JP2552705B2 - Monomolecular film or monomolecular cumulative film and method for producing the same - Google Patents

Monomolecular film or monomolecular cumulative film and method for producing the same

Info

Publication number
JP2552705B2
JP2552705B2 JP5899888A JP5899888A JP2552705B2 JP 2552705 B2 JP2552705 B2 JP 2552705B2 JP 5899888 A JP5899888 A JP 5899888A JP 5899888 A JP5899888 A JP 5899888A JP 2552705 B2 JP2552705 B2 JP 2552705B2
Authority
JP
Japan
Prior art keywords
film
monomolecular
sulfonium salt
polymer
cumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5899888A
Other languages
Japanese (ja)
Other versions
JPH01234426A (en
Inventor
淑夫 今井
雅明 柿本
康成 西片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5899888A priority Critical patent/JP2552705B2/en
Publication of JPH01234426A publication Critical patent/JPH01234426A/en
Application granted granted Critical
Publication of JP2552705B2 publication Critical patent/JP2552705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリフェニレンビニレン系高分子を構成成
分とする単分子膜もしくは単分子累積膜ならびにその製
造方法に関する。
TECHNICAL FIELD The present invention relates to a monomolecular film or monomolecular cumulative film containing a polyphenylene vinylene polymer as a constituent and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、ドーピングされたポリフェニレンビニレン膜が
高い導電性を有することが見いだされ、導電性高分子材
料としての応用が期待されているが、特に半導体製品等
の電子材料への応用を図る上では、高集積化の点からい
かにして薄くかつ均一な薄膜を製造するかが重要な課題
となっている。
In recent years, it has been found that a doped polyphenylene vinylene film has high conductivity, and it is expected to be applied as a conductive polymer material. However, in order to apply it to an electronic material such as a semiconductor product, From the viewpoint of integration, how to manufacture thin and uniform thin films has become an important issue.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、これまでに報告されているポリフェニレン
ビニレン膜はキャスト法等の手法で製造されたものであ
り、均一でかつ厚さが100Å〜1000Åといった非常に薄
い膜を提供するには至っていない。
However, the polyphenylene vinylene film reported so far is manufactured by a method such as a casting method, and it has not been possible to provide a very thin film having a uniform thickness of 100Å to 1000Å.

一方、最近、有機分子の累積膜形成方法としてラング
ミュア・ブロジェット(LB)法が注目を集めている。LB
法は、新水基と疎水基とを合せ持つ両親媒性の有機分子
を水面上に展開し、これを固体基板上に次々と累積して
いくことで超薄膜を作成する手段であり、これを電荷移
動錯体型分子等に適用して導電性薄膜を作る試みが盛ん
になされている。ところが、従来の報告例では、膜の配
向性を良くするために必要な長鎖アルキル基等の疎水基
が導電性の異方性をもたらすという難点があった。即
ち、膜の面内での導電性が認められるものの、膜に垂直
な方向では絶縁性疎水基の存在により電気が流れないと
いう難点があった。この点を解決すべく、疎水基の長さ
を短くする試みもなされているが、逆に膜の配向性や均
一性が悪くなって膜質が劣化する等の問題点がでてきて
いる。
On the other hand, recently, the Langmuir-Blodgett (LB) method has been attracting attention as a method for forming a cumulative film of organic molecules. LB
The method is a means for creating an ultrathin film by spreading amphipathic organic molecules having both new water groups and hydrophobic groups on the water surface and accumulating them successively on a solid substrate. There have been many attempts to form a conductive thin film by applying the above to a charge transfer complex type molecule or the like. However, in the conventional reports, there is a problem that a hydrophobic group such as a long-chain alkyl group necessary for improving the orientation of the film causes anisotropy of conductivity. That is, although the conductivity is recognized in the plane of the film, there is a drawback that electricity does not flow in the direction perpendicular to the film due to the presence of the insulating hydrophobic group. In order to solve this point, attempts have been made to shorten the length of the hydrophobic group, but conversely, there are problems such as deterioration in film quality due to poor orientation and uniformity of the film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記ポリフェニレンビニレン膜をLB法
等で超薄膜化すれば、かかる問題点の解消された新規な
導電性薄膜が得られることを見い出し、本発明を完成す
るに至った。
The present inventors have found that if the polyphenylene vinylene film is made into an ultrathin film by the LB method or the like, a novel conductive thin film in which such problems are solved can be obtained, and the present invention has been completed.

即ち、本発明の要旨は、 一般式(I) (式中、R1,R2,R3,R4は水素原子または1価の有機基を
示す。ただし、このうち二つが組になって1個または2
個の環を形成していてもよい。) で示される反復単位を有するポリフェニレンビニレン系
高分子を構成成分とする単分子膜もしくは単分子累積
膜、ならびにその製造方法に存する。
That is, the gist of the present invention resides in the general formula (I) (In the formula, R 1 , R 2 , R 3 and R 4 represent a hydrogen atom or a monovalent organic group. However, two of them are combined to form one or two.
It may form a ring. ) A monomolecular film or a monomolecular cumulative film having a polyphenylene vinylene polymer having a repeating unit represented by the formula as a constituent, and a method for producing the same.

