JP2008166641A - Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof - Google Patents

Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof Download PDF

Info

Publication number
JP2008166641A
JP2008166641A JP2007000179A JP2007000179A JP2008166641A JP 2008166641 A JP2008166641 A JP 2008166641A JP 2007000179 A JP2007000179 A JP 2007000179A JP 2007000179 A JP2007000179 A JP 2007000179A JP 2008166641 A JP2008166641 A JP 2008166641A
Authority
JP
Japan
Prior art keywords
carbon fiber
expanded carbon
composite material
expanded
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007000179A
Other languages
Japanese (ja)
Inventor
Masahiro Toyoda
昌宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2007000179A priority Critical patent/JP2008166641A/en
Publication of JP2008166641A publication Critical patent/JP2008166641A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expanded carbon fiber composite material for a new electromagnetic shield with an electric conductivity and a thermal conductivity by utilizing features of an expanded carbon fiber, and a method of manufacturing the expanded carbon fiber composite material. <P>SOLUTION: This invention relates to the expanded carbon fiber composite material for the electromagnetic shield with the thermal conductivity and the electric conductivity, wherein in a matrix there are dispersedly included: an expanded carbon fiber which is made into a small fiber in a fibril state even to a nanometer size; and a reheat treatment expanded carbon fiber with a developed graphite obtained from this expanded carbon fiber, and relates to a method of manufacturing the expanded carbon fiber composite material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノテクノロジーおよび材料科学の技術分野に属し、新規な熱伝導性及び電気伝導性を有する電磁シールド用膨張化炭素繊維複合材料とその製造方法に関するものである。 The present invention belongs to the technical fields of nanotechnology and material science, and relates to an expanded carbon fiber composite material for electromagnetic shielding having novel thermal conductivity and electrical conductivity, and a method for producing the same.

炭素繊維複合材料は、炭素繊維が持つ高強度、高弾性等の優れた力学的特性を利用して種々の樹脂をマトリックスとして複合材料とし、産業分野から航空宇宙分野まで幅広く利用されている。炭素繊維を複合材料として使用した場合、その分散性が悪く、非常に大量に使用しなければならず、コストがかかることが指摘されてきた。そこで開繊をされた炭素繊維を用いて分散性を上げる等の工夫もなされてきた。
この他に、炭素繊維は、主に結晶構造に由来して、その繊維自身が有す電気伝導性が良好であること、熱伝導性が良好であることから、ヒーターを始めとする熱伝導材料、例えば、プラスティックフィルムに分散させて導電材料、あるいは電磁シールド材料として広く使用されてきた。
Carbon fiber composite materials are used widely from the industrial field to the aerospace field by using various resins as a matrix using the excellent mechanical properties of carbon fibers such as high strength and high elasticity. When carbon fiber is used as a composite material, it has been pointed out that its dispersibility is poor, it must be used in a very large amount, and costs are high. Thus, contrivances such as increasing dispersibility by using carbon fibers that have been opened have been made.
In addition to this, the carbon fiber is mainly derived from the crystal structure, and since the electrical property of the fiber itself is good and the heat conductivity is good, the heat conduction material such as a heater is used. For example, it has been widely used as a conductive material or an electromagnetic shielding material by being dispersed in a plastic film.

一方、カーボンナノチューブは、金属的な性質から半導体としての性質を含む多様で優れた電気特性を有し、また、大きな力学的特性、表面積から電気電子材料から高性能樹脂補強材に至るまで種々の分野において次世代材料として注目を集め実用化研究が、世界各地で進められている。しかしながら、カーボンナノチューブは、合成時に、例えば、アーク放電から合成された物は、すす(煤)を多く含むなど純度が低く、精製の必要があるとされていながら、フラーレンのように精製が不可能で、純度100%の物を得ることは難しく、そのままマトリックス部材に添加を行った場合、不純物も添加することになり、複合部材とした後、その不純物の存在により、強度の著しい向上が望めない事も指摘されている。また、カーボンナノチューブのアスペクト比は小さく、カーボンナノチューブが必ずしも優れた複合部材得るために適した材料でないことも指摘されている。
この他に、カーボンナノチューブは、ポリマー(高分子)と親和性が悪く、これが新しい複合材料開発の障害になっている。そこで、カーボンナノチューブの表面を化学処理して、他の物質との親和性を改良する試みがなされているが、その処理によって、カーボンナノチューブの特性が低下する問題が生じている。
炭素繊維は、熱伝導生、電気伝導性に優れていることから、それをフィルム中に分散させる、あるいは樹脂と共に成型して、熱伝導に優れたプラスティックとして使用する試みも行われているが、繊維がバンドル形状である為に、多くの量を使用しなければならない等の問題点があった。また、薄膜状で使用することを考えた場合は、繊維形状では、マイクロ、あるいはナノメーターサイズの薄膜を作製することは、繊維の寸法、あるいは、分散性から必ずしも十分ではなかった。
特開2001−207376号公報
On the other hand, carbon nanotubes have a variety of excellent electrical properties, including metallic properties and properties as semiconductors. Also, carbon nanotubes have various mechanical properties, ranging from surface areas to electrical and electronic materials to high-performance resin reinforcements. Practical research has been carried out in various parts of the world, attracting attention as a next-generation material in the field. However, carbon nanotubes are synthesized at the time of synthesis, for example, those synthesized from arc discharge are low in purity, such as containing a lot of soot (soot), and need to be purified, but cannot be purified like fullerenes. In addition, it is difficult to obtain a material with a purity of 100%, and if it is added to the matrix member as it is, impurities will also be added, and after forming a composite member, it is not possible to expect a significant improvement in strength due to the presence of the impurities. Things have also been pointed out. It has also been pointed out that the carbon nanotube has a small aspect ratio, and that the carbon nanotube is not necessarily a material suitable for obtaining an excellent composite member.
In addition, carbon nanotubes have poor affinity with polymers (polymers), which is an obstacle to the development of new composite materials. Thus, attempts have been made to improve the affinity with other substances by chemically treating the surface of the carbon nanotubes, but this treatment has a problem that the characteristics of the carbon nanotubes are degraded.
Since carbon fiber is excellent in thermal conductivity and electrical conductivity, attempts have been made to use it as a plastic with excellent thermal conductivity by dispersing it in a film or molding it with a resin. Since the fiber has a bundle shape, there is a problem that a large amount must be used. In consideration of use in the form of a thin film, it was not always sufficient to produce a micro or nanometer sized thin film in terms of fiber size or fiber dispersibility.
JP 2001-207376 A

