JPH053687B2 - - Google Patents

Info

Publication number
JPH053687B2
JPH053687B2 JP61002998A JP299886A JPH053687B2 JP H053687 B2 JPH053687 B2 JP H053687B2 JP 61002998 A JP61002998 A JP 61002998A JP 299886 A JP299886 A JP 299886A JP H053687 B2 JPH053687 B2 JP H053687B2
Authority
JP
Japan
Prior art keywords
thin film
film
charge transfer
ultra
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61002998A
Other languages
Japanese (ja)
Other versions
JPS62163205A (en
Inventor
Kojiro Kawabata
Takayoshi Nakamura
Mutsuyoshi Matsumoto
Motoo Tanaka
Tatsuo Sekiguchi
Eiichiro Manda
Gunji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61002998A priority Critical patent/JPS62163205A/en
Publication of JPS62163205A publication Critical patent/JPS62163205A/en
Publication of JPH053687B2 publication Critical patent/JPH053687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Laminated Bodies (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電気移動錯体基をもつ有機化合物から
なる導電性超薄膜及びその製法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a conductive ultra-thin film made of an organic compound having an electrotransfer complex group and a method for producing the same.

〔従来技術〕[Prior art]

ラングミユア・トラフ法を用いて固体基板に有
機化合物の薄膜を施すことは周知である。このよ
うにして製造される薄膜は、多くの用途、応用、
特にエレクトロニクスおよび生物学の分野におい
て、興味深いものである。かくして、特開昭58−
141246号公報においては、ラングミユア・トラフ
による超薄膜〔ラングミユア・ブロジエツト膜
(LB膜)〕をデバイスに応用する例がいくつか記
載されている。
It is well known to apply thin films of organic compounds to solid substrates using the Langmiur-trough method. Thin films produced in this way have many uses, applications and
It is of particular interest in the fields of electronics and biology. Thus, Unexamined Japanese Patent Publication No. 1983-
Publication No. 141246 describes several examples in which an ultra-thin film formed by a Langmiur trough (Langmiur-Blodget film (LB film)) is applied to devices.

LB膜は水面上に有機分子の単分子膜を作製し、
これを固体基板の上に累積することによつて得ら
れる超薄膜である。現在の種々の電子デバイスを
このような有機物の超薄膜で作製することが出来
ればデバイスの高速度化や高密度化などのより高
い機能を達成できるものと期待されている。
LB membrane creates a monomolecular film of organic molecules on the water surface,
This is an ultra-thin film obtained by accumulating this on a solid substrate. If various current electronic devices can be fabricated from such ultra-thin films of organic materials, it is expected that higher functions such as higher speed and higher density of the devices can be achieved.

しかしながら、このような有機化合物からなる
ラングミユア・ブロジエツト膜(LB膜)を用い
て種々のデバイスを構築する場合において、LB
膜自体として、絶縁体、半導体および良導体とし
ての物性を持つ素材が必要である。ところが、こ
れまでのLB膜は累積された膜それ自体の導電性
は10-8ジーメンス/センチメートル(S/cm)が
最も高い導電性を持つたものであり、この値では
半導体の領域の中には入るが、絶縁体の領域に近
いほうである。したがつて当然良導体はこれまで
得られていない。これ以上の導電性を得るために
はドープ等の2次処理が不可欠であつた。ヨウ素
ドープにより2次処理を行うことによつてフタロ
シアニンLB膜では10-4S/cmのものが得られてい
る。また長鎖ピリジニウム・テトラシアノキノジ
メタン(TCNQ)1:1錯体のLB膜では
10-1S/cm(通常バルクの導電性の計算法によれ
ば10-2S/cm)の導電性のものが得られている。
ヨウ素ドープによつて得られるこのような導電性
膜はまだ充分な大きさの導電性が無いというだけ
でなく、種々のデバイスにLB膜を用いるために
は、もつと根本的な問題点としてドープ等の2次
処理によつて他のデバイスを構成する有機分子を
破壊したり、無機化合物を腐食するということが
あげられている。
However, when constructing various devices using Langmiur-Blodget films (LB films) made of such organic compounds, LB
The film itself requires a material that has physical properties as an insulator, semiconductor, and good conductor. However, conventional LB films have the highest cumulative conductivity of the film itself at 10 -8 Siemens/centimeter (S/cm), which is within the semiconductor range. However, it is closer to the insulator region. Naturally, therefore, good conductors have not been obtained to date. In order to obtain higher conductivity than this, secondary treatments such as doping were indispensable. A phthalocyanine LB film of 10 -4 S/cm has been obtained by performing a secondary treatment with iodine doping. In addition, in the LB film of long-chain pyridinium-tetracyanoquinodimethane (TCNQ) 1:1 complex,
A conductivity of 10 -1 S/cm (10 -2 S/cm according to the normal bulk conductivity calculation method) has been obtained.
Such conductive films obtained by doping with iodine not only do not have sufficient conductivity, but also have fundamental problems in using LB films in various devices. It has been reported that secondary treatments such as these destroy organic molecules constituting other devices and corrode inorganic compounds.