以下、詳細に本発明を説明する。 Hereinafter, the present invention will be described in detail.

まず、本発明にかかる単分子膜もしくは単分子累積膜
は、例えば次のような方法によって得られる。即ち、高
分子スルホニウム塩と脂肪酸塩との有機溶媒溶液を水面
上に展開し、これを基板上に累積して高分子スルホニウ
ム塩誘導体の単分子膜もしくは単分子累積膜を形成し、
ついでこれを脱スルホニウム塩処理することにより、ポ
リフェニレンビニレン系高分子を構成成分とする単分子
膜もしくは単分子累積膜を得ることができる。
First, the monomolecular film or monomolecular cumulative film according to the present invention can be obtained, for example, by the following method. That is, an organic solvent solution of a polymer sulfonium salt and a fatty acid salt is developed on the water surface and accumulated on a substrate to form a polymer sulfonium salt derivative monomolecular film or monomolecular cumulative film,
Then, this is treated with a desulfonium salt to obtain a monomolecular film or a monomolecular cumulative film containing a polyphenylene vinylene polymer as a constituent component.

高分子スルホニウム塩としては、一般式(II) (式中、R1,R2,R3,R4は水素原子または1価の有機基を
示す。たたし、R1,R2,R3,R4のうち二つが組になって1
個または2個の環を形成していてもよい。また、R5,R6
は水素原子またはアルキル基を示す。ただし、R5とR6
で環を形成していてもよい。また、X-は対アニオンを示
す。) で示される反復単位を有する高分子スルホニウム塩が用
いられる。
As the polymer sulfonium salt, a compound represented by the general formula (II) (In the formula, R 1 , R 2 , R 3 and R 4 represent a hydrogen atom or a monovalent organic group. However, two of R 1 , R 2 , R 3 and R 4 are a pair. 1
One or two rings may be formed. Also, R 5 , R 6
Represents a hydrogen atom or an alkyl group. However, R 5 and R 6 may form a ring. X represents a counter anion. ) A polymeric sulfonium salt having a repeating unit represented by

上記一般式(II)で表される高分子スルホニウム塩
は、下記式(III) (式中、R1,R2,R3,R4,R5,R6及びX-は一般式(II)にお
けると同義である。) で示されるスルホニウム塩から従来公知の重合反応によ
り製造される。
The polymer sulfonium salt represented by the above general formula (II) has the following formula (III) (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and X have the same meanings as in formula (II).) Produced from a sulfonium salt represented by To be done.

上記式中、R1,R2,R3,R4は同一であっても互いに異な
っていてもよく、1価の有機基としてはアルキル基、ア
リール基、アルコキシ基、アミノ基、アシルオキシ基、
カルボキシル基等が挙げられる。一方、R5,R6として選
ばれるアルキル基の具体例としては、メチル基、エチル
基、プロピル基、ブチル基等が挙げられる。R5とR6とで
環を形成する場合は、5員環、6員環等が挙げられる。
また、X-としては例えば、Cl-、Br-、BF4 -、ClO4 -等が
挙げられる。
In the above formula, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, and as the monovalent organic group, an alkyl group, an aryl group, an alkoxy group, an amino group, an acyloxy group,
Examples thereof include a carboxyl group. On the other hand, specific examples of the alkyl group selected as R 5 and R 6 include a methyl group, an ethyl group, a propyl group and a butyl group. When R 5 and R 6 form a ring, examples thereof include a 5-membered ring and a 6-membered ring.
Examples of X include Cl , Br , BF 4 , ClO 4 − and the like.

上記一般式(II)で表される反復単位からなる高分子
スルホニウム塩は、同一の反復単位からなっていてもよ
いし、異なった反復単位からなる共重合体であってもよ
い。いずれの場合においても高分子スルホニウム塩の重
合度は10以上であることが好適であり、これより小さい
と膜として機能しなくなる可能性がある。
The polymeric sulfonium salt composed of repeating units represented by the general formula (II) may be composed of the same repeating unit or may be a copolymer composed of different repeating units. In any case, the polymerization degree of the polymeric sulfonium salt is preferably 10 or more, and if it is smaller than this, the polymer may not function.

更に、本発明における脂肪酸塩としては、炭素数が4
〜30、好ましくは4〜20である炭化水素系脂肪酸塩ある
いはこのうちの水素原子の一部もしくは全部がフッソ置
換されたフッソ系脂肪酸塩が用いられる。このような脂
肪酸塩として具体的には、CnH2n+1COOM、CnF2n+1COOM
(式中、nは3〜29、好ましくは3〜19の数字を示し、
MはNa、K等の一価の金属を示す)等が挙げられる。
Further, the fatty acid salt in the present invention has a carbon number of 4
-30, preferably 4-20, hydrocarbon-based fatty acid salts or fluorine-based fatty acid salts in which some or all of the hydrogen atoms are fluorine-substituted are used. Specific examples of such a fatty acid salt include C n H 2n + 1 COOM and C n F 2n + 1 COOM.
(In the formula, n represents a number of 3 to 29, preferably 3 to 19,
M represents a monovalent metal such as Na and K).