本発明は、上記のカーボンナノチューブの問題に鑑み、膨張化炭素繊維は、ピッチ系あるいはPAN系の炭素繊維を出発原料としているため、不純物を含まず、純度100%の繊維を用いることができ、不純物の混入による強度の低下の恐れはないこと、また、繊維径はナノメータサイズまで微小化されるにもかかわらず、繊維長さは、カーボンナノチューブに比べて、マイクロメーターからミリメートルサイズと長く、アスペクト比が大きくなることから、複合材料としたときに、より大きな強度の増大を望むことができること、さらに、フィブリル状に微小化する際、熱処理過程を経ているため、表面の一部に酸素官能基が導入されていることが予測され、ポリマーとの馴染みも改善されていること、等の膨張化炭素繊維の特徴を利用して、新規の高性能な膨張化炭素繊維複合材料と製造方法と、それを使用した電気伝導性、あるいは熱伝導性成型体、または、薄膜を提供することにある。
ナノメーターサイズのフィブリル状の膨張化炭素繊維を使用することで、電気伝導、熱伝導に優れたフィルム、あるいはプラスティック成型体を作製する。特にナノメーターサイズまで微小化されていることから、また、優れた分散性を有することから、少ない添加量で、良好な電気伝導性、熱伝導特性を有する膨張化炭素繊維複合材料を提供することが可能となる。
In the present invention, in view of the problem of the above-mentioned carbon nanotube, since the expanded carbon fiber uses pitch-based or PAN-based carbon fiber as a starting material, it does not contain impurities, and a fiber with a purity of 100% can be used. Although there is no risk of strength reduction due to impurities, and the fiber diameter is reduced to nanometer size, the fiber length is longer from micrometer to millimeter size compared to carbon nanotube. Since the ratio becomes large, it can be desired to increase the strength when it is made into a composite material. Further, since it is subjected to a heat treatment process when it is miniaturized into a fibril, a part of the surface has oxygen functional groups. Is expected to be introduced and the familiarity with the polymer has been improved. A high-performance expansion of carbon fiber composite material and manufacturing method, the electrical conductivity using it, or a thermally conductive molded article, or to provide a thin film.
By using nanometer-sized fibrillated expanded carbon fibers, a film excellent in electrical conduction and thermal conduction, or a plastic molding is produced. In particular, since it is miniaturized to the nanometer size and has excellent dispersibility, it is possible to provide an expanded carbon fiber composite material having good electrical conductivity and heat conduction characteristics with a small addition amount. Is possible.

前記課題を解決するため本発明の手段の特徴は、次の(1)〜(3)のとおりである。
(1)、マトリックス中に、ナノメートルサイズにまでフィブリル状に小繊維化した膨張化炭素繊維とこの膨張化炭素繊維から得た黒鉛性の発達した再熱処理膨張化炭素繊維とを分散含有してなることを特徴とする熱伝導性及び電気伝導性を有する電磁シールド用の膨張化炭素繊維複合材料。
(2)、炭素繊維を化学的あるいは電気化学的に処理して、フィブリル状に小繊維化した膨張化炭素繊維と、炭素繊維層間化合物と、その残余化合物あるいは黒鉛酸を生成し、これらを2000℃以上の高温で熱処理し、あるいは再熱処理して、黒鉛性の発達した再熱処理膨張化炭素繊維を生成し、この再熱処理膨張化炭素繊維を溶融マトリックス、あるいは高分子前駆体(モノマー)と混合して、金型成形、重合成型、あるいは、成膜、薄膜シート化することを特徴とする熱伝導性及び電気伝導性を有する電磁シールド用の膨張化炭素繊維複合材料の製造方法。
(3)、炭素繊維を化学的あるいは電気化学的に処理して、フィブリル状に小繊維化した膨張化炭素繊維と、炭素繊維層間化合物と、その残余化合物あるいは黒鉛酸を生成し、これらを2000℃以上の高温で熱処理し、あるいは再熱処理して、黒鉛性の発達した再熱処理膨張化炭素繊維を生成し、この再熱処理膨張化炭素繊維をゾルゲル法に代表されるような無機系材料でのゾル溶液中に分散させ、高粘度の溶液とした場合は、ドクターブレード等のシート成型手法、低粘度の場合は、スピンキャスト法のようなシート成型法を利用してシート成型することを特徴とする熱伝導性及び電気伝導性を有する無機系材料での電磁シールド用の膨張化炭素繊維複合材料の製造方法。
In order to solve the above-described problems, the features of the means of the present invention are as follows (1) to (3).
(1) An expanded carbon fiber fibrillated to a nanometer size and a reheat-treated expanded carbon fiber having a graphitized property obtained from the expanded carbon fiber are dispersed and contained in the matrix. An expanded carbon fiber composite material for an electromagnetic shield having thermal conductivity and electrical conductivity.
(2) Chemically or electrochemically treating carbon fibers to produce expanded carbon fibers that have been fibrillated into fibrils, a carbon fiber intercalation compound, its residual compound or graphitic acid. Heat treatment is performed at a high temperature of ℃ or higher, or reheat treatment is performed to produce reheat-treated expanded carbon fiber having developed graphitic properties, and the reheat-treated expanded carbon fiber is mixed with a molten matrix or a polymer precursor (monomer). Then, the manufacturing method of the expandable carbon fiber composite material for electromagnetic shields which has heat conductivity and electrical conductivity characterized by mold-molding, superposition | polymerization molding, or film-forming and forming into a thin film sheet.
(3) Carbon fiber is chemically or electrochemically processed to produce expanded carbon fibers that are fibrillated into fibrils, a carbon fiber intercalation compound, and its residual compound or graphitic acid. Heat treatment is performed at a high temperature of ℃ or higher, or reheat treatment is performed to generate reheat-treated expanded carbon fibers having developed graphitic properties, and the reheat-treated expanded carbon fibers are coated with an inorganic material typified by a sol-gel method. Dispersed in a sol solution to form a high-viscosity solution, a sheet molding method such as a doctor blade is used, and in the case of low viscosity, the sheet is molded using a sheet molding method such as a spin cast method. A method for producing an expanded carbon fiber composite material for electromagnetic shielding with an inorganic material having thermal conductivity and electrical conductivity.

