JPH05303598A - Radio transmitter with narrow band - Google Patents

Radio transmitter with narrow band

Info

Publication number
JPH05303598A
JPH05303598A JP13141892A JP13141892A JPH05303598A JP H05303598 A JPH05303598 A JP H05303598A JP 13141892 A JP13141892 A JP 13141892A JP 13141892 A JP13141892 A JP 13141892A JP H05303598 A JPH05303598 A JP H05303598A
Authority
JP
Japan
Prior art keywords
signal
time
intermittent
ecg
mobile station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13141892A
Other languages
Japanese (ja)
Inventor
Susumu Nakabayashi
進 中林
Susumu Oka
享 岡
Hidenori Suzuki
英範 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI TEC KK
Nippon Colin Co Ltd
Original Assignee
FUJI TEC KK
Nippon Colin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI TEC KK, Nippon Colin Co Ltd filed Critical FUJI TEC KK
Priority to JP13141892A priority Critical patent/JPH05303598A/en
Publication of JPH05303598A publication Critical patent/JPH05303598A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

PURPOSE:To obtain the radio transmitter which transmits and receives a voice and plural pieces of information at the same time by means of a single frequency by time-sharing an electrocardiogram signal, a speech sound signal, and medical information signal other than the electrocardiogram signal and time-compressing the respective time-shared signals into information signals respectively. CONSTITUTION:The transmission part of a mobile station is provided with a device which time-shares, the electrocardiogram signal ECG, speed sound signal, and medical information signal (non-ECG) other than the electrocardiogram signal, time-compresses the time-shared signals into infermittent signals and modulates a carrier with their synthesized time-compressed intermittent signal, and transmitts an intermittent radio wave to a base station. The transmission part of the base station is provided with a device which detects the radio wave transmitted from the mobile station, demaltiplexes and expands the synthesize time-compressed intermittent signal, and demodulates it into the original ECG, speech sound signal, and non-ECG signal. Further, the transmission part of the base station and the reception part of the mobile station are provided with a modulating device and a demodulating device for a duplex type speech sound signal. Consequently, plural pieces of medical information is transmitted at low cost together with the speech sound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、救急車などから患者
の心電図、脈波、脳波、血圧などの医療情報を救急病院
に送信しながら互いに連絡通話を行なう、医療情報無線
伝送等に使用して効果を発揮する、単一周波数の電波で
送・受信を行なう狭帯域の無線伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for wireless transmission of medical information, etc., in which medical information such as an electrocardiogram, pulse wave, brain wave, and blood pressure of a patient is sent from an ambulance or the like to an emergency hospital to make a contact call with each other. The present invention relates to a narrow band wireless transmission device that transmits and receives a single-frequency radio wave that is effective.

【0002】[0002]

【従来の技術】救急車など(以下、移動局)では、患者
の医療情報を救急病院など(以下、基地局)に送信しつ
つ、その送信がうまく受信されているかどうかを確かめ
ながら、緊急の連絡通話を継続して行なう必要がある。
この場合に提案されている従来の無線伝送装置は、一般
に、例えば移動局、基地局のそれぞれが、音声には〜2
kHz、医療情報等には2〜3kHzの周波数を割り当
てて帯域制限を施し、これらを一体の信号とし、モデム
を使用して互いに異なる電波にのせて送受信するもので
あった。
2. Description of the Related Art In an ambulance (hereinafter, mobile station), while transmitting medical information of a patient to an emergency hospital (hereinafter, base station) and confirming whether the transmission is properly received, emergency contact is made. You need to continue the call.
In the conventional wireless transmission device proposed in this case, generally, for example, each of the mobile station and the base station outputs ~ 2 to the voice.
A frequency of 2 to 3 kHz is assigned to kHz, medical information, etc. to limit the band, and these are integrated into a signal, which is transmitted and received on different radio waves using a modem.

【0003】[0003]

【発明が解決しようとする課題】しかしこの従来の装置
では、送受の双方に帯域制御回路、専用のモデムを必要
とし、狭帯域のため音声と医療情報の分離が難しく、音
声の高調波が医療情報側に混入して漏話を生じ易いなど
の欠点があり、装置を大型、複雑かつ高価にする欠点が
あるほか、音声と一緒に送信できる医療情報の数は殆ん
ど1個に限定され、更に、2つの周波数の電波を必要と
する欠点がある。本発明は、単一周波数(又は近接する
2つの周波数)で同時送受信する複信(以下、デュプレ
ックス)方式の無線通信を使用する軽量、小型、かつ安
価な装置で、複数の医療情報を音声とともに送ることの
できる、特に医療情報の無線伝送で有用な狭帯域の無線
伝送装置の提供を目的とする。
However, in this conventional apparatus, a band control circuit and a dedicated modem are required for both transmission and reception, and it is difficult to separate voice and medical information due to the narrow band, and harmonics of voice are medical. There are drawbacks such as being easily mixed into the information side and causing crosstalk, and making the device large, complicated and expensive, and the number of medical information that can be transmitted with voice is limited to almost one. Furthermore, there is a drawback that radio waves of two frequencies are required. INDUSTRIAL APPLICABILITY The present invention is a lightweight, small-sized, and inexpensive device that uses duplex (hereinafter, duplex) wireless communication that simultaneously transmits and receives on a single frequency (or two frequencies that are close to each other). An object of the present invention is to provide a narrow band wireless transmission device which can be sent, and is particularly useful for wireless transmission of medical information.