本発明においては、まず、高分子スルホニウム塩と脂
肪酸塩との有機溶媒溶液を水面上に展開し、これを基板
上に累積して高分子スルホニウム塩誘導体の単分子膜も
しくは単分子累積膜を形成させる。例えば、上記一般式
(II)で表される高分子スルホニウム塩の有機溶媒溶液
と、上記脂肪酸塩とを混合した後、この溶液を水面上に
展開し、さらにこれを基板上に累積して高分子スルホニ
ウム塩誘導体の単分子膜もしくは単分子累積膜を形成さ
せることにより行われる。ここで使用される高分子スル
ホニウム塩は、一度単離したものを適当な有機溶媒に再
溶解させて使用してもよいが、上記一般式(III)で表
されるスルホニウム塩の重合反応溶液から塩分等の不純
物を取り除いた高分子スルホニウム水溶液を、以後の展
開に好適なように適当な有機溶媒で希釈してもよい。
In the present invention, first, a solution of a polymer sulfonium salt and a fatty acid salt in an organic solvent is spread on a water surface and accumulated on a substrate to form a monomolecular film of a polymer sulfonium salt derivative or a monomolecular cumulative film. Let For example, a solution of the polymer sulfonium salt represented by the general formula (II) in an organic solvent is mixed with the fatty acid salt, the solution is developed on the water surface, and the solution is accumulated on the substrate to increase the concentration. It is carried out by forming a monomolecular film or a monomolecular cumulative film of a molecular sulfonium salt derivative. The high molecular weight sulfonium salt used here may be used by re-dissolving it once isolated in a suitable organic solvent. However, from the polymerization reaction solution of the sulfonium salt represented by the general formula (III), The polymer sulfonium aqueous solution from which impurities such as salt have been removed may be diluted with an appropriate organic solvent so as to be suitable for the subsequent development.

高分子スルホニウム塩誘導体の有機溶媒溶液の展開に
使用される有機溶媒は、ベンゼン、クロロホルム、トリ
クロロエタン等の揮発性溶媒が選ばれるが、高分子スル
ホニウム塩あるいは高分子スルホニウム塩水溶液の溶解
度を上げるために有機極性溶媒を併用するのが望まし
い。このような有機極性溶媒としては、例えば、エタノ
ール、メタノール、N,N−ジメチルホルムアミド、N,N−
ジメチルアセトアミド、N−メチル−2−ピロリドン、
ジメチルスルホキシド等があげられる。この場合水と実
質的に混合しない有機溶媒が、全溶媒の10%以下になる
と水面上への展開が困難になるので好ましくない。
A volatile solvent such as benzene, chloroform or trichloroethane is selected as the organic solvent used for developing the organic solvent solution of the high molecular weight sulfonium salt derivative, but in order to increase the solubility of the high molecular weight sulfonium salt or the aqueous solution of the high molecular weight sulfonium salt. It is desirable to use an organic polar solvent together. Examples of such an organic polar solvent include ethanol, methanol, N, N-dimethylformamide, N, N-
Dimethylacetamide, N-methyl-2-pyrrolidone,
Examples include dimethyl sulfoxide and the like. In this case, if the amount of the organic solvent that is substantially immiscible with water is 10% or less of the total solvent, it is difficult to spread on the water surface, which is not preferable.

高分子スルホニウム塩と脂肪酸塩との使用割合は、自
己支持性、即ち基板への単分子膜もしくは単分子累積膜
の形成に適した表面圧(約10mN/m以上、通常15mN/m以
上)を得るために、通常脂肪酸塩を高分子スルホニウム
塩に対し1/2モル以上であり、好ましくは等モル程度か
ら選ばれる。また、高分子スルホニウム塩と脂肪酸塩の
有機溶媒中の濃度は、高分子スルホニウム塩、脂肪酸
塩、溶媒の種類等により適宜選定しうる。例えば、通常
0.1〜10m mol/程度が選ばれる。また、上記成分以外
の単分子膜もしくは単分子累積膜の膜材料を、実質的に
本発明の単分子膜もしくは単分子累積膜の性質を損なわ
ない限り、適宜配合することもできる。
The ratio of the polymer sulfonium salt and the fatty acid salt used is self-supporting, that is, a surface pressure (about 10 mN / m or more, usually 15 mN / m or more) suitable for forming a monomolecular film or a monomolecular cumulative film on the substrate. To obtain the fatty acid salt, the amount of the fatty acid salt is usually 1/2 mol or more, and preferably about equimolar to the high molecular weight sulfonium salt. Further, the concentrations of the high molecular weight sulfonium salt and the fatty acid salt in the organic solvent can be appropriately selected depending on the types of the high molecular weight sulfonium salt, the fatty acid salt, the solvent, and the like. For example, usually
0.1 to 10mmol / about is selected. Further, a film material of a monomolecular film or a monomolecular cumulative film other than the above components can be appropriately blended as long as the properties of the monomolecular film or monomolecular cumulative film of the present invention are not substantially impaired.

