JPH0535694B2 - - Google Patents

Info

Publication number
JPH0535694B2
JPH0535694B2 JP61305393A JP30539386A JPH0535694B2 JP H0535694 B2 JPH0535694 B2 JP H0535694B2 JP 61305393 A JP61305393 A JP 61305393A JP 30539386 A JP30539386 A JP 30539386A JP H0535694 B2 JPH0535694 B2 JP H0535694B2
Authority
JP
Japan
Prior art keywords
silicon carbide
group
silicon
sintered body
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61305393A
Other languages
Japanese (ja)
Other versions
JPS63159256A (en
Inventor
Hiromasa Isaki
Takamasa Kawakami
Koichi Yakyo
Kazuhiro Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61305393A priority Critical patent/JPS63159256A/en
Publication of JPS63159256A publication Critical patent/JPS63159256A/en
Publication of JPH0535694B2 publication Critical patent/JPH0535694B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、窒化ケイ素−炭化ケイ素複合焼結体
およびその製造方法に関し、特に、主としてβ相
からなる窒化ケイ素および約5〜35重量%の主と
してβ相からなる炭化ケイ素とから構成され、か
つ平均直径が1μm以下の炭化ケイ素粒子が均一に
分散した微細構造からなる、靭性および強度に優
れた複合焼結体に関する。 〔従来技術およびその問題点〕 窒化ケイ素、炭化ケイ素は高温構造材料として
のエンジニアリングセラミツクス材料として近年
富に注目を集めて来ている。特に窒化ケイ素は耐
熱衝撃や破壊靭性に、また炭化ケイ素は耐酸化性
や高温強度にそれぞれ優れた性質を有している。
このため窒化ケイ素、炭化ケイ素はそれぞれの特
性を生かした分野で開発が行われている。たとえ
ば、特開昭61−201663号公報に、焼結方法を工夫
することにより焼結体中にアスペクト比(長さ/
幅)の大きな繊維状体を生成させて窒化ケイ素焼
結体の強度や靭性を向上させる方法が試みられて
いる。一方、両者の利点を生かすために窒化ケイ
素−炭化ケイ素複合体の開発も種々試みられてい
る。 従来、窒化ケイ素−炭化ケイ素複合体セラミツ
クスを得る方法としては、 (1) 窒化ケイ素(Si3N4)粉末と炭化ケイ素
(SiC)粉末とを機械的に混合してホツトプレ
スなどの加圧下で焼結する方法。 (2) 炭化ケイ素(SiC)粉末とケイ素(Si)粉末
からなる成型体を窒化反応によつて窒化ケイ素
(Si3N4)を生成させたり、窒化ケイ素
(Si3N4)粉末と炭素からなる成型体にケイ素
(Si)を浸透させて炭化ケイ素(SiC)を生成
させたりする反応焼結による方法。 (3) 有機ケイ素ポリマーを原料とし、これにケイ
素(Si)粉末を加えて直接あるいは熱処理後成
型して窒化反応を行わせて窒化ケイ素−炭化ケ
イ素複合体を生成させる方法。 等がある。しかし、これらのうち、(2),(3)による
方法は一般に寸法精度がよく成型性に優れている
利点はあるが、得られる焼結体は多孔質になりや
すく密度の高い緻密な焼結体を得ることは困難で
ある。 このため、高密度で緻密な複合焼結体を得るに
は通常前記(1)の方法が採用されるのが一般であ
る。例えば、U.S.P.4184882、あるいはJ.Am.