【0004】[0004]

【課題を解決するための手段】本発明の無線伝送装置は
次のように構成される。即ち、(a)移動局の送信部に
は、心電図信号(以下、ECG信号)と、音声信号と、
心電図以外の医療情報信号(以下、非ECG信号)との
それぞれを、時分割し、該時分割で得た各分割信号を時
間圧縮してそれぞれ断続する信号に変え、それらを合成
して得た合成圧縮断続信号でキャリアを変調して、これ
を断続する電波に変えて基地局に送信する装置を具え、
(b)これに対応して基地局の受信部には、移動局から
送られた前記断続する電波を受信・検波して得た合成圧
縮断続信号を前記各断続する信号に分解し、それらの各
に時間伸長を施して、元のECG信号と、音声信号と、
非ECG信号とを復調する装置を具え、(c)一方基地
局の送信部には、前記移動局の時分割に同期して、音声
信号を時分割して得た各分割音声信号に時間圧縮を施し
てこれを断続する信号に変え、この断続する信号で、先
と同じ周波数のキャリアを変調して断続する電波に変
え、これを移動局の非送信時に断続的に送信する装置を
具え、(d)これに対応して移動局の受信部には、基地
局から送られた前記断続する電波を受信・検波して得た
断続する信号の各々に時間伸長を施して連結し、元の音
声信号を復調する装置を具える。こうした構成の狭帯域
の無線伝送装置によって前記目的を達成したものであ
る。
The wireless transmission device of the present invention is configured as follows. That is, (a) an electrocardiogram signal (hereinafter, ECG signal), a voice signal,
Each of the medical information signals other than the electrocardiogram (hereinafter referred to as non-ECG signal) is time-divided, each divided signal obtained in the time-division is time-compressed into each intermittent signal, and they are obtained by combining them. It is equipped with a device that modulates a carrier with a synthetic compressed intermittent signal, converts this into intermittent radio waves, and transmits it to the base station,
(B) Correspondingly, the receiving section of the base station decomposes the composite compressed intermittent signal obtained by receiving and detecting the intermittent radio wave sent from the mobile station into the respective intermittent signals, and The original ECG signal, the audio signal, and
(C) The transmitter of the base station, on the other hand, includes a device for demodulating the non-ECG signal, and time-compresses each divided audio signal obtained by time-division of the audio signal in synchronization with the time division of the mobile station. By applying this to an intermittent signal, this intermittent signal modulates the carrier of the same frequency as the previous one to an intermittent radio wave, and comprises a device that intermittently transmits this when the mobile station is not transmitting, (D) Correspondingly, the receiving unit of the mobile station performs time expansion on each of the intermittent signals obtained by receiving and detecting the intermittent radio waves sent from the base station, and connects the original signals. It comprises a device for demodulating an audio signal. The above-mentioned object is achieved by the narrow band wireless transmission device having such a configuration.

【0005】ECG信号は、これを、心電図から心臓の
鼓動に同期して、鼓動信号を抜粋抽出したものに置き換
えることから、鼓動の発生頻度が変化したり、あるいは
心電図波形に電波の断続ノイズが重畳しないようにでき
るので、十分に実用性のある装置が得られる。
Since the ECG signal is replaced with an extract of the heartbeat signal in synchronism with the heartbeat from the electrocardiogram, the occurrence frequency of the heartbeat changes or the electrocardiogram waveform has intermittent radio wave noise. Since it can be prevented from overlapping, a sufficiently practical device can be obtained.

【0006】非ECG信号は、これを、複数の非ECG
医療情報信号を含むものにすることができ、情報伝送の
効率を上げることができる。
[0006] The non-ECG signal is generated by converting it into a plurality of non-ECG signals.
A medical information signal can be included, and the efficiency of information transmission can be improved.

【0007】ECG信号はアナログ信号のままのもの、
若しくは、アナログ信号にデジタル化処理を施したもの
が、どちらも使用可能である。
The ECG signal remains an analog signal,
Alternatively, both analog signals and digitalized signals can be used.

【0008】[0008]

【実施例】実施例の説明に先だち…[ECG信号、非E
CG信号]…について説明する。鼓動が正常な場合の典
型的なECG信号には、図4に示すように周期性があ
り、1鼓動信号の中にP,Q,R,S,Tのピーク部お
よび鼓動信号どうしの間に休止期間部Kを有する。1つ
の鼓動信号の継続時間は長くて1秒程度、通常は0.3
〜0.6秒以内である。なお、異常状態を考慮した鼓動
信号は1分当たり10〜300回(1/6〜5Hz)の
範囲内に納まると考えて支障はない。鼓動信号の周波数
スペクトルは40Hzの帯域で実用的な波形の再生が可
能である。また、一定期間内の鼓動信号相互の波形は通
常は殆んど変わらないので、連続する鼓動のすべてを信
号処理して伝送する必要はなく、ECG信号から1個あ
るいは複数個の鼓動信号を抜粋して送り(例えば、後述
では図2でFの鼓動波形が省略されて、送信されない場
合も有り得る)、受信先で鼓動信号を補間してもとの連
続するECG信号を疑似的に再生しても十分実用に耐え
る。
EXAMPLES Prior to the description of the examples, [ECG signal, non-E
CG signal] will be described. A typical ECG signal when the heartbeat is normal has periodicity as shown in FIG. 4, and one beat signal has a peak portion of P, Q, R, S, T and between beat signals. It has a rest period part K. The duration of one heartbeat signal is long, about 1 second, usually 0.3
Within ~ 0.6 seconds. It should be noted that there is no problem considering that the heartbeat signal considering the abnormal state falls within the range of 10 to 300 times (1/6 to 5 Hz) per minute. The frequency spectrum of the heartbeat signal can reproduce a practical waveform in the band of 40 Hz. In addition, since the mutual waveforms of the heartbeat signals usually do not change much within a certain period of time, it is not necessary to process and transmit all continuous heartbeats, and one or more heartbeat signals are extracted from the ECG signal. Then, for example, in the following description, there may be a case where the heartbeat waveform of F is omitted in FIG. 2 and the heartbeat waveform is not transmitted, and the heartbeat signal is interpolated at the receiving end to artificially reproduce the continuous ECG signal. Also withstands practical use.