基板としては、石英、ガラス等のセラミックスや、グ
ラッシーカーボン等のカーボン基板、アルミニウム、
銅、鉄等の金属、シリコン、ガリウム−ヒ素等の半導
体、酸化錫(SnO2)、インジウム−錫酸化物(ITO)等
の金属酸化物、ポリイミドフィルム、ポリスルホンフィ
ルム等のプラスチックフィルム等が挙げられる。
As the substrate, ceramics such as quartz and glass, a carbon substrate such as glassy carbon, aluminum,
Examples include metals such as copper and iron, semiconductors such as silicon and gallium-arsenic, metal oxides such as tin oxide (SnO 2 ), indium-tin oxide (ITO), and plastic films such as polyimide films and polysulfone films. .

この基板への単分子膜もしくは単分子累積膜の形成に
おいては、例えば公知のLB法(「LB膜とエレクトロニク
ス」1〜15頁、33〜46頁、CMC出版、1986年)を用いれ
ばよいが、通常よく使われている垂直浸漬法以外にも、
水平付着法等を適用することができる。膜厚は累積回数
を変えることにより、使用目的に応じて任意のものを得
ることができる。
In forming a monomolecular film or a monomolecular accumulated film on this substrate, for example, a known LB method (“LB film and electronics” pages 1 to 15, pages 33 to 46, CMC Publishing Co., Ltd., 1986) may be used. In addition to the commonly used vertical immersion method,
A horizontal attachment method or the like can be applied. An arbitrary film thickness can be obtained by changing the cumulative number of times depending on the purpose of use.

このようにして得られる高分子スルホニウム塩誘導体
の単分子膜もしくは単分子累積膜を、加熱等により脱ス
ルホニウム塩処理することによりポリフェニレンビニレ
ン系単分子膜もしくは単分子累積膜を得る。
The polyphenylene vinylene-based monomolecular film or monomolecular cumulative film is obtained by subjecting the monomolecular film or monomolecular cumulative film of the polymer sulfonium salt derivative thus obtained to a desulfonium salt treatment by heating or the like.

得られたポリフェニレンビニレン系単分子膜もしくは
単分子累積膜は、一般式(I)で表される反復単位を有
するポリフェニレンビニレン系高分子を構成成分とす
る。薄膜の膜厚は上記高分子スルホニウム塩誘導体の単
分子膜もしくは単分子累積膜の累積回数を選ぶことによ
り決定され、100Å〜1000Åといった非常に薄く、しか
も均一な薄膜を得ることができる。
The obtained polyphenylene vinylene-based monomolecular film or monomolecular cumulative film has a polyphenylene vinylene-based polymer having a repeating unit represented by the general formula (I) as a constituent component. The thickness of the thin film is determined by selecting the number of times of accumulation of the monomolecular film or the monomolecular accumulated film of the above-mentioned polymer sulfonium salt derivative, and a very thin and uniform thin film of 100Å to 1000Å can be obtained.

更に、本発明においては、ポリフェニレンビニレン系
単分子膜もしくは単分子累積膜に電子供与性または電子
吸引性のドーパントを添加することにより、導電性単分
子膜もしくは単分子累積膜を得ることができる。ドーパ
ントとしては具体的には、電子吸引性のものとして、
I2、SO3、ClO4、AsF5、H2SO4等が、電子供与性のものと
してナトリウムナフタライド等がそれぞれ例示できる。
Furthermore, in the present invention, a conductive monomolecular film or monomolecular cumulative film can be obtained by adding an electron donating or electron withdrawing dopant to the polyphenylene vinylene-based monomolecular film or monomolecular cumulative film. As the dopant, specifically, as an electron-withdrawing substance,
Examples of I 2 , SO 3 , ClO 4 , AsF 5 , H 2 SO 4 and the like include sodium naphthalide and the like as those having an electron donating property.

こうして得られる単分子膜もしくは単分子累積膜は、
ドーピングにより高い導電性を発現するのみならず、絶
縁性の長鎖疎水基を有しないため、従来のLB膜によく見
られた導電率の異方性という問題点が解消されうる。
The monomolecular film or monomolecular cumulative film thus obtained is
In addition to exhibiting high conductivity by doping, it does not have an insulating long-chain hydrophobic group, so that the problem of conductivity anisotropy often seen in conventional LB films can be solved.

〔実施例〕〔Example〕

次に本発明を実施例によって更に詳細に説明するが、
本発明はその要旨を越えない限り、実施例により限定さ
れるものではない。
Next, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to the examples as long as the gist thereof is not exceeded.

