digital converters ADC1M and ADC2M, respectively, input to the random access memories RAM1M and RAM2M, and then read out to the digital / analog converters DAC1M and DAC2M. After passing through each of them, the bandpass filters BPF1M ′ and BPF2M ′ are further input to the adder MUL, where they are synthesized and a series of time compression multiplexed signals C
At this time, for each of these processes, command signals C1M, C issued by a voice compression controller CCC containing a microcomputer are shown for each of these processes.
2M, C5M, C6M, address signals C3M, C4M, and synchronization signal C7 are used, the processing is organically controlled to realize the multiplexing processing of FIG. 1, and the signal of FIG. It is supposed to be obtained. That is, the channel signals CH1 and CH2 are respectively sent to the compression controller C.
After being time-divided (as in FIG. 1) with a phase difference of T / 2 from each other at a cycle T determined by CC, the data is written to the random access memories RAM1M and RAM2M, and the writing is performed at T /
It is read by the digital-to-analog converters DAC1M and DAC2M at twice the speed from the time of 2 hours, and 1 /
The time-compressed (2 in FIG. 1) intermittent signal is input to the adder MUL via the bandpass filters BPF1M 'and BPF2M', and a series of time-compression multiplexed signals C
It is combined with HH (in FIG. 1) and output. The time compression multiplexed signal CHH is input to the high frequency part THF of the transmitter together with the synchronization signal C7 and used for modulation, and the antenna AN
It is emitted from TM on radio wave fM. However, as described above, CH2 of biometric information is FM-modulated with a small modulation index.

【0019】同期信号C7 の送り方には、トーン信号の
断続、FSK(Frequency Shift Keying)、送信電波の
キャリアの断続、等々の一般的な方法が使用できるの
で、取り立てて説明することはしない。
Since a general method such as intermittent tone signal, FSK (Frequency Shift Keying), intermittent carrier of transmission radio wave, etc. can be used for sending the synchronizing signal C7, it will not be described.

【0020】この電波fM を受けた基地局Fで行なわれ
る受信機RXFの動作、即ち同期信号C7 と時間圧縮多
重信号CHHの復調、多重信号CHHから元のチャンネ
ル信号CH1 、CH2 の取出し(図2で説明のもの)を
次に説明する。図6で、アンテナANTF で受けた電波
fM は高周波数部RHFを通って復調されて時間圧縮多
重信号CHH(図2の’)となるが、それはアナログ
/ディジタル変換器ADCF を通ってディジタル信号に
変換されると同時に、出口で2つのチャンネル信号CH
H1 とCHH2 (図2の’と’)に時分割されてラ
ンダムアクセスメモリRAM1FとRAM2Fに書き込まれ
た後、書き込み時の1/2の速度でディジタル・アナロ
グ変換器DAC1FとDAC2Fに読み出され、それぞれを
経由した後、チャンネル信号CH1 とCH2 に戻され
る。マイクロコンピュータを内蔵する伸張コントローラ
ECCの発する指令信号CF、C5F、C6F、アドレス信
号C3F、C4F、及び、高周波数部RHFから同期信号検
出回路DETで取り出された同期信号C7 が用いられ
て、上記の処理が有機的に行なわれることは図5の場合
と同じである。但しCH2 が送信側でサブキャリア変調
してあるため、サブキャリアを復調することは勿論であ
る。
The operation of the receiver RXF performed by the base station F receiving the radio wave fM, that is, the demodulation of the synchronization signal C7 and the time compression multiplexed signal CHH, and the extraction of the original channel signals CH1 and CH2 from the multiplexed signal CHH (see FIG. 2) Will be described next). In FIG. 6, the radio wave fM received by the antenna ANTF is demodulated through the high frequency part RHF to be a time compression multiplexed signal CHH ('in FIG. 2), which is converted into a digital signal through the analog / digital converter ADCF. Simultaneously converted, two channel signals CH at the exit
After being time-divided into H1 and CHH2 ('and' in FIG. 2) and written in the random access memories RAM1F and RAM2F, they are read out to the digital / analog converters DAC1F and DAC2F at half the speed of writing, After passing through each, it is returned to the channel signals CH1 and CH2. The command signals CF, C5F, C6F, the address signals C3F, C4F issued by the expansion controller ECC incorporating the microcomputer, and the sync signal C7 extracted by the sync signal detection circuit DET from the high frequency part RHF are used to The processing is performed organically as in the case of FIG. However, since CH2 is subcarrier-modulated on the transmitting side, it goes without saying that subcarriers are demodulated.