【0009】心室細動や徐脈波など、心臓が異常状態に
あるときのECG信号の波形は、上記に較べて周期がか
なり短く、又は不規則で周期性がなく、一部を抽出した
のでは忠実さが失われるが殆んどの場合、全容を忠実に
再生しないでも用は足りる。
The waveform of the ECG signal when the heart is in an abnormal state such as ventricular fibrillation or bradycardia has a much shorter cycle than the above or is irregular and has no periodicity. In that case, fidelity is lost, but in most cases, it is sufficient to reproduce the whole picture faithfully.

【0010】非ECG信号は、ECG信号以外の医療情
報で、脈波、脳波又は血圧などの数値データが主にな
る。ただし、これは本来の信号にデジタル変調、例えば
FSK(Frequency Shift Keying)変調を施して得た信
号である。デジタル変調はFSK以外のもの、例えばP
SK(Phase Shift Keying)変調等であってもよい。
The non-ECG signal is medical information other than the ECG signal, and mainly consists of numerical data such as pulse wave, brain wave or blood pressure. However, this is a signal obtained by subjecting the original signal to digital modulation, for example, FSK (Frequency Shift Keying) modulation. Digital modulation is something other than FSK, eg P
It may be SK (Phase Shift Keying) modulation or the like.

【0011】さて、本発明の実施例を以下に図に基づい
て詳細に説明する。 先ず図2に、…[移動局の送信
部]…で行なわれるECG信号の波形処理の次第を示
す。(A)は波形処理のブロック図、(B)にはそのブ
ロック図の各部の波形を処理の時間的流れに従って〜
欄(以下では欄の字を略す)に示す。
An embodiment of the present invention will be described in detail below with reference to the drawings. First, FIG. 2 shows the process of waveform processing of an ECG signal performed by ... [Transmitter of mobile station]. (A) is a block diagram of waveform processing, and (B) is a waveform of each part of the block diagram according to a temporal flow of processing.
The columns (the letters of the columns are omitted below) are shown.

【0012】ECG信号は、前述のR波に先立つP、
Q波の欠落を防ぐ目的から、0.05〜0.1秒の時間
遅延を行なう時間遅延回路TDLに入力され、遅延信号
がアナログ/デジタル変換回路ADに出力され、デジ
タル信号となって波形記憶メモリERAMに書き込ま
れ、次いでデジタル/アナログ変換回路DAに読み出さ
れる。このとき書き込みと読み出しの速度を変えて、信
号は10倍に時間圧縮され、周期2秒、0.2秒継続、
の断続信号ESSとなって次段に出力される。なお、
ここで周期を2秒としたのは鼓動信号波形が広がった場
合に対処するためである。その一方で、ECG信号は
トリガ検出回路TDTにも投入され、ここで鼓動信号の
R波の位置が検出されてトリガパルスが時間圧縮制御
タイマASSTに向かって出力される。ここではトリガ
パルスから、上記のメモリの書き込み開始指令、読出
し開始指令が作られている。書き込みのアドレスの指
定、書き込み読出しの前記速度は、この時間圧縮制御タ
イマASSTが指定するものである。なお、TDLの遅
延作用によりトリガパルスの遅れによるP、Q波の欠け
はない。
The ECG signal has P, which precedes the aforementioned R wave,
For the purpose of preventing the Q wave from being lost, it is input to a time delay circuit TDL that delays by 0.05 to 0.1 seconds, the delayed signal is output to an analog / digital conversion circuit AD, and a digital signal is stored as a waveform. It is written in the memory ERAM and then read by the digital / analog conversion circuit DA. At this time, by changing the writing and reading speeds, the signal is time-compressed 10 times, and the period is 2 seconds, 0.2 seconds continues,
Is output to the next stage. In addition,
Here, the period is set to 2 seconds in order to deal with the case where the heartbeat signal waveform spreads. On the other hand, the ECG signal is also input to the trigger detection circuit TDT, where the position of the R wave of the heartbeat signal is detected and the trigger pulse is output toward the time compression control timer ASST. Here, the write start command and the read start command for the memory are generated from the trigger pulse. The time compression control timer ASST specifies the write address and the write / read speed. There is no lack of P and Q waves due to the delay of the trigger pulse due to the delay action of TDL.