実施例1 高分子スルホニウム塩の単分子膜調整用の溶液の調製 まず、充分透析された高分子スルホニウム塩の水溶液
を減圧下(約1Torr)で液量が大体半分になるまで濃縮
した。このとき高分子スルホニウム塩が分解しないよう
に、液温を40℃以下に保持した。次いで濃縮した溶液を
孔径1μmの紙で過して、溶液中の不溶物や混入物
を除去した。この溶液の一定量を乾燥して得られるポリ
マーの重量、およびそのポリマーを熱処理して得られる
ポリ(p−フェニレンビニレン)の重量より元の高分子
スルホニウム塩の水溶液の濃度を計算した。この濃度を
基準として、高分子スルホニウム塩の水溶液を蒸留水で
希釈して、高分子スルホニウム塩の20m mol unit/の
水溶液を調製した(溶液A)。次に、溶液Aを1mlとり
全体が10mlになるようにエタノールで希釈した(溶液
B)。さらに、溶液Bを2.5mlとり全体が5mlになるよう
に1,1,1−トリクロロエタンで希釈した(溶液C;濃度1m
mol unit/)。なお、溶液Aは室温で数カ月の保存が
可能であるが、溶液Bについては調製後2時間、溶液C
については調製後10数分を経過すると高分子スルホニウ
ム塩の分解による液の着色や不溶物の生成が認められる
ようになる。従って、溶液BおよびCは水面に単分子膜
を調製する直前に、その都度準備しなければならない。
Example 1 Preparation of Solution of Polymeric Sulfonium Salt for Monolayer Preparation First, a sufficiently dialyzed aqueous solution of a polymeric sulfonium salt was concentrated under reduced pressure (about 1 Torr) until the liquid volume became about half. At this time, the liquid temperature was kept at 40 ° C. or lower so that the polymer sulfonium salt was not decomposed. Then, the concentrated solution was passed through a paper having a pore size of 1 μm to remove insoluble matters and contaminants in the solution. The concentration of the aqueous solution of the original polymer sulfonium salt was calculated from the weight of the polymer obtained by drying a certain amount of this solution and the weight of the poly (p-phenylene vinylene) obtained by heat-treating the polymer. Based on this concentration, an aqueous solution of a high molecular weight sulfonium salt was diluted with distilled water to prepare an aqueous solution of a high molecular weight sulfonium salt at 20 mmol unit / (solution A). Next, 1 ml of the solution A was diluted with ethanol so that the whole amount was 10 ml (solution B). Further, 2.5 ml of the solution B was diluted with 1,1,1-trichloroethane so that the whole amount became 5 ml (solution C; concentration 1 m).
mol unit /). Although solution A can be stored at room temperature for several months, solution B can be stored for 2 hours after preparation and solution C
With regard to the above, after a lapse of 10 minutes after the preparation, coloring of the liquid due to decomposition of the polymer sulfonium salt and formation of an insoluble matter are observed. Therefore, the solutions B and C must be prepared each time immediately before preparing the monolayer on the water surface.

高分子スルホニウム塩の単分子膜の調製 前項で調製した高分子スルホニウム塩溶液(溶液C)
2mlとパーフルオロノナン酸ナトリウムのエタノール、
1,1,1−トリクロロエタン1:1混合溶液(1m mol/)2ml
を混合し、この溶液150μを純水面上に展開した。得
られた高分子スルホニウム塩誘導体単分子膜の表面圧−
面積曲線を第1図に示す。
Preparation of High Molecular Weight Sulfonium Salt Monolayer Film High molecular weight sulfonium salt solution prepared in the previous section (Solution C)
2 ml of sodium perfluorononanoate ethanol,
1,1,1-Trichloroethane 1: 1 mixed solution (1mmol /) 2ml
Were mixed, and 150 μ of this solution was spread on the pure water surface. Surface pressure of the obtained polymer sulfonium salt derivative monolayer-
The area curve is shown in FIG.