【0021】なお、上記の方法が、音声1チャンネルと
生体情報2チャンネル以上の伝送に容易に拡張できるこ
とは明かである。
It is clear that the above method can be easily extended to the transmission of one audio channel and two or more biometric information channels.

【0022】なおまた更に、上記の説明は移動局と基地
局の間の無線通信の場合であったが、基地局間や、移動
局間の通信でも、また有線通信の場合でも、本発明の方
法が流用可能なことは明かである。更にまた、実施例は
生体情報を音声とともに送信する場合であったが、この
通信方法で送ることのできる情報は生体情報に限定され
ないことも説明を要しない。
Furthermore, although the above description is for the case of wireless communication between a mobile station and a base station, the present invention can be applied to communication between base stations, between mobile stations, and even wired communication. It is clear that the method can be diverted. Furthermore, although the embodiment has described the case where the biometric information is transmitted together with the voice, it is not necessary to explain that the information that can be transmitted by this communication method is not limited to the biometric information.

【0023】[0023]

【発明の効果】本発明は、軽量かつ安価な装置が使用で
きる漏話のない医療情報無線伝送方法を提供する。変調
時にその電波の占有周波数帯域幅の増大を来すことがな
く、狭帯域無線で可能になる。
Industrial Applicability The present invention provides a crosstalk-free wireless transmission method for medical information which enables use of a lightweight and inexpensive device. The narrow band radio can be used without increasing the occupied frequency bandwidth of the radio wave at the time of modulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の医療情報無線伝送方法の多重
化処理のタイムチャートである。
FIG. 1 is a time chart of a multiplexing process of a wireless medical information transmission method according to an embodiment of the present invention.

【図2】その多重化信号の復調処理のタイムチャートで
ある。
FIG. 2 is a time chart of demodulation processing of the multiplexed signal.

【図3】本発明の時間圧縮多重通信システムの図であ
る。
FIG. 3 is a diagram of a time compression multiplex communication system of the present invention.

【図4】従来の医療情報無線伝送方法を説明するための
図である。
FIG. 4 is a diagram illustrating a conventional medical information wireless transmission method.

【図5】時間圧縮多重無線通信の送信機側のブロック図
である。
FIG. 5 is a block diagram of a transmitter side of time compression multiplex wireless communication.

【図6】時間圧縮多重無線通信の受信機側のブロック図
である。
FIG. 6 is a block diagram of a receiver side of time compression multiplex wireless communication.

【図7】本発明で、サブキャリアをFM変調したものの
変調周波数特性の図である。
FIG. 7 is a diagram showing a modulation frequency characteristic of a subcarrier which is FM-modulated in the present invention.

【符号の説明】[Explanation of symbols]

M 移動局 F 基地局 TX 送信機 RX 受信機 MIC マイクロホン ANT アンテナ SP スピーカ BPF バンドパスフィルタ ADC アナログ・ディジタル変換器 RAM ランダムアクセスメモリ CH チャンネル信号 DAC ディジタル・アナログ変換器 MUL 加算器 CHH 時間圧縮多重信号 CCC 圧縮コントローラ ECC 伸張コントローラ C、C1、C2、C5、C6 指令信号 C3、C4 アドレス信号 C7 同期信号 T 周期 THF 送信機の高周波数部 RHF 受信機の高周波数部 DET 同期信号検出回路 f 電波 VTLS 生体情報 SH サブキャリア変調器 SF サブキャリア復調器 M mobile station F base station TX transmitter RX receiver MIC microphone ANT antenna SP speaker BPF bandpass filter ADC analog / digital converter RAM random access memory CH channel signal DAC digital / analog converter MUL adder CHH time compression multiplexed signal CCC Compression controller ECC Expansion controller C, C1, C2, C5, C6 Command signal C3, C4 Address signal C7 Synchronous signal T cycle High frequency part of THF transmitter RHF High frequency part of receiver DET synchronous signal detection circuit f Radio wave VTLS Biological information SH subcarrier modulator SF subcarrier demodulator