【0013】トリガ有無判定回路DETは、信号の中
にトリガパルスが有るか無いかを常時監視し、心室細動
などが起こってのようにトリガパルスが無くなると、
信号を時間圧縮制御タイマASSTに向かって送る。
時間圧縮制御タイマASSTは、信号を受けたとき以
後は鼓動に関係なく、その内蔵するタイマを使って自発
的に前記の書き込み読出しの開始指令を発するようにな
る。心室細動などがおさまって、トリガパルスが再発生
すると動作は復帰する。
The trigger presence / absence determining circuit DET constantly monitors whether or not the signal has a trigger pulse, and when the trigger pulse disappears as in ventricular fibrillation or the like,
The signal is sent to the time compression control timer ASST.
After receiving the signal, the time compression control timer ASST spontaneously issues the write / read start command using its built-in timer regardless of the heartbeat. When ventricular fibrillation subsides and the trigger pulse re-occurs, the operation returns.

【0014】図1に移動局の送信部で行なわれるECG
信号、音声信号、非ECG信号のそれぞれの信号処理の
様子を示す。(A)はそのブロック図、(B)はその信
号処理の時間的流れを〜欄(以下、欄の字を略す)
に示す図である。図2の、波形処理回路ESMは、EC
G信号を10倍に圧縮して周期2秒、0.2秒継続、
のECG圧縮断続信号ESS’を作る。(さらにこれ
に、一点鎖線の回路を挿入してサブキャリア600Hz
で周波数変調して、得られた信号を改めてESS’と
して使用したのでも良い)。波形処理回路VSMは、マ
イクロホンMICからの音声を0.5秒毎に分割し
2.5倍に時間圧縮(分割と時間圧縮の方法は波形処理
回路ESMのものと変わらない)して周期0.5秒、
0.2秒継続、の音声圧縮断続信号’を作る。波形処
理回路NESMは、非ECG信号を0.5秒毎に分割
し10倍に時間圧縮(分割と時間圧縮の方法は波形処理
回路ESMのものと変わらない)して周期0.5秒、
0.05秒継続、の非ECG圧縮断続信号’を作る。
これら’、’および’の3つの圧縮断続信号は、
別途用意される同期信号(図示しない)とともに、信号
合成器MUTで時間的に合成されて断続する合成圧縮断
続信号となる。この信号は、図で明かなように、0.
5秒周期で0.25秒継続の空白期間、0.5秒周期で
0.2秒継続の音声圧縮断続信号、2秒周期で0.2秒
継続のECG圧縮断続信号ESS(音声圧縮断続信号と
はその4個毎に1度、時間的に重なる)、これに続く
0.5秒周期で0.05秒継続の非ECG圧縮断続信
号、2秒周期で0.05秒継続の断続同期信号(その時
間は、そこにある非ECG圧縮断続信号は省略されるの
で前もってパケット処理を施し、その時間を休止部とす
る)で構成されている。即ち、この信号は、分割時間の
1/2毎に空白部を持つ断続的な信号になっている。こ
のようにして出来た合成信号が、移動局の送信部TX
Mの中でキャリアを変調し、断続する周波数fの電波と
なってアンテナANTMから基地局に向けて送信され
る。
FIG. 1 shows an ECG carried out in the transmission section of the mobile station.
The signal processing states of signals, audio signals, and non-ECG signals are shown. (A) is a block diagram thereof, and (B) shows a temporal flow of the signal processing in columns (hereinafter, the letters in the columns are abbreviated).
FIG. The waveform processing circuit ESM in FIG.
G signal is compressed 10 times and the period is 2 seconds, 0.2 seconds continues,
The ECG compression intermittent signal ESS ′ is generated. (Furthermore, insert the circuit indicated by the alternate long and short dash line into this subcarrier 600 Hz
Alternatively, the obtained signal may be used as ESS 'again after frequency modulation. The waveform processing circuit VSM divides the voice from the microphone MIC every 0.5 seconds and time-compresses it by 2.5 times (the method of division and time compression is the same as that of the waveform processing circuit ESM), and the cycle of 0. 5 seconds,
A voice compression intermittent signal'of 0.2 seconds duration is generated. The waveform processing circuit NESM divides the non-ECG signal every 0.5 seconds and time-compresses it 10 times (the method of dividing and time compression is the same as that of the waveform processing circuit ESM) and the cycle is 0.5 seconds.
Create a non-ECG compressed gating signal'of 0.05 second duration.
These three ','and'compression interrupt signals are
Together with a separately prepared synchronization signal (not shown), the signal synthesizer MUT temporally synthesizes a synthetic compressed intermittent signal which is intermittent. This signal is 0.
A blank period of 0.25 seconds continuation in a 5 second cycle, a voice compression intermittent signal of 0.2 second continuation in a 0.5 second cycle, an ECG compression intermittent signal ESS (voice compression intermittent signal of 0.2 second continuation in a 2 second cycle. And every four of them are overlapped in time), followed by a non-ECG compressed intermittent signal of 0.5 second duration of 0.05 seconds, and an intermittent sync signal of 0.05 second duration of 2 seconds. (In that time, the non-ECG compressed intermittent signal there is omitted, so packet processing is performed in advance, and that time is used as a pause portion). That is, this signal is an intermittent signal having a blank portion every ½ of the division time. The synthesized signal generated in this way is transmitted by the transmitter TX of the mobile station.
The carrier is modulated in M and becomes a radio wave having an intermittent frequency f and transmitted from the antenna ANTM toward the base station.