次に、この水面上の単分子膜を垂直浸漬法によってガ
ラス板上へ累積したところ、水温20℃、累積圧25mN/m、
基板の上下速度10mm/minという条件では、基板の上昇・
下降いずれの場合も累積が行われるY型で累積が進行し
た。このときの累積比は、ほぼ1(0.96〜1.00)であ
り、累積は良好に進行していると思われる。基板として
石英板を用いた場合にも同様にY型で累積が進行した。
これに対し、シリコンウエハーを基板とした場合には、
基板の上昇時のみ累積が行われるZ型で累積が進行し
た。第2図Aにシリコンウエハー上に片面400層累積さ
れた高分子スルホニウム塩誘導体単分子累積膜の透過型
赤外吸収スペクトルを示す。図中1200cm-1付近の吸収、
1600cm-1付近、800cm-1付近の吸収はそれぞれ炭素−フ
ッ素結合、カルボニル基、パラフェニレン構造に帰属さ
れ、成膜物質が対アニオンとしてパーフルオロアルキル
カルボキシル基を有する高分子スルホニウム塩であるこ
とを示唆している。第3図Aに石英板上に30層累積した
高分子スルホニウム塩誘導体単分子累積膜の紫外吸収ス
ペクトルを示す。このスペクトルの形状は、別途通常の
溶媒キャスト法で製造した、おなじ高分子スルホニウム
塩誘導体の厚膜のものと一致した。シリコンウエハー上
に作成した高分子スルホニウム塩誘導体単分子累積膜に
ついてエリプソメトリーにより膜厚を求めたところ、51
層累積したもので50.1nm、76層累積したもので77.2nmで
あった。これより、高分子スルホニウム塩誘導体単分子
累積膜の1層あたりの膜厚は、1.01nmであると見積られ
る。
Next, when the monomolecular film on the water surface was accumulated on the glass plate by the vertical dipping method, the water temperature was 20 ° C., the cumulative pressure was 25 mN / m,
If the vertical speed of the board is 10 mm / min, the board
Accumulation proceeded in the Y-type, in which accumulation was performed in both cases of descending. The cumulative ratio at this time is almost 1 (0.96 to 1.00), and it seems that the cumulative progress is proceeding well. When a quartz plate was used as the substrate, the Y-type accumulation proceeded similarly.
On the other hand, when a silicon wafer is used as the substrate,
Accumulation progressed in the Z type, in which accumulation is performed only when the substrate is raised. FIG. 2A shows a transmission type infrared absorption spectrum of a polymer sulfonium salt derivative monomolecular cumulative film in which 400 layers are accumulated on one side on a silicon wafer. Absorption around 1200 cm -1 in the figure,
1600cm around -1, 800 cm absorption near -1 respectively carbon - fluorine bonds, carbonyl groups, are assigned to paraphenylene structure, the film forming material is a polymer sulfonium salt having a perfluoroalkyl carboxyl group as a counter anion Suggests. FIG. 3A shows an ultraviolet absorption spectrum of a polymer sulfonium salt derivative monomolecular accumulated film in which 30 layers are accumulated on a quartz plate. The shape of this spectrum coincided with that of a thick film of the same polymer sulfonium salt derivative, which was separately produced by a usual solvent casting method. The thickness of the polymer sulfonium salt derivative monomolecular cumulative film formed on the silicon wafer was measured by ellipsometry.
The layer accumulation was 50.1 nm, and the 76 layer accumulation was 77.2 nm. From this, it is estimated that the film thickness per layer of the polymer sulfonium salt derivative monomolecular cumulative film is 1.01 nm.

ポリ(p−フェニレン ビニレン)単分子累積膜の調製 前項で調製した高分子スルホニウム塩誘導体が累積さ
れたシリコンウエハーを、減圧下(約1Torr)で200℃、
2時間処理すると透過型赤外吸収スペクトルは第2図B
に示すように変化した。即ち、1200cm-1付近の吸収およ
び1600cm-1付近の吸収が消失し、累積膜よりパーフルオ
ロノナン酸部分が脱離したことがわかった。また、前項
で調製した高分子スルホニウム塩誘導体が累積された石
英板に、同様な熱処理を施したのち紫外吸収スペクトル
を測定したものを第3図Bに示す。波長420nm付近を極
大とする大きな吸収は、ポリ(p−フェニレン)構造に
特有のものである。以上より、基板上に累積された高分
子スルホニウム塩誘導体を減圧下に加熱処理することに
より、ポリ(p−フェニレン)構造の累積膜に転化でき
ることがわかった。シリコンウエハー上に作成した高分
子スルホニウム塩誘導体単分子累積膜について熱処理後
の膜厚をエリプソメトリーにより求めたところ、51層累
積したもので17.3nm、76層累積したもので25.9nmであっ
た。これより、ポリ(p−フェニレンビニレン)単分子
累積膜の1層当りの膜厚は0.34nmであると見積もられ
る。また、累積層数と膜厚との比例関係が加熱処理後も
保たれていることから、加熱処理に際しての累積構造の
乱れ等はないと考えられる。
Preparation of poly (p-phenylene vinylene) monomolecular cumulative film The silicon wafer on which the polymeric sulfonium salt derivative prepared in the previous section was accumulated was heated at 200 ° C. under reduced pressure (about 1 Torr),
When processed for 2 hours, the transmission infrared absorption spectrum is shown in FIG. 2B.
It changed as shown in. That is, it was found that the absorption around 1200 cm -1 and the absorption around 1600 cm -1 disappeared and the perfluorononanoic acid moiety was desorbed from the cumulative film. Further, FIG. 3B shows a quartz plate on which the high molecular weight sulfonium salt derivative prepared in the previous section was accumulated, which was subjected to the same heat treatment and then the ultraviolet absorption spectrum was measured. The large absorption having a maximum around the wavelength of 420 nm is peculiar to the poly (p-phenylene) structure. From the above, it was found that the polymer sulfonium salt derivative accumulated on the substrate can be converted into a cumulative film having a poly (p-phenylene) structure by heat treatment under reduced pressure. The film thickness of the polymer sulfonium salt derivative monomolecular cumulative film formed on the silicon wafer after heat treatment was determined by ellipsometry. The cumulative 51 layers were 17.3 nm and the cumulative 76 layers were 25.9 nm. From this, it is estimated that the film thickness of the poly (p-phenylene vinylene) monomolecular cumulative film per layer is 0.34 nm. Further, since the proportional relationship between the cumulative number of layers and the film thickness is maintained even after the heat treatment, it is considered that there is no disorder of the cumulative structure during the heat treatment.