したがつて、LB膜を種々のデバイスの素材と
して用いるためにはヨウ素ドープ等の2次処理を
必要としない高い導電性を持つLB膜を作製する
ことが不可欠になつている。
Therefore, in order to use LB films as materials for various devices, it is essential to produce LB films with high conductivity that do not require secondary treatments such as iodine doping.

〔目的〕〔the purpose〕

本発明はヨウ素ドープ等の2次処理を必要とし
ない高い導電性を持つLB膜及びその製法を提供
することを目的とする。
An object of the present invention is to provide a highly conductive LB film that does not require secondary treatment such as iodine doping, and a method for manufacturing the same.

〔構成〕〔composition〕

本発明者らは、前記目的を達成すべく鋭意研究
を重ねた結果、本発明を完成するに至つた。
The present inventors have completed the present invention as a result of extensive research to achieve the above object.

即ち、本発明によれば、固体基板上に形成され
た一般式 R−Y・X (式中、Xはフルバレン系化合物、Rは長鎖炭化
水素基及びYは電子受容基を示す) で表わされる電荷移動錯体化合物からなる導電性
超薄膜が提供される。
That is, according to the present invention, a compound represented by the general formula R-Y.X (wherein, A conductive ultra-thin film made of a charge transfer complex compound is provided.

また、本発明によれば水溶液の表面上に、一般
式 R−Y・X (式中、Xはフルバレン系化合物、Rは長鎖炭化
水素基及びYは電子受容基を示す) で表わされる電荷移動錯体化合物の薄膜を形成
し、その薄膜を貫いて、固体基板を通過させて、
基板の表面上に導電性を持つ電荷移動錯体化合物
を沈着させることからなる導電性超薄膜の製法が
提供される。
Further, according to the present invention, a charge represented by the general formula R-Y.X (wherein, Forming a thin film of a mobile complex compound and passing a solid substrate through the thin film,
A method of making an electrically conductive ultrathin film is provided which comprises depositing an electrically conductive charge transfer complex compound on the surface of a substrate.

前記一般式において、疎水性基を示す長鎖炭化
水素基Rは、CoH2o+1(式中、nは10から24まで
の整数)であり、親水性基を構成する電荷移動錯
体基の中のXは電子供与基を示し、またYは電子
受容基を示す。Xを構成するフルバレン系化合物
の具体例としては、例えば、テトラチオフルバレ
ン、テトラメチルテトラチオフルバレン、ヘキサ
メチルテトラチオフルバレン、テトラセレノフル
バレン、テトラメチルテトラセレノフルバレン、
ヘキサメチルテトラセレノフルバレン等があげら
れる。電子受容基Yとしては、テトラシアノキノ
ジメタン、パラベンゾキノンあるいはそれらの誘
導体があげられる。
In the above general formula, the long-chain hydrocarbon group R representing a hydrophobic group is C o H 2o+1 (in the formula, n is an integer from 10 to 24), and is a charge transfer complex group constituting the hydrophilic group. X in these represents an electron donating group, and Y represents an electron accepting group. Specific examples of the fulvalene compounds constituting X include tetrathiofulvalene, tetramethyltetrathiofulvalene, hexamethyltetrathiofulvalene, tetraselenofulvalene, tetramethyltetraselenofulvalene,
Examples include hexamethyltetraselenofulvalene. Examples of the electron accepting group Y include tetracyanoquinodimethane, parabenzoquinone, and derivatives thereof.

