JPH0536521B2 - - Google Patents

Info

Publication number
JPH0536521B2
JPH0536521B2 JP59191721A JP19172184A JPH0536521B2 JP H0536521 B2 JPH0536521 B2 JP H0536521B2 JP 59191721 A JP59191721 A JP 59191721A JP 19172184 A JP19172184 A JP 19172184A JP H0536521 B2 JPH0536521 B2 JP H0536521B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fibers
carbon fibers
carbon
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59191721A
Other languages
Japanese (ja)
Other versions
JPS6170014A (en
Inventor
Kohei Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP19172184A priority Critical patent/JPS6170014A/en
Publication of JPS6170014A publication Critical patent/JPS6170014A/en
Publication of JPH0536521B2 publication Critical patent/JPH0536521B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は、気相法による微細炭素繊維に関し、
さらに詳細には理想的構造を有し、したがつて優
れた機械的特性を有する創生微細炭素繊維に関す
るものである。本明細書において「創生」という
用語は繊維の生成後に破砕またはカツトなどの処
理により微細化されていないことを意味する。 〔従来技術とその問題点〕 気相法による炭素繊維は結晶配向性に優れてい
るため機械的特性、電気的性質などにおいて従来
の炭素繊維にはみられない優れた性質を有する。 ここで機械的特性につき検討すれば、一般の炭
素繊維の用途は炭素繊維強化プラスチツク(以下
CFRPと云う)として最も普及している。CFRP
には、長炭素繊維を使つた一方向強化または二方
向強化CFRPと、長繊維をカツトして作つた短炭
素繊維をプラスチツク中に混合して不規則に配位
成形した機械的特性において等方的なCFRPとが
ある。前者の場合、一定方向の強化効果はかなり
大であるが非強化方向には殆んどその効果を期待
し得ず、しかも成形工程数が多くかつ技術的に難
しい問題を多く抱えているため、作製できる
CFRPの形態に相当な制約が加わるなどの問題が
ある。これに対し、後者の場合には成形は容易で
あるが、強度と弾性率とにおいて若干不足しがち
である。この原因は、不規則配位のため機械的性
質が等方的となり、その結果一方向に限ると強度
および弾性率に寄与する割合がかなり低下するこ
とにある。 従来のこれら問題を解決する一つの方法とし
て、一般的に使用されているPAN系炭素繊維よ
りも高強度かつ高弾性の構造材料を使用すること
が挙げられる。この目的で、気相法による炭素繊
維は結晶配向性に優れており、機械的特性におい
てPAN系炭素繊維をはるかに凌駕するものとし
て注目されている。 一般に気相法による炭素繊維は、電気炉内にア
ルミナ、黒鉛などの基板を設置し、これに鉄やニ
ツケルなどの超微粒子触媒を形成せしめ、その上
にベンゼンなどの炭化水素のガスと水素などのキ
ヤリヤガスとの混合ガスを導入し、1000〜1300℃
の温度にて炭化水素を分解させることにより基板
上で繊維を成長させて生成され、普通には2〜
10μmの直径と1〜10cmの長さとを有する。この
種の炭素繊維は、さらに2900℃以上で熱処理すれ
ば黒鉛にかなり近似した構造を持つようになる。
しかしながら、このような基板法による炭素繊維
は、ベーコンのグラフアイトウイスカーの強度
(2000Kg/mm2)に比べて極めて低い700Kg/mm2程度
の強度しか持たない。本発明者はこの点につき検
討を重ねた結果、気相法による炭素繊維は芯に相
当する極めて細く結晶配向性に優れた部分と、結
晶配向性が相対的に低い部分(この部分が大部分
を占める)とから構成されていることを突き止め
た。また、従来の気相法による炭素繊維は、マト
リツクスと混合するには寸法が大き過ぎ、したが
つてさらに細かく切断する必要があることも判明
した。そこで本発明者は、従来の基板に鉄やニツ
ケルなどの超微粒子触媒を形成させる手法に代え
て、有機遷移金属化合物のガスを使用して電気炉
空間に流動する超微粒子触媒を形成せしめ、それ
により流動下に炭素繊維を成長させる製造方法を
完成し、特願昭58−162606号として出願した(以
下、この方法で製造した炭素繊維を流動気相法炭
素繊維と云う)。 さらに、本発明者は、この流動気相法炭素繊維
につきその機械的特性などを鋭意検討した結果、
従来の基板法による炭素繊維と比較してその繊維
強化樹脂成形品の機械的強度は著しく優れている
ことを突き止めた。さらに、従来の基板法による
気相法炭素繊維と流動気相法炭素繊維との間の機
械的強度の差異につき、繊維強化樹脂成形品
(CFRP)の破断面のSEM(スキヤニング エレ
クトロン マイクロスコープ)による観察、およ
び創生微細炭素繊維のTEM(トランスミツシヨン
エレクトロン マイクロスコープ)による観察
を行なつた結果、直径が小さく、比表面積が大き
く、破砕面を有しない創生微細炭素繊維であるこ
と、および、従来の気相法による炭素繊維に比較
して芯の部分の比率が著しく大きいことが性能向
上の原因であることが判明した。 〔発明の目的〕 従つて、本発明の目的は、従来の炭素繊維より
著しく機械的強度に優れかつアスペクト比および
比表面積の大きい理想的構造を有する炭素繊維を
提供することである。 〔発明の要点〕 上記目的を達成するため、本発明の炭素繊維は
直径0.01〜0.5μmおよびアスペクト比2〜30000
を有する創生微細炭素繊維であることを特徴とす
る。また、前記炭素繊維において、熱分解炭素層
の厚みが直径の20%以下であることを特徴とす
る。 ここで創生とは、電気炉から出てきた微細炭素
繊維を切断したり粉砕したりしない、そのままの
状態であることをいう。流動気相法で得られた創
生微細炭素繊維は、本願発明者の先願である特願
昭59−71799号の明細書にも記載したように、両
端が丸みを帯びているのであるが、この繊維をカ
ツトもしくは粉砕すると、前記明細書にも述べた
ように一部もしくは殆んどの繊維端末が丸みを消
失し、本願発明の効果が得られなくなる。 本明細書において、「熱分解炭素層」という用
語は、気相法による炭素繊維の芯以外の乱層構造
層を意味する。すなわち、気相法による炭素繊維
は最初に芯のみの長さ成長が起こり、次いで芯の
周囲に炭化水素の熱分解沈積層が形成される。従
来の基板法による炭素繊維は殆どの部分がこの熱
分解炭素の沈積層よりなる乱層構造層で構成され
る。この乱層構造層は、芯部分と比較してかなり
結晶性が悪いため機械的性質も貧弱である。した
がつて、気相法による炭素繊維においては、熱分
解沈積層が少ないほど構造材料として好ましいこ
とになる。ここで、乱層構造を示す熱分解炭素層
の厚みは、透過型電子顕微鏡(TEM)で測定す
ることができる。第1図は、特願昭58−162606号
の方法で作成された微細炭素繊維のTEM写真
(熱分解炭素層の厚みは約7.7%)であり、第2図
は同方法で作成された繊維を2400℃で黒鉛化処理
したもののTEM写真である。いずれも側面に乱
層構造が見られる。本発明の流動気相法による炭
素繊維においては、乱層構造層が直径の0〜20%
と極めて薄いため、その機械的強度は2900℃以上
での熱処理によりベーコンのグラフアイトウイス
カーの強度に匹敵するものとなる。アスペクト比
は一般に大きいこと(すなわち繊維が長いこと)
が好ましいが、或る一定値以上になれば繊維の特
性に大差がなくなる。この一定値はマトリツクス
と繊維との接着力により決定され、マトリツクス
と繊維との単位面積当りの接着強度が繊維の引張
強度と等しくなるような理想状態では2(本発明
における下限値)となる。一般には、繊維強度に