【0015】図3に、送信部と受信部の両者を含む移動
局の全体のブロック図を示した。上述の、各分割、圧
縮、合成を、この図の中央演算処理装置(セントラルプ
ロセッサー)を内蔵する移動局中央制御装置TCONM
が総合的に制御する。紙面のその下方に受信部が描かれ
ている。アンテナANTMを送信部および受信部が共用
するためにアンテナ結合器DPXMが設けられている。
また、ECG指令信号は心電図の精密な情報を得るため
に音声や非ECG信号の伝送を中止し、ECG信号のみ
を連続して伝送するための信号である。必要に応じて切
り替える。
FIG. 3 shows an overall block diagram of the mobile station including both the transmitting section and the receiving section. The above-mentioned division, compression, and synthesis are performed by the mobile station central control unit TCONM incorporating the central processing unit (central processor) of this figure.
Has total control. The receiver is drawn below the page. An antenna coupler DPXM is provided for the transmitter and the receiver to share the antenna ANTM.
The ECG command signal is a signal for stopping the transmission of voice and non-ECG signals in order to obtain accurate information of the electrocardiogram and continuously transmitting only the ECG signals. Switch if necessary.

【0016】図6には、上述の電波を受信する…[基地
局の受信部]…の信号処理の時間的流れを〜欄(以
下、欄の字を略す)に示す。図5には受信部と送信部の
両者を含む基地局全体のブロック図を示す。アンテナA
NTBで受信された、移動局からの電波は、アンテナ結
合器DPXBを経由して受信部RXBに入り、ここで検
波されて図6の合成圧縮断続信号が取り出される。
(これは先の図1の(B)の合成圧縮断続信号にほか
ならない。)
FIG. 6 shows the temporal flow of the signal processing for receiving the above-mentioned radio waves ... [Reception unit of base station] ... in columns (to be abbreviated below). FIG. 5 shows a block diagram of the entire base station including both the receiving unit and the transmitting unit. Antenna A
A radio wave received from the mobile station from the NTB enters the reception unit RXB via the antenna coupler DPXB, is detected here, and the combined compressed intermittent signal of FIG. 6 is taken out.
(This is nothing but the synthetic compression intermittent signal of FIG. 1B.)

【0017】図示説明を略すが、デュプレックス方式の
場合に通常行なわれるように、圧縮断続合成信号から
先ず同期信号が抽出される。以下の処理はその同期信号
に基づいて行なわれる。
Although not shown in the drawings, a synchronizing signal is first extracted from the compressed intermittent composite signal, as is usually done in the case of the duplex system. The following processing is performed based on the synchronization signal.

【0018】圧縮断続合成信号が高域フィルタHPF
を通ると音声圧縮断続信号が取り出され、アナログ/
デジタル変換回路ADを経てデジタル信号となって波形
記憶メモリVRAMに書き込まれ、次いでそれより低速
でデジタル/アナログ変換回路DAに読み出される。こ
の操作で断続信号のそれぞれの区間は2.5倍時間延長
され、連続した音声となってスピーカSPから出力さ
れる。
The compressed intermittent synthesized signal is a high-pass filter HPF.
Audio compression intermittent signal is taken out through the analog /
It is converted into a digital signal through the digital conversion circuit AD, written into the waveform storage memory VRAM, and then read by the digital / analog conversion circuit DA at a lower speed. By this operation, each section of the intermittent signal is extended by 2.5 times, and a continuous sound is output from the speaker SP.

【0019】圧縮断続合成信号が低域フィルタLPF
を通るとECG圧縮断続信号が取り出され、(先の図
1のところで、サブキャリア600Hzを使って周波数
変調を行なっていた場合は、ここに一点鎖線の検波回路
の動作が挿入されることになる)、アナログ/デジタル
変換回路ADを経てデジタル信号となって波形記憶メモ
リERAMに書き込まれ、次いでデジタル/アナログ変
換回路DAに1/10の速度で読み出されて、10倍に
時間延長された鼓動信号を得る。このとき、波形記憶メ
モリERAMの同一アドレスから、読み出しを複数回繰
り返すとき、鼓動信号が補間される。こうしてECG信
号が出力される。
The low-pass filter LPF for the compressed intermittent synthesized signal
After passing through, the ECG compressed intermittent signal is extracted, and (when the frequency modulation is performed using the subcarrier 600 Hz in FIG. 1 above, the operation of the detection circuit indicated by the alternate long and short dash line is inserted here. ), A digital signal that passes through the analog / digital conversion circuit AD, is written into the waveform storage memory ERAM, and then is read by the digital / analog conversion circuit DA at a speed of 1/10, and the heartbeat is extended by 10 times. Get the signal. At this time, when reading is repeated a plurality of times from the same address of the waveform storage memory ERAM, the heartbeat signal is interpolated. Thus, the ECG signal is output.