担持用液体の表面上に有機化合物の薄膜を形成
する一般的な方法は、特開昭58−141246号公報な
どの先行文献に記載されており、普通は、担持用
液体の表面に、その担持用液体と非混和性の揮発
性溶媒に溶解した有機化合物の溶液の適量を施
し、そしてその溶剤を蒸発させることによつて行
われる。担持用液体は該有機化合物に対する溶剤
でないのが好ましく、そして便宜的には普通水が
用いられるが、その場合には揮発性溶剤は適当な
密度の水非混和性有機溶剤をもちいるのが一般的
である。この方法は適当な溶解度特性を有する長
鎖炭化水素基を持つ電荷移動錯体化合物の薄膜を
形成するのに使用しうる。さらに電荷移動錯体化
合物はクロロホルム等の有機溶液中で分解する場
合もあるので、好ましくは、電荷移動錯体の単結
晶の作製の溶媒として一般的に用いられるアセト
ニトリルなどが挙げられるが、この場合は担持用
液体である水に可溶となるためアセトニトリルと
ベンゼンの混合溶媒が代わりに用いられる。ベン
ゼンの代わりに他の水に非溶解性の有機溶媒を用
いることもできる。担持用液体としては、普通水
が用いられるが、場合によつては、グリセリンな
どの有機溶媒を用いることもできる。水を用いる
場合は、純水だけでなく種々の金属イオンを加え
た水を用いることができ、その場合には、金属イ
オン濃度およびPHを適当に選定する事により、導
電性超薄膜を基板のうえに形成することも出来
る。固体基板としては、普通のガラス板およびこ
の上にステアリン酸やアラキン酸等の単分子膜を
累積させたもの、石英、アルミニウム、フツ化カ
ルシウムなどが挙げられる。
A general method for forming a thin film of an organic compound on the surface of a supporting liquid is described in prior documents such as Japanese Patent Application Laid-Open No. 141246/1983, and usually the method is to form a thin film of an organic compound on the surface of a supporting liquid. This is done by applying an appropriate amount of a solution of the organic compound dissolved in a volatile solvent that is immiscible with the liquid used and evaporating the solvent. Preferably, the supporting liquid is not a solvent for the organic compound, and conventionally water is conveniently used, in which case the volatile solvent is generally a water-immiscible organic solvent of suitable density. It is true. This method can be used to form thin films of charge transfer complex compounds having long chain hydrocarbon groups with suitable solubility properties. Furthermore, since charge transfer complex compounds may decompose in organic solutions such as chloroform, acetonitrile, which is commonly used as a solvent for preparing single crystals of charge transfer complexes, is preferably used; A mixed solvent of acetonitrile and benzene is used instead because it is soluble in water, which is a commercial liquid. Other water-insoluble organic solvents can be used instead of benzene. Water is usually used as the supporting liquid, but in some cases, organic solvents such as glycerin can also be used. When using water, it is possible to use not only pure water but also water to which various metal ions have been added. It can also be formed on top. Examples of the solid substrate include an ordinary glass plate, a monomolecular film of stearic acid, arachidic acid, etc. deposited thereon, quartz, aluminum, calcium fluoride, and the like.

本発明によつて特定できるデバイスとしては、
表示素子、コンデンサン情報記憶デバイス、化学
感受性半導体デバイス、シヨツトキーバリヤーを
含む半導体などを含むとともに、その超薄膜導電
体としての特徴から新しい超薄膜スイツチング素
子の構成要素、また厚みが分子レベルで制御され
た超薄膜であるためリソグラフイによつて超微細
加工が出来るため超高密度LSIでの微細な(分子
レベルでの)配線材料、超薄膜の構造から容易に
推定出来るようにその平面方向と縦方向の非常に
大きな電導度の異方性から上記配線において三次
元化による高密度化が可能になる。また有機物か
らなるためバイオ素子とのインターフエース機能
を持たせることも可能になる。
Devices that can be specified by the present invention include:
It includes semiconductors including display elements, capacitor information storage devices, chemically sensitive semiconductor devices, and shot key barriers, and because of its characteristics as an ultra-thin film conductor, it has become a component of new ultra-thin film switching elements, and its thickness is at the molecular level. Since it is a controlled ultra-thin film, it is possible to perform ultra-fine processing using lithography, so the fine (molecular level) wiring material used in ultra-high density LSI, and its planar direction can be easily estimated from the structure of the ultra-thin film. Due to the very large anisotropy of electrical conductivity in the vertical direction, it is possible to increase the density of the above-mentioned wiring by making it three-dimensional. Furthermore, since it is made of organic matter, it can also be provided with an interface function with bio-elements.