比較し接着強度が低いため100以上のアスペクト
比が好ましい。本発明による炭素繊維は、マトリ
ツクスとの接着性に合わせて2〜30000のアスペ
クト比を有する。また、直径は0.01〜0.5μmであ
つて、従来の気相法による炭素繊維に比較し著し
く細いため、一定アスペクト比を維持するのに長
さが短くてすむ。したがつて、コンポジツトとし
た場合、マトリツクスと繊維との間のひずみが極
めて少なく、その結果マトリツクスの破壊を生じ
にくいという利点を有する。さらに、マトリツク
スの破壊は繊維のカツト部分など鋭利な部分で生
じ易いが、本発明による炭素繊維は破砕面やカツ
ト面を持たない創生微細炭素繊維であるため、マ
トリツクスの破壊を極めて起こしにくいという有
利な特徴を有する。かくして、本発明による創生
微細炭素繊維は複合材料用として理想的な素材で
あると云える。 なお、基板法では長さ成長停止後も長時間炉内
に置かれるため熱分解炭素層が厚くなるのに対
し、流動性では短時間で炉から出て行くため熱分
解炭素層の付着が少ないと考えられる。 〔発明の実施例〕 以下、本発明に係る気相法による微細炭素繊維
の実施例につき詳細に説明する。 実施例 1 気相法による創生微細炭素繊維の製造 ベンゼンとフエロセンとをそれぞれ別々の容器
中で加熱ガス化させ、水素ボンベと窒素ボンベと
からそれぞれガスを導出させて水素:窒素:ベン
ゼン:フエロセンの比を82.7:7.5:8.6:1.2とし
かつ総流量を665ml/min(0℃、1atm換算)と
し、この混合ガスを内径52mmかつ1070℃の均熱部
300mmの反応管に連続的に流動通過させた。その
結果、直径0.2μmかつ平均長さ52μmであり、さ
らに直径の5%の熱分解沈積層厚さを有する創生
微細炭素繊維が得られた。 比較例 1 従来の気相法による炭素繊維の製造 100ÅのFe超微粒子(真空冶金〓より入手)1
gを1のアルコール中に懸濁し、その上澄液を
アルミナ基板上に噴霧して乾燥し、52φ×1700mm2
の反応管内に収納し、1070℃にてベンゼン:水素
=2.2:100の混合ガスを5時間導入して平均直径
7μm、平均長さ4cmかつ直径に対する熱分解炭
素層の厚みの比90%を有する炭素繊維をアルミナ
基板上に得た。基板から炭素繊維を分離し、長さ
2cmにカツトして供試料とした。 実施例 2 実施例1および比較例1で得られた炭素繊維を
それぞれJ15.K−7113に従う引張試験法により試
験した。引張試験は次の条件で行なつた: (1) マトリツクスプラスチツク:シエアケミカル
社製のエポキシエピコート828の100重量部に対
し5重量部のBF3MEAを混合したものを使用
した; (2) 炭素繊維の表面処理:アルゴンガス雰囲気中
で2900℃にて30分間熱処理した後、リフラツク
ス濃硝酸で10時間にわたり表面処理した; (3) Vf(複合材料中の繊維の占める体積割合)30
%; (4) 硬化法:125℃かつ圧力10Kg/mm2の条件下で
1時間硬化させた。 試験の結果を、下記第1表に示す。
[Technical field to which the invention pertains] The present invention relates to fine carbon fibers produced by a vapor phase method,
More specifically, the present invention relates to engineered fine carbon fibers having an ideal structure and therefore excellent mechanical properties. As used herein, the term "generated" means that the fibers have not been made into fine particles by crushing or cutting after production. [Prior art and its problems] Carbon fiber produced by the vapor phase process has excellent crystal orientation, and therefore has excellent mechanical properties, electrical properties, etc. that are not found in conventional carbon fibers. If we consider the mechanical properties here, we can see that the general use of carbon fiber is carbon fiber reinforced plastics (hereinafter referred to as carbon fiber reinforced plastics).
CFRP) is the most popular. CFRP
In this method, unidirectionally reinforced or bidirectionally reinforced CFRP using long carbon fibers and short carbon fibers made by cutting the long fibers are mixed into plastic and molded into irregularly coordinated shapes. There is a similar CFRP. In the former case, the strengthening effect in a certain direction is quite large, but the effect is hardly expected in the non-reinforced direction, and moreover, the number of forming steps is large and there are many technically difficult problems. can be made
There are problems such as considerable restrictions being placed on the form of CFRP. On the other hand, in the latter case, molding is easy, but strength and elastic modulus tend to be somewhat insufficient. The reason for this is that mechanical properties become isotropic due to irregular coordination, and as a result, the contribution to strength and elastic modulus is considerably reduced when limited to one direction. One way to solve these conventional problems is to use a structural material with higher strength and elasticity than the commonly used PAN-based carbon fiber. For this purpose, carbon fiber produced by the vapor phase process is attracting attention as it has excellent crystal orientation and far exceeds PAN-based carbon fiber in terms of mechanical properties. Generally, carbon fiber produced by the vapor phase method is produced by installing a substrate made of alumina, graphite, etc. in an electric furnace, forming ultrafine particle catalysts such as iron or nickel on this, and then adding hydrocarbon gas such as benzene and hydrogen etc. Introducing a mixed gas with a carrier gas of 1000 to 1300℃