本発明の膨張化炭素繊維複合材料は、前記構成により、強度、特に圧縮強度、曲げ強度などの力学的基本特性が極めて優れ、且つ電磁シールド機能に優れた複合材料である。
また本発明の膨張化炭素繊維複合材料の製法は、前記構成により、力学的などに優れ且つ電磁シールド機能に優れた膨張化炭素繊維由来の複合材料を確実に得るものである。
また前記フィブリル状繊維にした膨張化炭素繊維を低粘性のモノマー中に分散させ、開始剤を投入することにより重合化を図り、膨張化炭素繊維複合材料を製造するものである。ゾルゲル法に代表されるようなゾル溶液中に、分散させ、高粘度の溶液とした場合は、ドクターブレード等のシート成型手法、低粘度の場合は、スピンキャスト法のようなシート成型法を利用して、熱伝導性及び電気伝導性を有する無機系材料での電磁シールド用の膨張化炭素繊維複合材料の製造することが可能である。
力学的効果は、例えば後述する実施例の製造方法と得られた膨張化炭素繊維複合材料の各試料の破壊挙動は、三点曲げ試験で、Ph(Ph:フェノール樹脂)/ExCFs(ExCFs:Exfoliated Carbon Fibers 膨張化炭素繊維)において、Ph/ExCFs:Eは、Ph/ExCFs:Aに比し、曲げ応力値は53%〜180%増加し、曲げ弾性率は30%〜190%増加した。EP/ExCFsにおいては、EP/ExCFs:DはEP/ExCFs:Aに比し、曲げ応力値が最大で200%増加し、曲げ弾性率は最大で170%増加した。
膨張化炭素繊維は、熱分解によりフィブリル(小繊維)に形成されることから、バンドル状に形成されるCNT(カーボンナノチューブ)と比較して、著しく分散性に優れるが、例えば、微粒子モノマー中に分散混合させて、押し出し成形により、複合材料を作製する場合、微小サイズの繊維をマトリクス中に適用させれば適用させるほど、部分的ではあるが、凝集を避けることはできなかった。しかしながら、膨張化炭素繊維を低粘度の溶液中で分散させた場合、凝集は皆無になることから、低粘度の溶液中で分散させた状態で固化させることにより、分散状態を保ったまま、成型体を得ることが可能となり、少ない添加量で良好な電気伝導性、熱伝導性材料を提供することができる。ゾル溶液中に分散させても凝集することがないため、均一に分散した状態で成膜でき、少ない添加量で均一の電気伝導性を有する膜を作製することができる。従って、良好な薄膜形状の電磁シールド材料を提供することが可能となる。
<電磁シールド用の膨張化炭素繊維複合材料としての熱伝導性及び電気伝導性の定量的効果の説明>
膨張化炭素繊維(ExCFs)の導電性は,2800℃で処理された出発炭素繊維からのものでは3〜5×10-3Ω・cm、2500℃処理では0.3〜1.0×10-2Ω・cmとなり、低抵抗、すなわち高い電気伝導性を示した。その膨張化炭素繊維をフィラーとして使用し、シート形状に成形されたものの導電性も、極めて低い抵抗値を示し、高い電気伝導性があることが認められた。シート化したExCFsとカーボンブラック(CB)の導電性だけを比較した場合を図1に示す。図1によれば、ほぼ同等の抵抗値を示したが、ExCFsはアスペクト比が大きいといった形態から、少量の充填量で導電性の急激な増加が期待できる。
再熱処理後のExCFsは、図2のX線回折パターンに示すように、結晶化度も膨張化以前の高結晶に相当する黒鉛のピークが再び認められ、また、その導電性は、下記の表1(Table 1)に示すように出発炭素繊維と同等の0.7〜2.5×10-4Ω・cmにまで上昇した。またSEMより、ExCFsが持つ繊維形態が維持されていることが確認され、作製したシートの導電性もCBより高い、もしくは同程度の高い導電性を示した。
表1(Table 1)には、炭素繊維、膨張化炭素繊維および再熱処理膨張化炭素繊維の伝導率を示す。
The expanded carbon fiber composite material of the present invention is a composite material having extremely excellent mechanical basic properties such as strength, particularly compressive strength and bending strength, and excellent electromagnetic shielding function due to the above-described configuration.
Moreover, the manufacturing method of the expanded carbon fiber composite material of this invention reliably obtains the composite material derived from the expanded carbon fiber excellent in mechanical properties and the electromagnetic shielding function by the above configuration.
Further, the expanded carbon fiber made into the fibrillar fiber is dispersed in a low-viscosity monomer, and polymerization is attempted by introducing an initiator to produce an expanded carbon fiber composite material. If a high-viscosity solution is dispersed in a sol solution typified by the sol-gel method, use a sheet molding method such as a doctor blade. If the viscosity is low, use a sheet molding method such as spin casting. Thus, it is possible to manufacture an expanded carbon fiber composite material for electromagnetic shielding using an inorganic material having thermal conductivity and electrical conductivity.
The mechanical effect is, for example, the manufacturing method of the examples described later and the fracture behavior of each sample of the obtained expanded carbon fiber composite material in the three-point bending test, Ph (Ph: phenol resin) / ExCFs (ExCFs: Exfoliated) As compared with Ph / ExCFs: A, the bending stress value increased by 53% to 180% and the flexural modulus increased by 30% to 190%. In EP / ExCFs, EP / ExCFs: D increased the maximum bending stress by 200% and the bending elastic modulus increased by a maximum of 170% as compared with EP / ExCFs: A.
Expanded carbon fibers are formed into fibrils (small fibers) by pyrolysis, so they are significantly more dispersible than CNTs (carbon nanotubes) formed in bundles. In the case of producing a composite material by dispersion mixing and extrusion molding, the more the microfibers are applied in the matrix, the more partially, but agglomeration could not be avoided. However, when the expanded carbon fiber is dispersed in a low-viscosity solution, no aggregation occurs. Therefore, by solidifying the expanded carbon fiber in a state of being dispersed in a low-viscosity solution, molding is performed while maintaining the dispersed state. A body can be obtained, and a good electrical and thermal conductive material can be provided with a small addition amount. Since it does not aggregate even if dispersed in a sol solution, the film can be formed in a uniformly dispersed state, and a film having uniform electrical conductivity can be produced with a small addition amount. Therefore, it is possible to provide an electromagnetic shielding material having a good thin film shape.
<Explanation of quantitative effects of thermal conductivity and electrical conductivity as expanded carbon fiber composite material for electromagnetic shielding>
The conductivity of expanded carbon fibers (ExCFs) is 3-5 x 10 -3 Ω · cm for starting carbon fiber treated at 2800 ° C and 0.3-1.0x10 -2 Ω · cm for 2500 ° C treatment It showed low resistance, that is, high electrical conductivity. It was confirmed that the expanded carbon fiber was used as a filler and was formed into a sheet shape, and the conductivity was very low, indicating high electrical conductivity. Fig. 1 shows a case where only the conductivity of sheet ExCFs and carbon black (CB) is compared. According to FIG. 1, although the resistance value was almost equal, ExCFs can be expected to increase in conductivity with a small amount of filling because ExCFs has a large aspect ratio.
As shown in the X-ray diffraction pattern of Fig. 2, the ExCFs after the re-heat treatment have a reproducible graphite peak corresponding to the high crystal before the expansion, and the conductivity is shown in the following table. As shown in Table 1 (Table 1), it rose to 0.7 to 2.5 × 10 −4 Ω · cm, equivalent to the starting carbon fiber. In addition, SEM confirmed that the fiber morphology of ExCFs was maintained, and the conductivity of the produced sheet was higher than or comparable to that of CB.
Table 1 shows the conductivity of carbon fiber, expanded carbon fiber, and reheat expanded carbon fiber.