【0020】合成圧縮断続信号が波形処理回路NES
B(波形処理回路NESMの逆の動作をする回路)を経
由すると、その内部では、先ず非ECG圧縮断続信号
が取り出され、次にアナログ/デジタル変換回路を経て
デジタル信号が波形記憶メモリに書き込まれ、次いでデ
ジタル/アナログ変換回路に1/10の速度で読み出さ
れて、10倍に時間延長され、伸張非ECG信号が出
力される。圧縮された非ECG信号が周期的に同期信号
に置き換えられているため、伸張してもこの信号には
周期的に空白部が現れる。非ECG信号がデジタル信号
の場合はデータにパケット処理を施しておくことで空白
の部分は自動的に休止部となり、データが欠けることが
ないので、情報の取得に支障を生ずることはない。
The composite compressed intermittent signal is a waveform processing circuit NES.
When the signal passes through B (a circuit that operates in the reverse of the waveform processing circuit NESM), the non-ECG compressed intermittent signal is first taken out inside, and then the digital signal is written to the waveform storage memory through the analog / digital conversion circuit. Then, it is read out to the digital / analog conversion circuit at a speed of 1/10, the time is extended 10 times, and the expanded non-ECG signal is output. Since the compressed non-ECG signal is periodically replaced by the synchronization signal, even if it is expanded, a blank portion appears periodically in this signal. When the non-ECG signal is a digital signal, packet processing is performed on the data, so that the blank portion automatically becomes a rest portion and the data is not lost, so that there is no obstacle to the acquisition of information.

【0021】前記した同期信号に従って上述の分割、伸
張の制御を中央演算処理装置(セントラルプロセッサ
ー)を内蔵する固定局の中央制御装置TCONBが司
る。紙面にはその下方に送信部が描かれている。
The central control unit TCONB of the fixed station having a central processing unit (central processor) controls the above-described division and expansion control in accordance with the synchronization signal. The transmission section is drawn on the lower side of the page.

【0022】次に、上記の[移動局]→[固定局]の送
受信動作に平行して行なわれる、[基地局の送信部TX
B]→[移動局の受信部RXM]の通信につき説明す
る。この本発明はデュプレックス方式であって[移動
局]→[固定局]の通信も、同じ周波数の電波fを使っ
て、[移動局]→[固定局]の通信の空白時に行なわれ
る。基地局→移動局の通信にはECG信号や非ECG信
号の医療情報がないので、信号の処理は上述のうち音声
のみとなる。音声信号の分割、時間圧縮の処理は前記と
同様であるので説明を略す。ただし、もし、基地局から
移動局に向かっても、音声と同時に何かの情報を送りた
いという場合は、前記の移動局から基地局への通信方法
をそのままここに採用してもよい。
Next, the [transmission unit TX of the base station is performed in parallel with the above-mentioned transmission / reception operation of [mobile station] → [fixed station].
[B] → [Mobile station RXM] communication will be described. This invention is a duplex system, and the communication of [mobile station] → [fixed station] is also performed when the communication of [mobile station] → [fixed station] is blank by using the radio wave f of the same frequency. Since there is no medical information of the ECG signal or the non-ECG signal in the communication from the base station to the mobile station, the signal processing is only voice among the above. Since the processing of dividing the audio signal and the time compression are the same as those described above, the description thereof is omitted. However, if it is desired to send some information at the same time as voice even from the base station to the mobile station, the communication method from the mobile station to the base station may be directly adopted here.

【0023】音声信号を変調に用いる前に、低域フィル
タを用いて、その音声信号の高音域(周波数1.36k
Hz以上の音域)をカットし、これによって電波の占有
周波数帯域幅を狭める等々の、デュプレックス方式に採
用されている従来の諸技術は全て本発明に適用できる。
Before using the audio signal for modulation, a low-pass filter is used to increase the high frequency range (frequency 1.36k) of the audio signal.
All the conventional techniques adopted in the duplex system, such as cutting the frequency range above Hz, thereby narrowing the occupied frequency bandwidth of the radio wave, can be applied to the present invention.

【0024】非ECG情報には、非観血血圧値、心拍
数、血中酸素飽和度、体温、など数値データが多いが、
非ECG信号はこれらをデジタル変調器に通して作られ
る。
The non-ECG information includes many numerical data such as non-invasive blood pressure value, heart rate, blood oxygen saturation, and body temperature.
Non-ECG signals are produced by passing them through a digital modulator.

【0025】送受双方の信号断続の同期をとるための同
期信号の送り方としては、トーン信号の断続、FSK
(Frequency Shift Keying)、送信電波のキャリアの断
続、等々の一般的な方法がここに採用できるので、取り
立てて説明することをしない。
As a method of sending a synchronization signal for synchronizing the signal connection / disconnection of both transmission and reception, tone signal connection / disconnection and FSK
General methods such as (Frequency Shift Keying), intermittent transmission of the carrier of the transmitted radio waves, etc. can be adopted here, and therefore will not be explained.

【0026】上述で実施例の説明を終えるが、上記のE
CG信号、非ECG信号のそれぞれは、情報例えば医療
情報の複数個をモデムで合成して得られたデジタル信号
であっても、通信に支障を来さないことは明かである。
The above description of the embodiment is completed, but the above E
Even if each of the CG signal and the non-ECG signal is a digital signal obtained by synthesizing a plurality of pieces of information, for example, medical information by a modem, it is obvious that communication will not be hindered.