Ceram.Soc.,56,445(1973)では5〜32μmの炭
化ケイ素(SiC)粉末を窒化ケイ素(Si3N4)粉
末に添加することにより窒化ケイ素(Si3N4)に
比べ熱伝導度や高温強度の改善された成型体が得
られることが開示されている。しかし、室温強度
等はむしろ窒化ケイ素(Si3N4)よりも低下する
傾向をみせ、用いた炭化ケイ素(SiC)の粒子径
の大きさに大きく依存することが示されている。 また、U.S.P.3890250においては、粒径が3〜
5μmの炭化ケイ素粉末を用いることにより、室温
でも強度が高く、電気伝導度の高い窒化ケイ素−
炭化ケイ素複合体が得られることが開示されてい
る。しかしながら、このアメリカ特許では重要な
物性である破壊靭性値については何んら記載され
ておらず、後述する比較例に示す様に、単に微細
な窒化ケイ素(Si3N4)粉末と炭化ケイ素(SiC)
粉末とを機械的に混合した混合物を焼結したもの
では本発明が示すごときの高い破壊靭性値および
室温ならびに高温強度をもつ窒化ケイ素−炭化ケ
イ素複合焼結体を得ることはできない。 さらに特開昭58−91070号公報では、気相反応
により得た窒化ケイ素(Si3N4)と炭化ケイ素
(SiC)との混合粉末を用いた高温強度と耐熱衝
撃性に優れた複合焼結体が開示されている。 しかしながら、この混合粉末にはClのごときハ
ロゲンが含有してり高性能の複合焼結体を得るこ
とはできない。以上の様に、従来のものは一部の
物性は向上されるが、本発明の目的とする高強
度、高靭性の複合焼結体を得ることはできない。 しかして、本発明は高密度で緻密な微細構造を
有し、強度と破壊靭性値の両者に優れた窒化ケイ
素−炭化ケイ素複合焼結体を提供することを目的
とするものである。 さらに、本発明の別の目的は、高密度で緻密な
微細構造を有し、室温ならびに高温における強度
と破壊靭性値の両者に優れた窒化ケイ素−炭化ケ
イ素複合焼結体を提供するに好適なケイ素、炭
素、窒素、及び酸素からなる組成の球状複合粉末
を提供することにある。 〔問題点を解決するための手段〕 すなわち、本発明は。釈としてβ相からなる窒
素ケイ素および約5〜35重量%の主としてβ相か
らなる炭化ケイ素とから構成され、かつ平均直径
が1μm以下の炭化ケイ素粒子が均一に分散した微
細構造からなり、室温における3点曲げ強度が少
なくとも95Kg/mm2、破壊靭性値(KIC)が少なく
とも5.4MN/m3/2である窒化ケイ素−炭化ケイ素
複合焼結体に関する。 さらに、本発明の窒化ケイ素−炭化ケイ素複合
焼結体は窒化ケイ素が、短軸の長さが0.2〜
1.0μm、長軸の長さが1〜10μmである柱状粒子
および直径が1μm以下の等軸状粒子からなる微粒
子であり、平均直径1μm以下の等軸状粒子からな
る微粒子の炭化ケイ素が均一に分散した微細構造
で構成された複合焼結体に関する。 この様な微細構造で構成された窒化ケイ素−炭
化ケイ素複合焼結体は、従来のように窒化ケイ素
と炭化ケイ素粉末とを単に機械的に混合する方法
ではなく、原料としてケイ素、炭素、窒素及び酸
素からなる組成を有し、かつ炭素の含有量が1.5
〜10.5重量%であり、酸素含有量が5重量%以下
であり、平均粒径が1μm以下の非晶質の球状複合
微粉末を使用することにより得られる。 この様な本発明の焼結体を得るのに好適な原料
微粉末は、気相反応法などの合成法を応用するこ
とにより得ることができる。 気相反応は通常知られている外部加熱方式、プ
ラズマ、レーザー等の手段が適用される。中でも
工業的に応用範囲の広い外部加熱方式では、抵抗
式電気炉や高周波加熱炉によつて800℃以上の温
度で行うのが好ましい。具体的には、たとえば、
特開昭60−200812号公報、特開昭60−200813号公
報、特開昭60−221311号公報、特開昭60−235707
号公報、特開昭61−117108号公報、に示される方
法により得ることができる。具体的には、有機ケ
イ素化合物を気化しアンモニアを含む非酸化性ガ
スとよく混合したのち、該混合物を所定温度に加
熱された反応器に導入反応させることにより非晶
質微粉末が得られる。 しかしながらこの様にして合成された非晶質微
粉末はこのまま焼結体を得るための原料として用
いた場合は、焼結中にガスが発生し焼結体中に気