Figure 2008166641
Figure 2008166641

本発明の膨張化炭素繊維複合材料は、膨張化炭素繊維のナノメーターサイズのフィブリル状繊維をマトリックスとの割合で通常1〜12W%程度、好ましくは2〜6W%程度をマトリックス中に分散して成形したものであり、これにより微少量のフィブリル状繊維で電磁シールド機能に、電気伝導性に、熱伝導性に優れた、且つ力学的などに優れ膨張化炭素繊維由来の複合材料である。
また本発明の膨張化炭素繊維複合材料の製法は、炭素繊維を化学的あるいは電気化学的に処理して炭素繊維層間化合物あるいはその残余化合物を合成し、これを熱処理して前記フィブリル状繊維とし、この微少量を溶融マトリックスと混合して金型内に流し込み成形することにより、電気伝導性と熱伝導性に優れた電磁シールド機能を有し、且つ力学的などに優れ膨張化炭素繊維由来の複合材料を確実に得るものである。
而して、本発明の膨張化炭素繊維複合材料に使用する原料の炭素繊維は、ピッチ系、PAN系あるいは気相成長系由来の炭素繊維などが好ましい。炭素繊維の多くは、黒鉛と同様にsp2+π結合からなる構造を有しており、例えば、ピッチ系の炭素繊維で、高温で熱処理されたものは、非常に高い結晶性を有し、それに由来する高い結合性が、強度および弾性に影響を与えている。また、一般にPAN系あるいはピッチ系の炭素繊維では、原料前駆体の設計と不融化処理技術およびその後の熱処理温度が強度、弾性率の向上に大きく影響を与えており、出発炭素繊維原料の優れた特性は、膨張化後のフィブリル状の微小繊維になっても失われることなく、しかも微少量の配合割合で力学的特性を充分に活かしきれる。(参照:微小繊維の透過電子顕微鏡写真、黒鉛のc軸方向の積み重なりが認められる。)
この原料炭素繊維の電気化学的処理は、炭素繊維層間化合物あるいは残余化合物を合成するものである。層状構造を有する黒鉛および炭素繊維は、結晶学的に面内方向を示すa軸方向、b軸方向は強い共有結合で結びついているが、面外方向を表すc軸方向は、弱いファンデアワールス力で結合しているのみで、その層間に簡単に非常に多くの原子、分子、イオンなどを取り込んで化合物(層間化合物)を作る。この層間化合物の合成方法には、化学的に合成する湿式法、電気化学法等がある。
前記炭素繊維の層間化合物の合成処理方法は、化学的にする方法例と電気化学的に処理する方法例があり各々の例は次のとおりである。
化学的処理は、例えば、濃硫酸中に硝酸あるいは過マンガン酸カリなどの酸化剤を添加すると硫酸分子が黒鉛層間にインターカレションし、黒鉛層間化合物が合成される。(化学的酸化法)
電気化学的処理は、例えば、ホスト黒鉛を酸電解質中(硝酸あるいは硫酸等)で電気化学的に酸化しても黒鉛層間化合物が合成される。(電気化学的酸化法)
そして得られた前記層間化合物あるいは残余化合物は、熱分解した後、径が1μm以下のナノメーターサイズの小繊維形状となる。これは、弱いファンデアワールス結合で結びついている層間に挿入された原子、分子、イオンなどが、熱処理によって分解され、その分解物が層外に出て行くとき、その層間を壊して、ナノメーターサイズの小繊維形状形態を変える。
又本発明の膨張化炭素繊維複合材料に使用するマトリックスは、樹脂、金属もしくは炭素を用いる。樹脂としては、熱可塑性樹脂、熱硬化性樹脂、液晶樹脂もしくは導電性樹脂を選定することが好ましい。
炭素をマトリックスとする複合材料、すなわちC-Cコンポジット(炭素−炭素繊維複合材料)は、その耐熱性(熱的安定性)、対薬品性等から航空宇宙材料への用途が広がっている、炭素の出発原料としては、フェノール樹脂が、熱処理により、黒鉛化しやすい易黒鉛化性材料なることから、出発マトリックスとして適している。
金属のマトリックスとしては、軽量、錆びない、加工性に優れると言った点からアルミニウムが注目を集めている。炭素繊維にアルミニウムを含ませ、アルミニウム含浸炭素繊維複合材料が炭素繊維の性能を兼ね備えた先端複合材料として、産業機械や自動車の部材を中心に用途の拡大が期待されている。
本発明の複合材料の成形法は、例えば、前記小繊維形状の膨張化炭素繊維を溶融マトリックスと混合させて金型に流入させ、そのまま加圧成型を行ってもよく。あるいは溶融マトリックス中に分散させ、そのまま熱固化させたものでもよい。さらに、小繊維形状の膨張化炭素繊維を溶融マトリックスと混合させて金型に流入し、溶融マトリックスの固形前に金型表面を表面と平行移動させることによってマトリックス中の小繊維形状の膨張化炭素繊維の配向を制御することができる。
繊維を配向させることによって、異方性の強い黒鉛材料の一方向に対してより強くすることも可能となる。
<良好な薄膜形状の電磁シールド用の膨張化炭素繊維複合材料が得られる技術条件とその作用の説明>
再熱黒鉛化処理による、得られたRe-ExCFsをアルゴン雰囲気中にて、2000℃で再熱処理、好ましくは、2800℃以上の熱処理を行い、導電性の良好なナノメーターサイズのRe-ExCFsを得た。この得られたRe-ExCFsは、超音波処理により、ナノメートルサイズにまで分散・微小化させた。Re-ExCFs複合材料の合成は、例えば、MMA(Methyl Meth Acrylate)をマトリクス材料として選択し、Re-ExCFsをTable 1に示した条件に従い、攪拌混合させた。(代表例として表2(Table 2)に示す。MMAの重合に用いたラジカル開始剤として、TBB(Tri Butyl Borane)を選択し、窒素雰囲気下中、30℃でUV照射させることにより、MMAの重合を行うことにより、板状、あるいは薄膜形状の複合材料とした。この部長か炭素繊維の添加率は、要求される添加量に応じて変化させることが可能である。
The expanded carbon fiber composite material of the present invention is obtained by dispersing the nanometer-sized fibrillar fibers of the expanded carbon fiber in a ratio of usually about 1 to 12 W%, preferably about 2 to 6 W% in the matrix. This is a composite material derived from expanded carbon fibers, which is molded and thus has a very small amount of fibrillar fibers for electromagnetic shielding function, electrical conductivity, thermal conductivity and mechanical properties.
In addition, the method for producing the expanded carbon fiber composite material of the present invention is a method of chemically or electrochemically treating carbon fiber to synthesize a carbon fiber intercalation compound or a residual compound thereof, and heat-treating it to form the fibrillar fiber. This minute amount is mixed with a molten matrix and cast into a mold to form an electromagnetic shielding function with excellent electrical and thermal conductivity, and it is excellent in mechanical properties and is a composite derived from expanded carbon fiber. The material is surely obtained.
Thus, the carbon fiber as the raw material used for the expanded carbon fiber composite material of the present invention is preferably a carbon fiber derived from pitch, PAN, or vapor phase growth. Many of the carbon fibers have a structure composed of sp 2 + π bonds as in the case of graphite. For example, pitch-based carbon fibers that are heat-treated at high temperature have very high crystallinity. The high connectivity derived from it affects strength and elasticity. In general, for PAN-based or pitch-based carbon fibers, the design of the raw material precursor, the infusibilization technology, and the subsequent heat treatment temperature have a significant effect on the improvement of strength and elastic modulus. The characteristics are not lost even when the fibrillated microfibers are expanded, and the mechanical characteristics can be fully utilized with a very small blending ratio. (Reference: Transmission electron micrographs of microfibers, graphite c-axis stacking is observed.)