〔効果〕〔effect〕

上記のものの如きデバイスにおいて、本発明に
おける電荷移動錯体を含む超薄膜は、他の同様な
性質の化合物と比較して、1分子厚の単分子膜を
1層づつ累積させて作製されることから、薄膜の
極めて小さいものから作製することができる上、
その膜厚を正確に制御し得るという利点があり、
さらにそのすぐれた導電性や、2次処理を必要と
しないため導電性超薄膜を作製するのが容易であ
ること、再現性が大きいことおよびその安定性が
高いことが特に注目されうる。
In devices such as those mentioned above, the ultra-thin film containing the charge transfer complex in the present invention is produced by accumulating one monolayer of one molecule thick, one layer at a time, compared to other compounds with similar properties. , it can be made from extremely small thin films, and
It has the advantage of being able to accurately control the film thickness.
Further, it is particularly noteworthy for its excellent conductivity, the ease of producing an ultra-thin conductive film since no secondary treatment is required, its high reproducibility, and its high stability.

〔実施例〕〔Example〕

本発明を以下の実施例で説明するが、本発明は
これに限定されるものではない。なお、以下にお
いて示す部は重量基準である。
The present invention will be explained by the following examples, but the present invention is not limited thereto. Note that the parts shown below are based on weight.

実施例 1 オクタデシルテトラシアノキノジメタン
(TCNQ)の0.04部をベンゼンに溶解し還流した
中に、テトラチオフルバレン(TTF)0.018部を
温ベンゼン0.5部に溶解したものを加えた後、室
温まで冷却することにより、0.042部の1:1錯
体が得られた。このものは黒色粉末で、その赤外
スペクトルでは4000−1400cm-1に電荷移動に基づ
く吸収が認められた。この粉末の電導度は2.3×
10-3S/cmであつた。
Example 1 0.04 parts of octadecyltetracyanoquinodimethane (TCNQ) was dissolved in benzene and refluxed, and then 0.018 parts of tetrathiofulvalene (TTF) dissolved in 0.5 parts of warm benzene was added, and the mixture was heated to room temperature. Upon cooling, 0.042 part of 1:1 complex was obtained. This material is a black powder, and its infrared spectrum shows absorption based on charge transfer at 4000-1400 cm -1 . The conductivity of this powder is 2.3×
It was 10 -3 S/cm.

実施例 2 オクタデシルTCNQの0.052部を3部のヘキサ
ンに溶解し還流した中にテトラメチルテトラチオ
フルバレン(TMTTF)0.03部を温ベンゼンとヘ
キサン(1:1)溶媒2部に溶解したものを加え
さらに5分間還流した後、室温まで冷却すること
により0.034部の1:1錯体が得られた〔下記構
造式(1)〕。黒色粉末。(mp.95℃分解)。元素分析
値;炭素:66.66、水素:7.24、窒素:7.63%、イ
オウ:18.41(%)、計算値;炭素:66.99、水素:
7.31、窒素:7.81、イオウ:17.89(%)。赤外スペ
クトルでは4000−1400cm-1に電荷移動に基づく吸
収が認められた。粉末の電導度は1.2×10-2S/cm
であつた。
Example 2 0.052 parts of octadecyl TCNQ was dissolved in 3 parts of hexane and refluxed. 0.03 parts of tetramethyltetrathiofulvalene (TMTTF) dissolved in 2 parts of warm benzene and hexane (1:1) was added for another 5 minutes. After refluxing, 0.034 part of a 1:1 complex was obtained by cooling to room temperature [Structural Formula (1) below]. black powder. (mp.95℃ decomposition). Elemental analysis value; carbon: 66.66, hydrogen: 7.24, nitrogen: 7.63%, sulfur: 18.41 (%), calculated value; carbon: 66.99, hydrogen:
7.31, nitrogen: 7.81, sulfur: 17.89 (%). In the infrared spectrum, absorption due to charge transfer was observed at 4000-1400 cm -1 . The conductivity of the powder is 1.2×10 -2 S/cm
It was hot.