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04J 3/00 Z 8843−5K (72)発明者 岡 享 愛知県小牧市林2007−1 コーリン電子株 式会社内 (72)発明者 鈴木 英範 愛知県小牧市林2007−1 コーリン電子株 式会社内Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H04J 3/00 Z 8843-5K (72) Inventor Ryo Oka 2007-1 Komaki City, Aichi Prefecture Korin Electronic Co., Ltd. (72) Inventor Hidenori Suzuki Kobayashi, Koichi, Aichi 2007-1 Korin Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 移動局側からの送信は、サブキャリアを
使って小さい変調指数でFM変調した生体情報と、音声
とよりなる複数チャンネルの信号を夫々時分割した後、
それぞれの信号を圧縮し、その両者を連結合成して得ら
れる一連の合成多重信号で搬送周波数を変調して得た単
一周波数の電波を使って送信し、基地局側でその電波を
受信して該合成多重信号を復調し、該連結を解いて夫々
のチャンネルの復調信号を得た後、それぞれを前記圧縮
の圧縮比の逆数倍で伸張して元のチャンネル信号に戻す
操作、及び前記サブキャリアを復調して生体情報を取り
出す操作を行ない、基地局側からの送信は、単純に音声
で搬送周波数を変調して先とは別周波数の電波を使って
送信し、移動局でそれを受信し復調して元の音声に戻す
如くすることを特徴とする狭帯域の医療情報無線伝送方
法。
Claim: What is claimed is: 1. Transmission from a mobile station, after time-dividing a plurality of channels of signals consisting of biometric information and voice, which are FM-modulated with a small modulation index using subcarriers, respectively.
Each signal is compressed and transmitted by using a single frequency radio wave obtained by modulating the carrier frequency with a series of composite multiplex signals obtained by concatenating and combining the two, and the base station receives the radio wave. And demodulating the combined multiplex signal to obtain a demodulated signal of each channel by releasing the connection, and then expanding each by a reciprocal multiple of the compression ratio of the compression to restore the original channel signal, and The subcarrier is demodulated and biometric information is taken out, and the transmission from the base station side is performed by simply modulating the carrier frequency with voice and transmitting it using a radio wave of a different frequency from the destination, and transmitting it from the mobile station. A narrow band medical information wireless transmission method characterized by receiving, demodulating and restoring the original voice.
JP3213248A 1991-07-31 1991-07-31 Medical information radio transmission method Withdrawn JPH0537420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213248A JPH0537420A (en) 1991-07-31 1991-07-31 Medical information radio transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213248A JPH0537420A (en) 1991-07-31 1991-07-31 Medical information radio transmission method

Publications (1)

Publication Number Publication Date
JPH0537420A true JPH0537420A (en) 1993-02-12

Family

ID=16635965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213248A Withdrawn JPH0537420A (en) 1991-07-31 1991-07-31 Medical information radio transmission method

Country Status (1)

Country Link
JP (1) JPH0537420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010699A1 (en) * 1996-09-10 1998-03-19 Seiko Epson Corporation Organism state measuring device and relaxation instructing device
US9216945B2 (en) 2010-09-29 2015-12-22 The Procter & Gamble Company Methods of synthesizing 2-substituted-1,4-benzenediamine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010699A1 (en) * 1996-09-10 1998-03-19 Seiko Epson Corporation Organism state measuring device and relaxation instructing device
US6081742A (en) * 1996-09-10 2000-06-27 Seiko Epson Corporation Organism state measuring device and relaxation instructing device
JP3627243B2 (en) * 1996-09-10 2005-03-09 セイコーエプソン株式会社 Biological condition measuring device and relaxation instruction device
US9216945B2 (en) 2010-09-29 2015-12-22 The Procter & Gamble Company Methods of synthesizing 2-substituted-1,4-benzenediamine

Similar Documents

Publication Publication Date Title
JPH0937351A (en) Mobile radio station
JPH08251124A (en) Radio information broadcasting system
JPH07283805A (en) Multiplex transmitter for voice signal and data signal and communication system
JPH10508162A (en) Digital data transmission using multiple subcarriers
GB1444258A (en) Telephone systems
US5490167A (en) Duplex voice communication radio transmitter-receiver
JPH0537420A (en) Medical information radio transmission method
JP2628126B2 (en) Radio and its voice transmission method
JP2001502501A (en) Circuit and method for simultaneously transmitting voice and data information
JPH05129985A (en) Radio transmission method
JPH05303598A (en) Radio transmitter with narrow band
JPH05316072A (en) Spread spectrum communication equipment
JPS61139136A (en) Transmitter and receiver
JPS61288535A (en) Information transmitter
JP2002112351A (en) Radio communication system
KR100443291B1 (en) Paging method for telephone receiver and its apparatus thereof
US6606312B1 (en) Analog radio system with acoustic transmission properties
JPH0226421A (en) Time-division communication system for moving body communication
JPH05244035A (en) Frequency band compression radio communication system
JPH06232997A (en) Telephone transmission equipment
JPH01300689A (en) Transmitter
JP2000253378A (en) Signal transmission system
JPS637046A (en) Signal band optimizing device
JPH05235837A (en) Time division communication method for mobile body communication
JPH0378334A (en) Time division communication system in mobile object communication

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008