This electrochemical treatment of the raw carbon fibers is to synthesize carbon fiber intercalation compounds or residual compounds. Graphite and carbon fibers having a layered structure are crystallographically linked in the a-axis direction indicating the in-plane direction and the b-axis direction by strong covalent bonds, but the c-axis direction indicating the out-of-plane direction is weak van der Waals. By simply bonding with force, a compound (interlayer compound) is created by simply incorporating a large number of atoms, molecules, ions, etc. between the layers. As a method for synthesizing the intercalation compound, there are a wet method for chemically synthesizing, an electrochemical method, and the like.
The carbon fiber intercalation compound synthesis method includes a chemical method example and an electrochemical treatment method example, each of which is as follows.
In the chemical treatment, for example, when an oxidizing agent such as nitric acid or potassium permanganate is added to concentrated sulfuric acid, sulfuric acid molecules are intercalated between graphite layers, and a graphite intercalation compound is synthesized. (Chemical oxidation method)
In the electrochemical treatment, for example, a graphite intercalation compound is synthesized even when the host graphite is electrochemically oxidized in an acid electrolyte (such as nitric acid or sulfuric acid). (Electrochemical oxidation method)
The obtained intercalation compound or residual compound becomes a nanometer-sized fibril shape with a diameter of 1 μm or less after pyrolysis. This is because the atoms, molecules, ions, etc. inserted between the layers connected by weak van der Waals bonds are decomposed by heat treatment, and when the decomposition products go out of the layers, the layers are broken and nanometer Change the fibril shape shape of the size.
Moreover, resin, metal, or carbon is used for the matrix used for the expanded carbon fiber composite material of this invention. As the resin, it is preferable to select a thermoplastic resin, a thermosetting resin, a liquid crystal resin, or a conductive resin.
Carbon-based composite materials, that is, CC composites (carbon-carbon fiber composite materials), are widely used in aerospace materials due to their heat resistance (thermal stability) and chemical resistance. As a raw material, a phenol resin is suitable as a starting matrix because it becomes a graphitizable material that is easily graphitized by heat treatment.
As a metal matrix, aluminum is attracting attention because it is lightweight, does not rust, and has excellent workability. As an advanced composite material in which aluminum is contained in carbon fiber and the aluminum-impregnated carbon fiber composite material has the performance of carbon fiber, the application is expected to expand mainly for industrial machinery and automobile members.
In the molding method of the composite material of the present invention, for example, the above-mentioned expanded carbon fiber in the form of small fibers may be mixed with a molten matrix and allowed to flow into a mold, and pressure molding may be performed as it is. Alternatively, it may be dispersed in a molten matrix and heat-solidified as it is. Furthermore, the fibrillar expanded carbon fibers are mixed with the molten matrix and flowed into the mold, and the fibrillated expanded carbon in the matrix is translated by moving the mold surface parallel to the surface before solidification of the molten matrix. The fiber orientation can be controlled.
By orienting the fibers, it is possible to make the fibers stronger in one direction of the highly anisotropic graphite material.
<Technical conditions for obtaining an expanded carbon fiber composite material for electromagnetic shielding having a good thin film shape and explanation of its action>
Re-ExCFs obtained by rethermal graphitization are reheated at 2000 ° C in an argon atmosphere, preferably 2800 ° C or higher, and nanometer-sized Re-ExCFs with good conductivity are obtained. Obtained. The obtained Re-ExCFs were dispersed and miniaturized to nanometer size by ultrasonic treatment. For synthesis of the Re-ExCFs composite material, for example, MMA (Methyl Meth Acrylate) was selected as a matrix material, and Re-ExCFs was stirred and mixed according to the conditions shown in Table 1. (Typical examples are shown in Table 2.) TBB (Tri Butyl Borane) is selected as a radical initiator used for polymerization of MMA, and UV irradiation is performed at 30 ° C. in a nitrogen atmosphere. By performing polymerization, a composite material having a plate shape or a thin film shape is obtained, and the addition ratio of the length or carbon fiber can be changed according to the required addition amount.