実施例 3 実施例2で合成したTMTTF−オクタデシル
TCNQ錯体をアセトニトリル−ベンゼン(1:
1)混合溶媒に溶かし(5−10×10-4M)、担持
用液体として純水を用い、通常の方法によつてラ
ングミユア・トラフに単分子膜を生成し、そのF
−A曲線を求めたところ、第2図に示されるよう
に極限占有面積が約0.42nm2と0.45nm2の2つの凝
縮層を持つ安定な単分子膜を形成することがわか
つた。そこで25mNm-1の表面圧で累積したとこ
ろY型膜としてうまく累積することが出来た。累
積膜の電子スペクトルは395nmに強い吸収と、
550と870nmに弱い吸収が認められた。このスペ
クトルは粉末状態のものと同じであつた。後2つ
の吸収はそれぞれ、TMTTFのラジカルカチオ
ンとTCNQラジカルアニオンに帰属される。8
−96層まで累積したものの吸収スペクトルの強度
は累積枚数に比例しており単分子膜が安定に累積
されることを示している。第3図に示されるよう
に累積膜の赤外吸収スペクトルにおいても電荷移
動に基づく4000−1600cm-1に巾の広い吸収が認め
られ、粉末状態のスペクトルと一致した。このこ
とはここで用いた電荷移動錯体が水面上および累
積操作中分解していないことを示している。この
ようにして得た累積膜の膜厚を触針法で測定した
ところ一層当り4.0nmであり、X線回析による面
間隔は8.0nm(2分子厚として求まるため)とよ
い一致を示した。次に、第1図に示されるよう銀
ペーストを用いて電極を作り、導電性を測定する
と、薄膜の抵抗は電極間の長さ(0.2−1.0cm)に
比例した。このことも均質な超薄膜が作製されて
いることを示している。8−96層の累積膜の導電
性をリサジユー法で交流を用いて測定したとこ
ろ、1層あたりの抵抗は(1−2)×107Ωであつ
た。上で得られた1層当り4.0nmの長さを用いて
計算するとバルクの導電性は(0.1−0.2)S/cm
という値になる。バロー氏らの計算方法
(Nonvean J.de Chim.、1985、9、p365)を用
いれば導電性はさらにこの数倍になる。このよう
にして得られたラングミユア・ブロジエツト膜の
導電性はヨウ素ドープ等の2次処理をまつたく必
要としないにもかかわらずこれまで報告された最
も高い値であつた。この超薄膜の安定性を±
10V/cmの交流をかけて測定した結果、100時間
以上流しても導電率の減少は認められなかつた。
Example 3 TMTTF-octadecyl synthesized in Example 2
The TCNQ complex was converted into acetonitrile-benzene (1:
1) Dissolve in a mixed solvent (5-10×10 -4 M) and use pure water as a supporting liquid to form a monomolecular film in a Langmiur trough by a normal method, and then
-A curve was determined, and it was found that a stable monomolecular film having two condensed layers with ultimate occupied areas of approximately 0.42 nm 2 and 0.45 nm 2 was formed as shown in FIG. Therefore, when it was accumulated at a surface pressure of 25 mNm -1 , it was successfully accumulated as a Y-shaped film. The electronic spectrum of the cumulative film has strong absorption at 395 nm,
Weak absorption was observed at 550 and 870 nm. This spectrum was the same as that of the powder state. The latter two absorptions are assigned to the TMTTF radical cation and TCNQ radical anion, respectively. 8
The intensity of the absorption spectrum of -96 layers is proportional to the number of layers accumulated, indicating that the monolayer is stably accumulated. As shown in FIG. 3, in the infrared absorption spectrum of the accumulated film, a broad absorption in the range of 4000-1600 cm -1 due to charge transfer was observed, which coincided with the spectrum of the powder state. This indicates that the charge transfer complex used here does not decompose on the water surface and during the accumulation operation. The thickness of the cumulative film thus obtained was measured using the stylus method and was found to be 4.0 nm per layer, which showed good agreement with the interplanar spacing determined by X-ray diffraction to be 8.0 nm (because it is determined as the thickness of two molecules). . Next, as shown in Figure 1, electrodes were made using silver paste and the conductivity was measured, and the resistance of the thin film was proportional to the length between the electrodes (0.2-1.0 cm). This also indicates that a homogeneous ultra-thin film was produced. When the conductivity of the cumulative film of 8-96 layers was measured using alternating current using the Lissage method, the resistance per layer was (1-2)×10 7 Ω. Using the length of 4.0 nm per layer obtained above, the bulk conductivity is (0.1-0.2) S/cm.
The value is . If the calculation method of Mr. Barrow et al. (Nonvean J. de Chim., 1985, 9, p. 365) is used, the conductivity will further increase several times this value. The conductivity of the Langmiur-Blodget film thus obtained was the highest reported so far, even though it did not require any secondary treatment such as iodine doping. The stability of this ultra-thin film is ±
As a result of measurement by applying an alternating current of 10 V/cm, no decrease in conductivity was observed even after applying the current for more than 100 hours.