It is produced by growing fibers on a substrate by decomposing hydrocarbons at temperatures of
It has a diameter of 10 μm and a length of 1 to 10 cm. If this type of carbon fiber is further heat-treated at temperatures above 2,900°C, it will have a structure that closely resembles graphite.
However, carbon fiber produced by such a substrate method has a strength of only about 700 Kg/mm 2 , which is extremely low compared to the strength of Bacon's graphite whiskers (2000 Kg/mm 2 ). As a result of repeated studies on this point, the present inventor found that the carbon fiber produced by the vapor phase method has two parts: a core, which is extremely thin and has excellent crystal orientation, and a part with relatively low crystal orientation (this part makes up most of the carbon fibers). It was found that it is composed of It has also been found that conventional vapor phase carbon fibers are too large to be mixed with the matrix and therefore need to be cut into smaller pieces. Therefore, instead of the conventional method of forming ultrafine particle catalysts such as iron or nickel on substrates, the present inventors used organic transition metal compound gas to form ultrafine particle catalysts that flowed in the electric furnace space. He completed a manufacturing method for growing carbon fibers under fluidized conditions and filed the application as Japanese Patent Application No. 162,606/1982 (hereinafter, carbon fibers manufactured by this method are referred to as fluidized vapor grown carbon fibers). Furthermore, as a result of intensive studies on the mechanical properties of this fluidized vapor grown carbon fiber, the present inventor found that
It was found that the mechanical strength of the fiber-reinforced resin molded product is significantly superior to that of carbon fiber produced using the conventional substrate method. Furthermore, we investigated the difference in mechanical strength between vapor-grown carbon fibers produced using the conventional substrate method and fluidized vapor-grown carbon fibers using an SEM (scanning electron microscope) of the fractured surfaces of fiber-reinforced resin molded products (CFRP). As a result of observation and observation of the created fine carbon fiber using a TEM (transmission electron microscope), it was found that the created fine carbon fiber has a small diameter, a large specific surface area, and has no fracture surface. It was found that the reason for the improved performance was that the ratio of the core portion was significantly larger than that of carbon fiber produced by the conventional vapor phase method. [Object of the Invention] Therefore, an object of the present invention is to provide a carbon fiber having an ideal structure that has significantly superior mechanical strength and a large aspect ratio and specific surface area compared to conventional carbon fibers. [Summary of the Invention] In order to achieve the above object, the carbon fiber of the present invention has a diameter of 0.01 to 0.5 μm and an aspect ratio of 2 to 30000.