Figure 2008166641
Figure 2008166641

以下の実施例に代表的な膨張化炭素繊維複合材料例とその製造法例を記述する。
<膨張化炭素繊維(ExCFs)の作製>
例えば、13mol/dm3 硝酸電解質中で、陽極に10cmに切りそろえた炭素繊維、対極に白金板、参照電極に銀塩化銀を使用し、0.5A定電流で3600Cまで電気分解を行った。電気分解されたサンプルは24時間風乾させ、1000℃に保持した電気炉で急速加熱し膨張化させた。
<膨張化炭素繊維のサイジング処理(:マトリックス中での繊維の抜け(すべり)を良くするために、場合によっては膨張化炭素繊維表面上に樹脂をコートすることによって改善を図る。通常、炭素繊維を製造する場合は、5〜10μmの繊維を6000〜12000本を集束にして使用しています。その際、繊維がバラバラにならないようにすることをサイジング処理と言いますが、ここでのサイジング処理は、膨張化によりバラバラにしたものを複合材にした場合、破壊時の抜け(すべり)が良くないため、それを改善するように行ったものです)>
サイジング剤にエポキシ樹脂、固化剤に脂肪族ポリアミン(DETA)を選択した。エポキシ樹脂を適量計量し、固化剤を樹脂に対し11w% になるように計量し混合した後、エタノールとアセトン(4:1)の混合溶液で、エポキシ樹脂が10w%になるように希釈した。そのエポキシ樹脂溶液に膨張化炭素繊維を混合し、超音波洗浄器を用いて、10分間超音波分散を行い、その後、吸引濾過にて繊維を取り出した。取り出した繊維は、45℃ 保持乾燥器中にて3日間乾燥させ、サイジング処理が施されている小繊維形状の膨張化炭素繊維として取り出した。
<膨張化炭素繊維複合材料の製造>
<ノボラック系フェノール樹脂を用いた複合材料化>
予め充分に磨砕した樹脂120gと所定の含有率になるように、先の操作で合成したサイジング剤を施した膨張化炭素繊維を繊維の塊がなくなるまで摩砕混合させた。詳細を表3(Table 3)の試料Ph/ExCFs:A〜Eに示す。その後、各試料を60℃に保持された真空乾燥機中にて48h 乾燥を行った。試料(約17g)を金型に投入し、100kgf/cm2×2minでプレスし押し固めた後、167℃に昇温、500 kgf/cm2×3min hold、100 kgf/cm2×10min holdの二段階加圧により成型を行った。混合した詳細を表3(Table 3)の試料EP(EP:エポキシ樹脂)/ExCFs:A〜Dに示す。樹脂モールド中に樹脂を流し込み、真空乾燥機の温度を30℃に設定し常圧で1週間硬化させたものを、複合材料として取り出した。
<モノマーの重合化による複合材料の成型方法>
・用いた試料
マトリクス材料:MMA(Methyl Methacrylate)
ラジカル開始剤:TBB(Tri Butyl Borane)
強化材:ExCFs,CNTs
・成型方法
MMAにExCFs及びCNTsをそれぞれ分散させ、75mmφガラスシャーレ中で、In situ process により、UV照射下、60℃×24h重合させることにより行った。
各試料の曲げ応力値試験結果を図3に、曲げ弾性率試験結果を図4に示す。
In the following examples, representative examples of expanded carbon fiber composite materials and examples of their production are described.
<Production of expanded carbon fibers (ExCFs)>
For example, in 13 mol / dm 3 nitric acid electrolyte, carbon fiber cut to 10 cm for the anode, platinum plate for the counter electrode and silver silver chloride for the reference electrode were used, and electrolysis was performed up to 3600 C at a constant current of 0.5 A. The electrolyzed sample was air-dried for 24 hours and rapidly heated and expanded in an electric furnace maintained at 1000 ° C.
<Sizing treatment of expanded carbon fiber (: In order to improve fiber slipping (slip) in the matrix, improvement may be achieved by coating a resin on the surface of the expanded carbon fiber in some cases. Is used to bundle 6000 to 12000 fibers of 5 to 10μm, and the sizing process is used to prevent the fibers from falling apart. ) In the case of using a composite material that has been disintegrated due to expansion, the breakage (slip) at the time of breakage is not good.
Epoxy resin was selected as the sizing agent and aliphatic polyamine (DETA) as the solidifying agent. An appropriate amount of the epoxy resin was weighed, and the solidifying agent was weighed and mixed so as to be 11 w% with respect to the resin, and then diluted with a mixed solution of ethanol and acetone (4: 1) so that the epoxy resin became 10 w%. The epoxy resin solution was mixed with expanded carbon fiber, subjected to ultrasonic dispersion for 10 minutes using an ultrasonic cleaner, and then the fiber was taken out by suction filtration. The taken-out fiber was dried in a 45 ° C. holding drier for 3 days, and taken out as an expanded carbon fiber in the form of small fibers subjected to sizing treatment.
<Manufacture of expanded carbon fiber composite material>
<Composite material using novolac phenolic resin>
The expanded carbon fiber to which the sizing agent synthesized in the previous operation was applied so as to have a predetermined content with 120 g of the resin that had been sufficiently ground in advance was ground and mixed until there were no fiber clumps. Details are shown in Sample Ph / ExCFs: A to E in Table 3. Thereafter, each sample was dried in a vacuum dryer maintained at 60 ° C. for 48 hours. Put the sample (about 17g) into the mold, press and harden at 100kgf / cm 2 × 2min, raise the temperature to 167 ° C, 500 kgf / cm 2 × 3min hold, 100 kgf / cm 2 × 10min hold Molding was performed by two-stage pressurization. The mixed details are shown in Sample EP (EP: Epoxy resin) / ExCFs: A to D in Table 3. Resin was poured into the resin mold, and the temperature of the vacuum dryer was set to 30 ° C. and cured at normal pressure for 1 week, and was taken out as a composite material.
<Method of molding composite material by polymerization of monomer>
・ Sample matrix material used: MMA (Methyl Methacrylate)
Radical initiator: TBB (Tri Butyl Borane)
Reinforcing materials: ExCFs, CNTs
・ Molding method
ExCFs and CNTs were each dispersed in MMA, and polymerized in a 75 mmφ glass petri dish by in situ process under UV irradiation at 60 ° C. × 24 h.
The bending stress value test result of each sample is shown in FIG. 3, and the bending elastic modulus test result is shown in FIG.

Figure 2008166641
表3中、Phはフェノール樹脂、EPはエポキシ樹脂を各々示す。
<得られた結果>
図3と図4において、三点曲げ試験での各試料の破壊挙動は、試料Ph/ExCFsにおいて、Ph/ExCFs:Eは、Ph/ExCFs:Aに比し、曲げ応力値は53%〜180%増加し、曲げ弾性率は30%〜190%増加した。試料EP/ExCFsにおいては、EP/ExCFs:DはEP/ExCFs:Aに比し、曲げ応力値が最大で200%増加し、曲げ弾性率は最大で170%増加した。
PMMA/ExCFsの曲げ応力及び曲げ弾性率は、繊維添加量に対し増加傾向にあり、Blankと比較して、繊維添加量が2.0wt.%の時、それぞれ最大で66%及び72%、特性が向上した。
Figure 2008166641
In Table 3, Ph represents a phenol resin, and EP represents an epoxy resin.
<Results obtained>
3 and 4, the fracture behavior of each sample in the three-point bending test is as follows. In the sample Ph / ExCFs, Ph / ExCFs: E is compared with Ph / ExCFs: A, and the bending stress value is 53% to 180%. %, Flexural modulus increased by 30% ~ 190%. In the sample EP / ExCFs, EP / ExCFs: D increased the bending stress value by a maximum of 200% and the bending elastic modulus increased by a maximum of 170% as compared with EP / ExCFs: A.
The bending stress and flexural modulus of PMMA / ExCFs tend to increase with respect to the amount of added fiber. Compared with Blank, when the amount of added fiber is 2.0 wt.%, The maximum is 66% and 72%, respectively. Improved.