実施例2 実施例1と同様にしてガラス基板(10mm×35mm)上に
ポリ(p−フェニレンビニレン)の300層の累積膜(100
nm)を作成し、幅2mm、間隔2mmで金属極を蒸着して横方
向の導電率測定用セルを作成した。4個の電極のうち外
側2個に6.5Vの電圧をかけ、内側2個の電極間の導電率
を作成したところ10-16S/cmであった。
Example 2 In the same manner as in Example 1, 300 layers of poly (p-phenylene vinylene) cumulative film (100 layers) were formed on a glass substrate (10 mm × 35 mm).
nm) and a metal electrode was vapor-deposited with a width of 2 mm and an interval of 2 mm to prepare a lateral conductivity measuring cell. A voltage of 6.5 V was applied to the two outer electrodes of the four electrodes, and the conductivity between the two inner electrodes was calculated to be 10 −16 S / cm.

実施例3 実施例2と同様にして、ポリ(p−フェニレンビニレ
ン)300層の導電率測定用セルを作成した。これにSO3
10時間ドープした後、実施例2と同様に導電率を測定し
たところ0.5S/cmであった。
Example 3 In the same manner as in Example 2, a conductivity measuring cell having 300 layers of poly (p-phenylene vinylene) was prepared. Add SO 3
After doping for 10 hours, the conductivity was measured in the same manner as in Example 2 and found to be 0.5 S / cm.

実施例4 ITO基板上に実施例2と同様にしてポリ(p−フェニ
レンビニレン)の300層の累積膜を作成した後、更に上
部電極として金を蒸着して膜厚方向の導電率測定用セル
を作成した。これにSO3を10時間ドープした後、実施例
2と同様に導電率を測定したところ4×10-6S/cmであっ
た。
Example 4 A cell for measuring conductivity in the film thickness direction was prepared by forming a 300-layer cumulative film of poly (p-phenylene vinylene) on an ITO substrate in the same manner as in Example 2 and further depositing gold as an upper electrode. It was created. After doping with SO 3 for 10 hours, the conductivity was measured in the same manner as in Example 2 and found to be 4 × 10 −6 S / cm.

〔発明の効果〕〔The invention's effect〕

本発明により製造される導電性単分子膜もしくは単分
子累積膜は、従来の方法により提供される各種導電性薄
膜にくらべ、はるかに薄く、かつ均一な薄膜である。こ
のような導電性単分子膜もしくは単分子累積膜は、半導
体素子等の電子部品等への応用が可能であり、工業的価
値が高い。
The electroconductive monomolecular film or monomolecular cumulative film produced by the present invention is far thinner and more uniform than various electroconductive thin films provided by conventional methods. Such a conductive monomolecular film or monomolecular cumulative film can be applied to electronic parts such as semiconductor elements, and has a high industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1における高分子スルホニウム塩誘導体
単分子膜の表面圧と面積との関係を示した図である。第
2図において曲線AおよびBはそれぞれ実施例1におい
てシリコンウエハー上に累積した高分子スルホニウム塩
誘導体単分子累積膜およびポリ(p−フェニレンビニレ
ン)単分子累積膜の赤外吸収スペクトルを示す。第3図
において曲線AおよびBはそれぞれ実施例1において石
英板上に累積した高分子スルホニウム塩誘導体単分子累
積膜およびポリ(p−フェニレンビニレン)単分子累積
膜の紫外吸収スペクトルを示す。
FIG. 1 is a diagram showing the relationship between the surface pressure and the area of the polymer sulfonium salt derivative monomolecular film in Example 1. In FIG. 2, curves A and B show infrared absorption spectra of the polymer sulfonium salt derivative monomolecular cumulative film and the poly (p-phenylene vinylene) monomolecular cumulative film accumulated on the silicon wafer in Example 1, respectively. In FIG. 3, curves A and B show the ultraviolet absorption spectra of the polymer sulfonium salt derivative monomolecular cumulative film and the poly (p-phenylene vinylene) monomolecular cumulative film accumulated on the quartz plate in Example 1, respectively.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) (式中、R1,R2,R3,R4は水素原子または1価の有機基を
示す。ただし、このうち二つが組になって1個または2
個の環を形成していてもよい。) で示される反復単位を有するポリフェニレンビニレン系
高分子を構成成分とする単分子膜もしくは単分子累積
膜。
1. A general formula (I) (In the formula, R 1 , R 2 , R 3 and R 4 represent a hydrogen atom or a monovalent organic group. However, two of them are combined to form one or two.
It may form a ring. ) A monomolecular film or a monomolecular cumulative film containing a polyphenylene vinylene polymer having a repeating unit represented by
【請求項2】電子供与性あるいは電子吸引性のドーパン
トを添加してなる特許請求の範囲第1項記載の単分子膜
もしくは単分子累積膜。
2. The monomolecular film or monomolecular cumulative film according to claim 1, which is obtained by adding an electron donating or electron withdrawing dopant.
【請求項3】一般式(II) (式中、R1,R2,R3,R4は水素原子または1価の有機基を
示す。R5,R6は水素原子またはアルキル基を示す。ただ
しR5,R6で環を形成していてもよい。X-は対アニオンを
示す。)で示される反復単位を有する高分子スルホニウ
ム塩と脂肪酸塩との有機溶媒溶液を水面上に展開し、こ
れを基板上に累積して高分子スルホニウム塩誘導体の単
分子膜もしくは単分子累積膜を形成し、ついでこれを脱
スルホニウム塩処理することにより、一般式(I) で示される反復単位を有するポリフェニレンビニレン系
高分子を構成成分とする単分子膜もしくは単分子累積膜
を得ることを特徴とする単分子膜もしくは単分子累積膜
の製造方法。
3. General formula (II) (In the formula, R 1 , R 2 , R 3 and R 4 represent a hydrogen atom or a monovalent organic group. R 5 and R 6 represent a hydrogen atom or an alkyl group, provided that R 5 and R 6 are rings. Which may be formed. X represents a counter anion.) A solution of a polymer sulfonium salt having a repeating unit represented by the following formula and a fatty acid salt is spread on a water surface and accumulated on a substrate. By forming a monomolecular film or a monomolecular cumulative film of a high molecular weight sulfonium salt derivative and then subjecting it to a desulfonium salt treatment, the compound of the general formula (I) A method for producing a monomolecular film or a monomolecular cumulative film, comprising obtaining a monomolecular film or a monomolecular cumulative film comprising a polyphenylene vinylene polymer having a repeating unit represented by
【請求項4】脱スルホニウム塩処理した後、電子供与性
あるいは電子吸引性のドーパントを添加する特許請求の
範囲第3項記載の単分子膜もしくは単分子累積膜の製造
方法。
4. The method for producing a monomolecular film or a monomolecular cumulative film according to claim 3, wherein an electron-donating or electron-withdrawing dopant is added after the desulfonium salt treatment.
JP5899888A 1988-03-12 1988-03-12 Monomolecular film or monomolecular cumulative film and method for producing the same Expired - Lifetime JP2552705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5899888A JP2552705B2 (en) 1988-03-12 1988-03-12 Monomolecular film or monomolecular cumulative film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5899888A JP2552705B2 (en) 1988-03-12 1988-03-12 Monomolecular film or monomolecular cumulative film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01234426A JPH01234426A (en) 1989-09-19
JP2552705B2 true JP2552705B2 (en) 1996-11-13