It is characterized by being a created fine carbon fiber having the following properties. Further, in the carbon fiber, the thickness of the pyrolytic carbon layer is 20% or less of the diameter. Here, ``creating'' refers to the state in which the fine carbon fibers that come out of the electric furnace are not cut or crushed, but are in their original state. The created fine carbon fibers obtained by the fluidized gas phase method have rounded ends, as described in the specification of Japanese Patent Application No. 1983-71799, which was the inventor's earlier application. When these fibers are cut or crushed, some or most of the fiber terminals lose their roundness, making it impossible to obtain the effects of the present invention, as described in the above specification. As used herein, the term "pyrolytic carbon layer" means a turbostratic layer other than the carbon fiber core produced by a vapor phase process. That is, in carbon fiber produced by the vapor phase method, only the core grows in length, and then a pyrolyzed deposited layer of hydrocarbons is formed around the core. Most of the carbon fiber produced by the conventional substrate method is composed of a turbostratic structure layer consisting of a deposited layer of pyrolytic carbon. This turbostratic structure layer has considerably poorer crystallinity than the core portion, and therefore has poor mechanical properties. Therefore, in the carbon fiber produced by the vapor phase method, the fewer the number of pyrolyzed deposited layers, the better it is as a structural material. Here, the thickness of the pyrolytic carbon layer exhibiting a turbostratic structure can be measured using a transmission electron microscope (TEM). Figure 1 is a TEM photograph of fine carbon fibers (the thickness of the pyrolytic carbon layer is approximately 7.7%) produced using the method described in Japanese Patent Application No. 162,606/1982, and Figure 2 is a TEM photograph of the fine carbon fibers produced using the same method. This is a TEM photograph of the graphitized product at 2400℃. In both cases, a turbostratic structure can be seen on the sides. In the carbon fiber produced by the fluidized gas phase method of the present invention, the turbostratic structure layer accounts for 0 to 20% of the diameter.
Because it is extremely thin, its mechanical strength becomes comparable to that of bacon's graphite whiskers when heat treated at temperatures above 2,900°C. The aspect ratio is generally large (i.e. the fibers are long)
is preferable, but if it exceeds a certain value, there will be no significant difference in the properties of the fibers. This constant value is determined by the adhesive strength between the matrix and the fibers, and is 2 (lower limit value in the present invention) in an ideal state where the adhesive strength per unit area between the matrix and the fibers is equal to the tensile strength of the fibers. Generally, an aspect ratio of 100 or more is preferable because adhesive strength is lower than fiber strength. The carbon fibers according to the invention have an aspect ratio of 2 to 30,000, depending on their adhesion to the matrix. In addition, the diameter is 0.01 to 0.5 μm, which is significantly thinner than carbon fibers produced by conventional vapor phase methods, so that the length can be shortened to maintain a constant aspect ratio. Therefore, when it is made into a composite, it has the advantage that the strain between the matrix and the fibers is extremely small, and as a result, the matrix is less likely to break. Furthermore, although matrix destruction is likely to occur at sharp parts such as cut portions of fibers, the carbon fibers of the present invention are created fine carbon fibers that do not have fractured surfaces or cut surfaces, so matrix destruction is extremely unlikely to occur. Has advantageous characteristics. Thus, it can be said that the created fine carbon fiber according to the present invention is an ideal material for composite materials. In addition, in the substrate method, the pyrolytic carbon layer is thickened because it is