即ち本発明は、炭素繊維の化学的あるいは電気化学的処理により、層間化合物を経由して熱処理を行って得たナノメーターサイズのフィブリル状繊維を微少量、樹脂や金属或いは炭素などのマトリックス中に分散することにより、炭素繊維由来の力学的に及び電気的に優れた複合材料を得るものであり、その利用分野は、次の通りであり産業上幅広く活用されるものである。
(1)金属等に比べ比重が小さく(1.7〜2.0)、軽い。
(2)弾性率が高く(200〜650Gpa)、高剛性である。
(3)強度が高い(3000Mpa〜6000Mpa)。
(4)疲労強度が高い。
(5)耐摩耗性、湿潤性に優れている。
(6)耐震減衰性に優れている。
(7)熱膨張係数が小さく(0〜-1.1×10-6K)、寸法安定性が良い。
(8)熱伝導性がある(10〜44W/m・k)。
(9)不活性雰囲気で耐熱性に優れている。
(10)耐薬品性に優れている。
(11)錆びない。
(12)生体適合性に優れている。
(13)導電性がある(17〜5μΩ・m)。
(14)電磁波シールド性がある。
(15)X線の透過性が良い。
(16)異方性材料であり、目的に応じて適正な構造体設計ができる。
このように本発明の炭素繊維は、その優れた特性により、航空・宇宙、建築・土木、車輌、船舶などさまざまな分野に先端材料として使用可能であり、その用途は広大である。
That is, in the present invention, a very small amount of nanometer-sized fibrillar fibers obtained by heat treatment via an intercalation compound by chemical or electrochemical treatment of carbon fibers in a matrix of resin, metal, carbon, etc. By dispersing, a mechanically and electrically excellent composite material derived from carbon fiber is obtained. The fields of use are as follows and are widely used in industry.
(1) The specific gravity is small (1.7-2.0) and light compared to metals.
(2) High elastic modulus (200 to 650 Gpa) and high rigidity.
(3) High strength (3000 Mpa to 6000 Mpa).
(4) High fatigue strength.
(5) Excellent wear resistance and wettability.
(6) Excellent earthquake resistance.
(7) Low thermal expansion coefficient (0 to -1.1 × 10-6K) and good dimensional stability.
(8) It has thermal conductivity (10 to 44 W / m · k).
(9) Excellent heat resistance in an inert atmosphere.
(10) Excellent chemical resistance.
(11) Does not rust.
(12) Excellent biocompatibility.
(13) Conductive (17-5μΩ · m).
(14) Has electromagnetic shielding properties.
(15) Good X-ray transmission.
(16) An anisotropic material that can be designed appropriately according to the purpose.
As described above, the carbon fiber of the present invention can be used as a leading material in various fields such as aerospace, construction, civil engineering, vehicles, ships, etc. due to its excellent characteristics, and its application is vast.

膨張化炭素繊維の添加量に増加に伴う抵抗率の変化を示すグラフ。The graph which shows the change of the resistivity accompanying an increase in the addition amount of an expanded carbon fiber. 再熱処理後のExCFsのX線回折パターンを示す。The X-ray diffraction pattern of ExCFs after reheat treatment is shown. 実施例1における各試料の曲げ応力値(曲げ強度)試験結果を示す。The bending stress value (bending strength) test result of each sample in Example 1 is shown. 実施例1における各試料の曲げ弾性率試験結果を示す。The bending elastic modulus test result of each sample in Example 1 is shown.

符号の説明Explanation of symbols

● CB
○ ExCFs -2800

● CB
○ ExCFs -2800

Claims (3)

マトリックス中に、ナノメートルサイズにまでフィブリル状に小繊維化した膨張化炭素繊維とこの膨張化炭素繊維から得た黒鉛性の発達した再熱処理膨張化炭素繊維とを分散含有してなることを特徴とする熱伝導性及び電気伝導性を有する電磁シールド用の膨張化炭素繊維複合材料。 The matrix is characterized by containing expanded carbon fibers fibrillated in the form of fibrils up to nanometer size and reheat-treated expanded carbon fibers developed from this expanded carbon fiber. An expanded carbon fiber composite material for an electromagnetic shield having thermal conductivity and electrical conductivity. 炭素繊維を化学的あるいは電気化学的に処理して、炭素繊維層間化合物と、その残余化合物あるいは黒鉛酸を生成し、さらに熱処理を加えることにより、フィブリル状に小繊維化した膨張化炭素繊維と、これらを好ましくは2000℃以上の高温で熱処理し、黒鉛性の発達した再熱処理膨張化炭素繊維を生成し、この再熱処理膨張化炭素繊維を溶融マトリックス、高分子粉末と混合して、あるいは高分子前駆体(モノマー)と混合して、金型成形、重合成型、あるいは、成膜、薄膜シート化することを特徴とする熱伝導性及び電気伝導性を有する電磁シールド用の膨張化炭素繊維複合材料の製造方法。 Carbon fiber is chemically or electrochemically treated to produce a carbon fiber intercalation compound and its residual compound or graphitic acid, and further heat treatment to expand the fibrillar fibrillated carbon fiber, These are preferably heat-treated at a high temperature of 2000 ° C. or more to produce reheat-treated expanded carbon fibers having developed graphitic properties, and the reheat-treated expanded carbon fibers are mixed with a molten matrix, polymer powder, or polymer Expanded carbon fiber composite material for electromagnetic shield having thermal conductivity and electrical conductivity, characterized by mixing with a precursor (monomer), molding, polymerization molding, or forming a film or forming a thin film sheet Manufacturing method. 炭素繊維を化学的あるいは電気化学的に処理して、フィブリル状に小繊維化した膨張化炭素繊維と、炭素繊維層間化合物と、その残余化合物あるいは黒鉛酸を生成し、これらを2000℃以上の高温で熱処理し、あるいは再熱処理して、黒鉛性の発達した再熱処理膨張化炭素繊維を生成し、この再熱処理膨張化炭素繊維をゾルゲル法に代表されるようなゾル溶液中に分散させ、高粘度の溶液とした場合は、ドクターブレード等のシート成型手法、低粘度の場合は、スピンキャスト法のようなシート成型法を利用してシート成型することを特徴とする熱伝導性及び電気伝導性を有する無機系材料での電磁シールド用の膨張化炭素繊維複合材料の製造方法。

Carbon fiber is chemically or electrochemically processed to produce expanded carbon fibers that are fibrillated into fibrils, carbon fiber intercalation compounds, and their residual compounds or graphitic acid, which are heated to temperatures above 2000 ° C. Heat treated or reheated to produce reheat-treated expanded carbon fibers having developed graphitic properties, and the reheat-treated expanded carbon fibers are dispersed in a sol solution typified by the sol-gel method to obtain a high viscosity. In the case of a solution, a sheet molding method such as a doctor blade, and in the case of low viscosity, a sheet molding method such as a spin casting method is used to form a sheet. A method for producing an expanded carbon fiber composite material for electromagnetic shielding using an inorganic material.