【0027】なおまた、上記の説明は移動局と基地局の
間の無線通信の場合であったが、基地局同志の間や、移
動局同志の間の通信でも、また有線通信の場合でも、本
発明の方法が流用可能なことは明かである。更にまた、
実施例は医療情報を音声とともに送信する場合であった
が、この通信方法で送ることのできる情報は、医療情報
や音声に限定されず、周波数、周波数帯域巾が上述と類
似する関係にある情報の伝送で上記同様有用であること
も説明を要しない。更に電波は、同一周波数の場合で説
明したが、そのほかに、極めて近接する2つの周波数を
使用する場合もある。
In the above description, the case of wireless communication between a mobile station and a base station is used. However, even in the case of communication between base stations, between mobile stations, or wired communication, It is clear that the method of the invention can be used. Furthermore,
In the embodiment, the medical information is transmitted together with the voice, but the information that can be transmitted by this communication method is not limited to the medical information and the voice, and the information in which the frequency and the frequency bandwidth have a relationship similar to the above. It is not necessary to explain that it is also useful in the transmission of the above. Further, the radio waves have been described as having the same frequency, but in addition to that, two frequencies that are extremely close to each other may be used.

【0028】[0028]

【発明の効果】本発明は、軽量、小型かつ安価で、複数
の医療情報を音声とともに送ることのできる、特に医療
情報の無線伝送で有用な、単一周波数(又は近接する2
つの周波数)で同時送受信するデュプレックス方式の狭
帯域の無線伝送装置を提供する。
INDUSTRIAL APPLICABILITY The present invention is lightweight, small and inexpensive, can transmit a plurality of medical information together with voice, and is particularly useful for wireless transmission of medical information.
A narrowband wireless transmission device of a duplex system that simultaneously transmits and receives at one frequency) is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の無線伝送装置の移動局の送信
部の、(A)は信号処理のブロック図、(B)はその信
号処理の時間的流れ図である。
FIG. 1A is a block diagram of signal processing of a transmitter of a mobile station of a wireless transmission apparatus according to an embodiment of the present invention, and FIG. 1B is a temporal flow chart of the signal processing.

【図2】本発明の実施例の無線伝送装置の移動局の送信
部のECG信号の、(A)は波形処理のブロック図、
(B)はその各部波形のである。
FIG. 2A is a block diagram of waveform processing of the ECG signal of the transmitter of the mobile station of the wireless transmission device according to the embodiment of the present invention;
(B) is a waveform of each part.

【図3】本発明の実施例の無線伝送装置の移動局の全体
のブロック図である。
FIG. 3 is an overall block diagram of a mobile station of the wireless transmission device according to the embodiment of the present invention.

【図4】ECG信号の波形の図である。FIG. 4 is a diagram of a waveform of an ECG signal.

【図5】本発明の実施例の無線伝送装置の基地局の全体
のブロック図である。
FIG. 5 is an overall block diagram of a base station of the wireless transmission device according to the embodiment of the present invention.

【図6】本発明の実施例の無線伝送装置の基地局の受信
部での信号処理の時間的流れ図である。
FIG. 6 is a time flow chart of signal processing in the receiving unit of the base station of the wireless transmission device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