left in the furnace for a long time even after the length growth has stopped, whereas in the fluid method, the pyrolytic carbon layer is less attached because it leaves the furnace in a short time. it is conceivable that. [Examples of the Invention] Examples of fine carbon fibers produced by the vapor phase method according to the present invention will be described in detail below. Example 1 Production of engineered fine carbon fibers by vapor phase method Benzene and ferrocene were heated and gasified in separate containers, and the gases were extracted from a hydrogen cylinder and a nitrogen cylinder, respectively, to form hydrogen:nitrogen:benzene:ferrocene. With a ratio of 82.7:7.5:8.6:1.2 and a total flow rate of 665ml/min (0℃, 1atm conversion), this mixed gas was passed through a soaking section with an inner diameter of 52mm and a temperature of 1070℃.
Continuous flow was carried out through a 300 mm reaction tube. As a result, generated fine carbon fibers were obtained which had a diameter of 0.2 μm, an average length of 52 μm, and a pyrolyzed deposit layer thickness of 5% of the diameter. Comparative example 1 Production of carbon fiber by conventional gas phase method 100 Å Fe ultrafine particles (obtained from Vacuum Metallurgy) 1
g was suspended in 1 alcohol, and the supernatant liquid was sprayed onto an alumina substrate and dried, 52φ×1700mm 2
The average diameter was
Carbon fibers with an average length of 4 cm and a ratio of the thickness of the pyrolytic carbon layer to the diameter of 90% were obtained on an alumina substrate. The carbon fibers were separated from the substrate and cut into 2 cm lengths to be used as test samples. Example 2 The carbon fibers obtained in Example 1 and Comparative Example 1 were each tested by a tensile test method according to J15.K-7113. The tensile test was conducted under the following conditions: (1) Matrix plastic: A mixture of 5 parts by weight of BF 3 MEA and 100 parts by weight of epoxy Epicoat 828 manufactured by Shea Chemical Co. was used; (2) Carbon fiber surface treatment: After heat treatment at 2900℃ for 30 minutes in an argon gas atmosphere, the surface was treated with reflux concentrated nitric acid for 10 hours; (3) Vf (volume ratio of fibers in composite material) 30
%; (4) Curing method: Curing was carried out for 1 hour at 125° C. and a pressure of 10 Kg/mm 2 . The results of the test are shown in Table 1 below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、直径0.01〜0.5μm、アスペク
ト比2〜30000である創生微細炭素繊維が得られ
る。該創生微細炭素繊維は熱分解炭素層の割合が
従来より著しく小さく、優れた機械的性質を有す
る。この熱分解層の厚みは直径の20%以下であつ
て、本発明の流動法気相成長炭素繊維の特徴をな
す。また、本発明の流動法気相成長炭素繊維は単
位面積当りの強度が顕著に大きい点も、本発明の
効果として挙げることができる。
According to the present invention, created fine carbon fibers having a diameter of 0.01 to 0.5 μm and an aspect ratio of 2 to 30,000 can be obtained. The generated fine carbon fiber has a significantly smaller proportion of pyrolytic carbon layer than conventional carbon fibers, and has excellent mechanical properties. The thickness of this pyrolytic layer is 20% or less of the diameter, which is a characteristic of the fluidized vapor grown carbon fiber of the present invention. Another advantage of the present invention is that the fluidized vapor grown carbon fiber of the present invention has a significantly high strength per unit area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動気相法により作成した微細炭素繊
維の繊維構造を示す電子顕微鏡写真、第2図は第
1図の微細炭素繊維を黒鉛化処理した場合の繊維
構造を示す電子顕微鏡写真である。
Fig. 1 is an electron micrograph showing the fiber structure of fine carbon fibers produced by the fluidized gas phase method, and Fig. 2 is an electron micrograph showing the fiber structure when the fine carbon fibers in Fig. 1 are graphitized. .