JP2007000179A 2007-01-04 2007-01-04 Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof Pending JP2008166641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000179A JP2008166641A (en) 2007-01-04 2007-01-04 Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000179A JP2008166641A (en) 2007-01-04 2007-01-04 Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008166641A true JP2008166641A (en) 2008-07-17

Family

ID=39695695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000179A Pending JP2008166641A (en) 2007-01-04 2007-01-04 Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008166641A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163274A (en) * 2007-01-04 2008-07-17 Oita Univ Exfoliated carbon fiber-containing composite material and method for producing the same
JP2010111990A (en) * 2008-10-06 2010-05-20 Oita Univ Expanded carbon fiber, method for producing the same, and solar cell
WO2019244953A1 (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and method for producing semiconductor device
WO2019244950A1 (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and method for producing semiconductor device
JP2020097685A (en) * 2018-12-18 2020-06-25 オムロン株式会社 Resin composition and resin molded article
CN111674021A (en) * 2020-06-11 2020-09-18 宁夏大学 Preparation method of equidirectional double-disc winding composite carbon fiber electric heating brake
CN111716755A (en) * 2020-06-11 2020-09-29 宁夏大学 Preparation method of spheroidal composite carbon fiber electric heating brake
WO2020255377A1 (en) * 2019-06-21 2020-12-24 株式会社大木工藝 Yarn, textile, and manufacturing method for said yarn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249546A (en) * 2005-03-14 2006-09-21 Oita Univ Composite material containing expanded carbon fiber, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249546A (en) * 2005-03-14 2006-09-21 Oita Univ Composite material containing expanded carbon fiber, and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163274A (en) * 2007-01-04 2008-07-17 Oita Univ Exfoliated carbon fiber-containing composite material and method for producing the same
JP2010111990A (en) * 2008-10-06 2010-05-20 Oita Univ Expanded carbon fiber, method for producing the same, and solar cell
US11329005B2 (en) 2018-06-21 2022-05-10 Dexerials Corporation Semiconductor device and method of producing the same
WO2019244953A1 (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and method for producing semiconductor device
JP2019220615A (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and semiconductor device manufacturing method
JP2019220614A (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and semiconductor device manufacturing method
WO2019244950A1 (en) * 2018-06-21 2019-12-26 デクセリアルズ株式会社 Semiconductor device and method for producing semiconductor device
US11929303B2 (en) 2018-06-21 2024-03-12 Dexerials Corporation Semiconductor device and method of producing the same
JP7265321B2 (en) 2018-06-21 2023-04-26 デクセリアルズ株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7208720B2 (en) 2018-06-21 2023-01-19 デクセリアルズ株式会社 Semiconductor device and method for manufacturing semiconductor device
KR102445111B1 (en) 2018-06-21 2022-09-21 데쿠세리아루즈 가부시키가이샤 Semiconductor device and method of manufacturing semiconductor device
KR20210010554A (en) * 2018-06-21 2021-01-27 데쿠세리아루즈 가부시키가이샤 Semiconductor device and method of manufacturing semiconductor device
JP2020097685A (en) * 2018-12-18 2020-06-25 オムロン株式会社 Resin composition and resin molded article
WO2020129270A1 (en) * 2018-12-18 2020-06-25 オムロン株式会社 Resin composition and resin molded component
WO2020255377A1 (en) * 2019-06-21 2020-12-24 株式会社大木工藝 Yarn, textile, and manufacturing method for said yarn
CN111716755A (en) * 2020-06-11 2020-09-29 宁夏大学 Preparation method of spheroidal composite carbon fiber electric heating brake
CN111674021A (en) * 2020-06-11 2020-09-18 宁夏大学 Preparation method of equidirectional double-disc winding composite carbon fiber electric heating brake

Similar Documents

Publication Publication Date Title
Mayerberger et al. Preparation and characterization of polymer‐Ti3C2Tx (MXene) composite nanofibers produced via electrospinning
JP2008166641A (en) Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
Harris Carbon nanotube composites
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
de Villoria et al. Mechanical properties of SWNT/epoxy composites using two different curing cycles
Xue et al. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
Fan et al. Graphene–aramid nanofiber nanocomposite paper with high mechanical and electrical performance
JP2004538353A (en) Method of forming conductive polymer nanocomposites and materials produced thereby
US9255003B2 (en) Carbon nanotube fibers/filaments formulated from metal nanoparticle catalyst and carbon source
Cho et al. Direct growth of thermally reduced graphene oxide on carbon fiber for enhanced mechanical strength
JP2004538353A5 (en)
Fernández-d’Arlas et al. Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes
Liu et al. Effect of multi-walled carbon nanotube additive on the microstructure and properties of pitch-derived carbon foams
CN110157931B (en) Nano carbon reinforced metal matrix composite material with three-dimensional network structure and preparation method thereof
KR20100031981A (en) A composite of graphene and polymer and a method for preparation thereof
Saadatmandi et al. Effective epoxy composite coating mechanical/fracture toughness properties improvement by incorporation of graphene oxide nano-platforms reduced by a green/biocompataible reductant
WO2009029182A2 (en) Carbon nanomaterials dispersion and stabilization
Xia et al. Processing aramid nanofiber/modified graphene oxide hydrogel into ultrastrong nanocomposite film
KR20140062239A (en) Post-treatment method of carbon nanotube fibers to enhance mechanical property
Zamani et al. Ultralight graphene/graphite hybrid fibers via entirely water-based processes and their application to density-controlled, high performance composites
Lee et al. A review of high-performance carbon nanotube-based carbon fibers
Wu et al. Tough polyimide composites synergistically reinforced by carbon nanofiber-grafted carbon fiber and rGO for improved heat dissipation and electromagnetic interference shielding
Wang et al. Preparation and structural investigations of the graphite and nanodiamonds dispersed epoxy hybrid composites for enhanced mechanical and thermal properties
JP4719875B2 (en) Expanded carbon fiber-containing composite material and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101025