ECG 心電図 非ECG 心電図以外の医療情報 TXM、TXB 送信部 RXM、RXB 受信部 ESM、VSM、NESM 波形処理回路 MIC マイクロホン SP スピーカ ANTM、ANTB アンテナ DPXM、DPXB アンテナ結合器 LPF 低域フィルタ HPF 高域フィルタ AD アナログ/ディジタル変換器 DA ディジタル/アナログ変換器 MUT 信号合成器 f 電波 ERAM、VRAM、RRAM、MRAM 波形記憶メ
モリ TCONM、TCONB 中央制御装置
ECG electrocardiogram Medical information other than non-ECG electrocardiogram TXM, TXB transmitter RXM, RXB receiver ESM, VSM, NESM Waveform processing circuit MIC microphone SP speaker ANTM, ANTB antenna DPXM, DPXB antenna coupler LPF Low-pass filter HPF High-pass filter AD Analog / digital converter DA Digital / analog converter MUT Signal synthesizer f Radio wave ERAM, VRAM, RRAM, MRAM Waveform storage memory TCONM, TCONB Central control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 英範 愛知県小牧市林2007−1 コーリン電子株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hidenori Suzuki 2007-1 Komaki City, Aichi Prefecture Korin Electronics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 移動局の送信部は、心電図信号(以下、
ECG信号)と、音声信号と、心電図以外の医療情報信
号(以下、非ECG信号)と、のそれぞれを時分割し、
該時分割で得た各分割信号を時間圧縮してそれぞれ断続
する信号に変え、それらを合成して得た合成圧縮断続信
号でキャリアを変調して、これを断続する電波に変えて
基地局に送信する装置を具え、 基地局の受信部は、移動局から送られた前記断続する電
波を受信・検波して得た合成圧縮断続信号を前記各断続
する圧縮信号に分解し、それら信号の各に時間伸長を施
して元のECG信号と、音声信号と、非ECG信号とを
復調する装置を具え、 基地局の送信部は、前記移動局の時分割に同期して、音
声信号を時分割して得た各分割音声信号に時間圧縮を施
してこれを断続する信号に変え、この断続する信号で、
先と同じ周波数のキャリアを変調して断続する電波に変
え、これを移動局の非送信時に断続的に送信する装置を
具え、 移動局の受信部は、基地局から送られた前記断続する電
波を受信・検波して得た断続する信号の各々に時間伸長
を施して連結し、元の音声信号を復調する装置を具えた
ことを特徴とする狭帯域の無線伝送装置。
1. A transmission unit of a mobile station is configured to transmit an electrocardiogram signal (hereinafter,
ECG signal), a voice signal, and a medical information signal other than an electrocardiogram (hereinafter, a non-ECG signal) are time-divided,
Each divided signal obtained by the time division is time-compressed and converted into an intermittent signal, and the carrier is modulated by a synthetic compressed intermittent signal obtained by combining them, and this is converted into an intermittent radio wave to the base station. The receiving unit of the base station, the receiving unit of the base station, decomposes the composite compressed intermittent signal obtained by receiving and detecting the intermittent radio waves sent from the mobile station into each of the intermittent compressed signals, each of the signals And a device for demodulating an original ECG signal, a voice signal, and a non-ECG signal by time-expanding the voice signal, and the transmitter of the base station time-divides the voice signal in synchronization with the time division of the mobile station. By applying time compression to each of the divided audio signals obtained by converting it into an intermittent signal, with this intermittent signal,
The mobile station is equipped with a device that modulates a carrier of the same frequency as the previous one and changes it into an intermittent radio wave, and transmits this intermittently when the mobile station is not transmitting. A narrow band wireless transmission device comprising a device for demodulating an original audio signal by time-expanding and concatenating each of the intermittent signals obtained by receiving and detecting.
【請求項2】 該ECG信号が、心電図から心臓の鼓動
に同期して鼓動信号を抜粋抽出したものである請求項1
記載の狭帯域の無線伝送装置。
2. The ECG signal is a heartbeat signal extracted and extracted from an electrocardiogram in synchronization with the heartbeat.
The narrowband wireless transmission device described.
【請求項3】 非ECG信号が、複数の医療情報信号を
含むものである請求項1又は2記載の狭帯域の無線伝送
装置。
3. The narrow band wireless transmission device according to claim 1, wherein the non-ECG signal includes a plurality of medical information signals.
【請求項4】 ECG信号がアナログ信号のままである
請求項1、2又は3記載の狭帯域の無線伝送装置。
4. The narrowband wireless transmission device according to claim 1, 2 or 3, wherein the ECG signal remains an analog signal.
【請求項5】 ECG信号が前記アナログ信号にデジタ
ル化処理を施して得た信号である請求項1、2又は3記
載の狭帯域の無線伝送装置。
5. The narrow band wireless transmission device according to claim 1, wherein the ECG signal is a signal obtained by subjecting the analog signal to digitization processing.
JP13141892A 1992-04-27 1992-04-27 Radio transmitter with narrow band Withdrawn JPH05303598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13141892A JPH05303598A (en) 1992-04-27 1992-04-27 Radio transmitter with narrow band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13141892A JPH05303598A (en) 1992-04-27 1992-04-27 Radio transmitter with narrow band

Publications (1)

Publication Number Publication Date
JPH05303598A true JPH05303598A (en) 1993-11-16

Family

ID=15057505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13141892A Withdrawn JPH05303598A (en) 1992-04-27 1992-04-27 Radio transmitter with narrow band

Country Status (1)

Country Link
JP (1) JPH05303598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810532A2 (en) * 1996-05-31 1997-12-03 Siemens Medical Systems, Inc. A lossless data compression technique that also facilitates signal analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810532A2 (en) * 1996-05-31 1997-12-03 Siemens Medical Systems, Inc. A lossless data compression technique that also facilitates signal analysis
EP0810532A3 (en) * 1996-05-31 1999-02-24 Siemens Medical Systems, Inc. A lossless data compression technique that also facilitates signal analysis

Similar Documents

Publication Publication Date Title
JPH07283805A (en) Multiplex transmitter for voice signal and data signal and communication system
US3864524A (en) Asynchronous multiplexing of digitized speech
US5490167A (en) Duplex voice communication radio transmitter-receiver
JPH05303598A (en) Radio transmitter with narrow band
JPS63500767A (en) Telephone communication line capacity expander
JPS587946A (en) Transmission system for announce call order telephone signal in time-sharing multi-direction multiplex communication network
JPH05129985A (en) Radio transmission method
JPH0537420A (en) Medical information radio transmission method
JP3049461B2 (en) Wireless relay method and device
JP2738480B2 (en) Frequency band compression wireless communication system
EP0271094A2 (en) Method and apparatus for a burst analog two-way communications system
US4271331A (en) Analog processing system for real-time conversion of the frequency of analog signals
JPH05316072A (en) Spread spectrum communication equipment
JPH04227136A (en) Radio base station and mobile radio for time division communication in mobile body communication
JP2751398B2 (en) Digital information transmission system
JPH0556935A (en) Radio type multichannel patient monitor
JPH01227558A (en) Switching type single-line communication equipment
JP2518593B2 (en) Received voice synthesis circuit in simultaneous call wireless device
JPS598460A (en) Digital radiotelephony system
JP2858693B2 (en) Receiver and transmission device
JPS63176408U (en)
JPS6094539A (en) Squelch control circuit
JPH07183826A (en) Time division simultaneous transmission/reception system
JPH06232997A (en) Telephone transmission equipment
JPH03181236A (en) Narrow band multiplex communication method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706