Claims (1)

【特許請求の範囲】 1 直径0.01〜0.5μmおよびアスペクト比2〜
30000を有し、熱分解炭素層の厚みが直径の20%
以下であつて、出発気体材料の流動下に気相法で
成長させたことを特徴とする流動法気相成長炭素
繊維。 2 繊維の両端が丸い特許請求の範囲第1項記載
の流動法気相成長炭素繊維。
[Claims] 1. Diameter 0.01~0.5μm and aspect ratio 2~
30000, the thickness of the pyrolytic carbon layer is 20% of the diameter
A fluidized vapor grown carbon fiber as described below, characterized in that the fiber is grown in a vapor phase while a starting gas material is flowing. 2. The fluidized vapor grown carbon fiber according to claim 1, in which both ends of the fiber are round.
JP19172184A 1984-09-14 1984-09-14 Created extra fine carbon fiber by gaseous-phase method Granted JPS6170014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19172184A JPS6170014A (en) 1984-09-14 1984-09-14 Created extra fine carbon fiber by gaseous-phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19172184A JPS6170014A (en) 1984-09-14 1984-09-14 Created extra fine carbon fiber by gaseous-phase method

Publications (2)

Publication Number Publication Date
JPS6170014A JPS6170014A (en) 1986-04-10
JPH0536521B2 true JPH0536521B2 (en) 1993-05-31