実施例 4 TMTTF−オクタデシルTCNQ錯体をアセト
ニトリル−ベンゼン(1:2)混合溶媒に溶かし
担持用液体としてCdCl2:4×10-4M、
KHCO3:5×10-5Mを含む水を用い、実施例3
と同様の操作を行つて得られた累積膜のバルクの
導電性は、やはり(0.1−0.2)S/cmであつた。
Example 4 TMTTF-octadecyl TCNQ complex was dissolved in a mixed solvent of acetonitrile-benzene (1:2) and CdCl 2 :4×10 -4 M was used as a supporting liquid.
Example 3 using water containing 5×10 −5 M of KHCO 3
The bulk conductivity of the cumulative film obtained by performing the same operation as above was also (0.1-0.2) S/cm.

実施例 5 実施例4と同様にして固体基板としてフツ化カ
ルシウムを用いて累積したところ、ガラス基板ほ
どにうまくはないが、累積することが出来た。
Example 5 When calcium fluoride was used as a solid substrate for accumulation in the same manner as in Example 4, accumulation was possible, although not as well as on a glass substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導電性超薄膜の電導度測定装置説明図
である。第2図は、表面圧−面積曲線(F−A曲
線)である。第3図は、TMTTF−オクタデシ
ルTCNQLB膜の赤外吸収スペクトル図である。
FIG. 1 is an explanatory diagram of an apparatus for measuring the conductivity of a conductive ultra-thin film. FIG. 2 is a surface pressure-area curve (FA curve). FIG. 3 is an infrared absorption spectrum diagram of the TMTTF-octadecyl TCNQLB film.

Claims (1)

【特許請求の範囲】 1 固体基板上に形成された一般式 R−Y・X (式中、Xはフルバレン系化合物、Rは長鎖炭化
水素基及びYは電子受容基を示す) で表わされる電荷移動錯体化合物からなる導電性
超薄膜。 2 水溶液の表面上に、一般式 R−Y・X (式中、Xはフルバレン系化合物、Rは長鎖炭化
水素基及びYは電子受容基を示す) で表わされる電荷移動錯体化合物の薄膜を形成
し、その薄膜を貫いて、固体基板を通過させて、
基板の表面上に導電性を持つ電荷移動錯体化合物
を沈着させることからなる導電性超薄膜の製法。
[Claims] 1 Formed on a solid substrate and represented by the general formula R-Y.X (wherein, X is a fullvalene compound, R is a long-chain hydrocarbon group, and Y is an electron-accepting group) A conductive ultra-thin film made of a charge transfer complex compound. 2. On the surface of the aqueous solution, a thin film of a charge transfer complex compound represented by the general formula RY. form, pass through the thin film, and pass through the solid substrate.
A method for producing ultrathin conductive films consisting of depositing a conductive charge transfer complex compound on the surface of a substrate.
JP61002998A 1986-01-10 1986-01-10 Conducting super thin film Granted JPS62163205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002998A JPS62163205A (en) 1986-01-10 1986-01-10 Conducting super thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002998A JPS62163205A (en) 1986-01-10 1986-01-10 Conducting super thin film