Family

ID=13100525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5899888A Expired - Lifetime JP2552705B2 (en) 1988-03-12 1988-03-12 Monomolecular film or monomolecular cumulative film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2552705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082946B2 (en) * 1989-11-09 1996-01-17 住友化学工業株式会社 Method for producing film composed of poly-P-phenylene vinylene substitution product

Also Published As

Publication number Publication date
JPH01234426A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
JP4736324B2 (en) Semiconductor device and manufacturing method thereof
JP4812079B2 (en) Organic semiconductor diode
US8222073B2 (en) Fabricating TFT having fluorocarbon-containing layer
JP2003201339A (en) Conjugated copolymer of dithienothiophene with vinylene or acetylene
Funahashi Anisotropic electrical conductivity of n-doped thin films of polymerizable liquid-crystalline perylene bisimide bearing a triethylene oxide chain and cyclotetrasiloxane rings
Wang et al. Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes
Magaldi et al. Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives
Funahashi Solution-processable electronic and redox-active liquid crystals based on the design of side chains
Ram et al. Fabrication and characterization of poly [(2-methoxy-5-(2′-ethyl-hexyloxy) phenylene vinylene](MEH-PPV) Langmuir–Schaefer films and their application as photoelectrochemical cells
KR101832401B1 (en) Method for manufacturing poly(hydroxymethyl-edot) film having high conductivity and film made by the same
JP2552705B2 (en) Monomolecular film or monomolecular cumulative film and method for producing the same
Sosa-Ortiz et al. Fabrication and characterization of an organic light-emitting diode based on Langmuir–Blodgett films using oligo (phenylenevinylene) derivatives
US10167362B2 (en) Doping-induced carrier density modulation in polymer field-effect transistors
Granholm et al. Conducting Langmuir-Blodgett films of polyaniline: Fabrication and charge transport properties
JPH0638492B2 (en) Field effect transistor
JP3161058B2 (en) Poly (pyridine-2,5-diylvinylene) polymer and production method
JPH0638491B2 (en) Field effect transistor
KR102064394B1 (en) Crystalline two-dimensional conjugated polymer, thin films using the same, and method for producing the same
JP4000836B2 (en) Method for forming a film pattern
Terao et al. New synthetic methods of π-conjugated inclusion complexes with high conductivity
JP5104428B2 (en) Organic semiconductor material and field effect transistor using the same
WO2006022176A1 (en) Organic silane compound, process for producing the compound, and organic thin film comprising the compound
Garcia et al. One-step electrochemical synthesis of pure poly (2, 5-dicyano-p-phenylenevinylene) films
Biler et al. Soluble phthalocyanines—new materials for optoelectronics
Ding et al. Fabrication and photovoltaic properties of fullerene and copper phthalocyanine derivative mixed Langmuir-Schaefer films

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080822

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12