Family

ID=16279371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19172184A Granted JPS6170014A (en) 1984-09-14 1984-09-14 Created extra fine carbon fiber by gaseous-phase method

Country Status (1)

Country Link
JP (1) JPS6170014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489026B1 (en) 1999-03-25 2002-12-03 Showa Denko K.K. Carbon fiber, method for producing the same and electrode for cell

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1321863C (en) * 1986-06-06 1993-09-07 Howard G. Tennent Carbon fibrils, method for producing the same, and compositions containing same
JPH0280398A (en) * 1988-09-12 1990-03-20 Nkk Corp Whisker-shaped carbon fiber
JP2890436B2 (en) * 1989-01-26 1999-05-17 東レ株式会社 Carbon fiber reinforced resin composite material and method for producing the same
EP0641400B1 (en) 1992-05-22 2003-02-12 Hyperion Catalysis International, Inc. Improved methods and catalysts for the manufacture of carbon fibrils
CN1204303C (en) * 2000-04-12 2005-06-01 昭和电工株式会社 Fine carbon fiber and process for producing the same, and conductive material comprising the same
US6489025B2 (en) 2000-04-12 2002-12-03 Showa Denko K.K. Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
US6565971B2 (en) 2000-11-10 2003-05-20 Showa Denko Kabushiki Kaisha Fine carbon fiber and method for producing the same
WO2002049412A1 (en) 2000-12-20 2002-06-27 Showa Denko K.K. Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
US6844061B2 (en) 2001-08-03 2005-01-18 Showa Denko K.K. Fine carbon fiber and composition thereof
US6730398B2 (en) 2001-08-31 2004-05-04 Showa Denko K.K. Fine carbon and method for producing the same
CN1321232C (en) * 2001-09-20 2007-06-13 昭和电工株式会社 Fine carbon fiber mixture and composition thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215816A (en) * 1984-04-12 1985-10-29 Nikkiso Co Ltd Carbon microfiber by vapor phase method
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215816A (en) * 1984-04-12 1985-10-29 Nikkiso Co Ltd Carbon microfiber by vapor phase method
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489026B1 (en) 1999-03-25 2002-12-03 Showa Denko K.K. Carbon fiber, method for producing the same and electrode for cell
US6946110B2 (en) 1999-03-25 2005-09-20 Showa Denko K.K. Carbon fibers, production process therefor and electrode for batteries

Also Published As

Publication number Publication date
JPS6170014A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
JP2641712B2 (en) Composite materials containing novel carbon fibrils
US7338684B1 (en) Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US5165909A (en) Carbon fibrils and method for producing same
AU637429B2 (en) Carbon fibrils, method for producing same and compositions containing same
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
JPH0536521B2 (en)
JPH02212370A (en) Composite material
KR101254666B1 (en) Carbon fiber-carbon nanotube hybrid with improved adhesion to the carbon fiber surface and the method for preparing the same
JP2008166641A (en) Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
CN110886089B (en) Preparation method of graphene and carbon nanotube in-situ growth co-modified toughened carbon fiber
JPS60215816A (en) Carbon microfiber by vapor phase method
JPH0430972B2 (en)
JPS58156512A (en) Fibrous carbon material having thickly grown fine carbon cilium
JPH06321634A (en) C/c composite material reinforced in one direction and its production
JP5242124B2 (en) Fine carbon fiber and composite material
Tibbetts Vapor-Grown Carbon Fiber research and applications: achievements and barriers
JPH0533294B2 (en)
JP2008163274A (en) Exfoliated carbon fiber-containing composite material and method for producing the same
JPS58223698A (en) Silicon carbide fiber and its production
JP2667525B2 (en) Modification method of vapor grown carbon fiber
CN110819107A (en) Method for preparing bismaleimide resin matrix composite material by chemical vapor deposition method and application
KR20060115534A (en) Manufacturing method of carbon micro-coils use chemical vapor deposition
JPS639044B2 (en)
JP2002020179A (en) Combined carbon-molded body and its manufacturing method
JPS61258025A (en) Carbon yarn for composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term