Publications (2)

Publication Number Publication Date
JPS62163205A JPS62163205A (en) 1987-07-20
JPH053687B2 true JPH053687B2 (en) 1993-01-18

Family

ID=11545043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002998A Granted JPS62163205A (en) 1986-01-10 1986-01-10 Conducting super thin film

Country Status (1)

Country Link
JP (1) JPS62163205A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205076A (en) * 1986-03-03 1987-09-09 Agency Of Ind Science & Technol Charge transfer complex bearing long-chain hydrocarbon group
JPS62207249A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Electron acceptor containing long-chain hydrocarbon group and electric charge transfer complex compound thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243906A (en) * 1984-05-10 1985-12-03 コミツサレ・ア・レナジイ・アトミツク Conductive film including at least one single molecule layerof organic complex for moving charge and method of producingsame

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243906A (en) * 1984-05-10 1985-12-03 コミツサレ・ア・レナジイ・アトミツク Conductive film including at least one single molecule layerof organic complex for moving charge and method of producingsame

Also Published As

Publication number Publication date
JPS62163205A (en) 1987-07-20

Similar Documents

Publication Publication Date Title
Kar Doping in conjugated polymers
US7918982B2 (en) Production device and production method for conductive nano-wire
Valade et al. TTF [Ni (dmit) 2] 2: From single-crystals to thin layers, nanowires, and nanoparticles
JPS60243906A (en) Conductive film including at least one single molecule layerof organic complex for moving charge and method of producingsame
US4046950A (en) Chalcogenated tetracene organic metals
US5152805A (en) M-I-M' device and fabrication method
Savy et al. Nanowires of molecule-based charge-transfer salts
JPH053687B2 (en)
Granholm et al. Conducting Langmuir-Blodgett films of polyaniline: Fabrication and charge transport properties
US5057878A (en) M-I-M' device and fabrication method
US4940516A (en) Process for the preparation of electroactive Langmuir-Blodgett layer system
RU2243298C2 (en) Methods of production of a superconductive laminated material and a superconductive layered element produced out of it
Joseph et al. Electronic properties of PVP-ionic liquid composite: spectroscopic and DFT-based thermochemical studies on the effect of anions
Tarrés et al. Synthesis, structure and physical properties of charge-transfer complexes based on BET–TTF and M (mnt) 2 (M= Au, Pt)
EP1199281B1 (en) Process for producing a metal fulleride
JP2000086684A (en) New oligoferrocenylene derivative and production of thin film of electrochemically active cluster
JP2552705B2 (en) Monomolecular film or monomolecular cumulative film and method for producing the same
JPH02200688A (en) Organic complex and electrically conductive ultrathin film
US7771820B2 (en) Monocrystal, nano wire material, electronic element, and method of producing nano wire material
JP2694834B2 (en) Pattern forming material and pattern forming method
Yamamoto et al. Azulene-substituted TTF derivatives
Chi et al. Synthesis and crystal structure of charge-transfer salt (BEDT-TTF)[Pt (mnt) 2]
Shirahata et al. Synthesis of a new donor, BEDT-HBDST and crystal structures, electrical and magnetic properties of (BEDT-HBDST) 2MX4 (M= Fe, Ga, X= Cl, Br), where BEDT-HBDST= 2, 5-bis (4, 5-ethylenedithio-1, 3-diselenol-2-ylidene)-2, 3, 4, 5-tetrahydrothiophene
Muzikante et al. Structural and electrical characterisation of betaine-type, organic, molecular, thin evaporated films and LB multilayers
Wang et al. X-ray photoelectron spectroscopy investigation on the interaction of polyvinylcarbazole and fullerene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term