孔を生成する虞れがあり好ましくなく、したがつ
て気相反応によつて得た微粉末を一端熱処理して
揮発性成分を除去することが好ましい。この熱処
理は非酸化性雰囲気下もしくは真空下で、しかも
結晶質の生成がない温度範囲、すなわち1000〜
1400℃の制御された範囲で実施することが重要で
ある。 すなわち、1000〜1300℃未満の比較的低い温度
領域で熱処理を行う場合は、雰囲気ガスとしては
Ar,N2,He,H2などの非酸化性ガスが用いら
れる。加熱処理時間は温度条件や試料量等により
決められる。たとえば、試料の量が200g程度の
場合は、1100℃で約8時間、1250℃で約6時間で
熱処理を完了することができる。この熱処理によ
り気相反応で得られた非晶質粉末組成物はCH4
H2,HCN,N2および炭化水素類を放出し、10〜
20wt%の重量減を伴いながら本発明の非晶質球
状粉末を生成する。また、1300〜1400℃の比較的
高い温度領域で熱処理を行う場合は、比較的短時
間で熱処理を完了できる利点はあるが、条件によ
つては結晶化が進み粒子の粗大化や球状の粒子形
状を維持することが困難となる。たとえば、H2
ガスを雰囲気ガスとして用いた場合は結晶化が進
み粒子の粗大化が進行し易く好ましくない。した
がつて上記のごとき比較的高い温度で熱処理する
場合の雰囲気ガスとしては、Ar,N2,Heなどの
非酸化性ガスが好適である。さらに、熱処理によ
り放出される上記したCH4,H2,HCN,N2およ
び炭化水素類も粒子の結晶化を促進するので速や
かに系外に排出することが必要である。したがつ
て、Ar,N2,Heなどの非酸化性ガスを用いる場
合でも処理温度が1300℃以上の場合は、少なくと
も0.05cm/sec.、通常は0.05〜100cm/sec.の線速
をもつ雰囲気ガス気流下で実施することが好まし
い。たとえば、1350℃、Ar気流下、約3時間の
熱処理で目的とする非晶質の球状粉末が得られ
る。 原料微粉末の合成に用いられる上記の有機ケイ
素化合物は焼結時に悪影響を及ぼすハロゲンを有
しないものが好ましい。この様な有機ケイ素化合
物としては、例えば、一般式
〔R1R2R3Si〕2NR4または〔R1R2Si−NR3o(ただ
し、式中R1〜R4はそれぞれ水素、アルキル基、
アリル基、フエニル基等を示し、nは3または4
である)で示されるシラザン化合物、一般式
RoSi(NR1R2n(式中R,R1,R2は水素、アル
キル基、アリル基、フエニル基を示し、R,R1
R2が同時に水素である場合を除く、nは0〜3、
mは4−nである)であるアミノケイ素化合物、
一般式RoSi(CN)n(ただし、式中Rは水素、
アルキル基、アリル基、フエニル基を示し、nは
0〜3、mは4−nである)であるシアノケイ素
化合物、一般式R2+o(Si)o(式中Rは水素、
アルキル基、アリル基、フエニル基を示す。ただ
し、Rが同時に水素である場合を除く、nは1〜
4の整数である)で示される有機ケイ素化合物、
および一般式R3Si(−R′−R2Si)−nR1(式中R1
R2,R3は水素原子、アルキル基、アリル基、ま
たはフエニル基であり、R′はメチレン基、エチ
レン基またはフエニレン基mは1〜2の整数であ
る)で示されるSiH結合を有する有機ケイ素化合
物あるいは、前記一般式においてSiH結合を有し
ない有機ケイ素化合物があげられる。 具体的には、たとえば、〔(CH33Si〕2NH、 〔(CH32SiNH〕3、〔HSi(CH322NH、 〔(CH33Si〕3NCH3、〔(CH32Si−NCH33
ごときシラザン化合物、または下記化学式であつ
て、ケイ素上の置換基としてN−メチルアミノ基
を有する6員環状のトリス(N−メチルアミノ)
トリ−N−メチル−シクロトリシラザン、 あるいは、CH3Si(NHCH33、(CH32Si
(NHCH32、(CH32Si〔N(CH32〕などのアミ
ノケイ素化合物、(CH33SiCN、(CH32Si
(CN)2、(C6H53SiCN、(C6H52Si(CN)2
H3SiCN、(CH=CH)CH3Si(CN)2などのシア
ノケイ素化合物、(CH34Si、〔(CH33Si〕2
〔(CH33Si〕2CH2,〔(CH32HSi〕3〔(CH32HSi〕2CH2等の有機ケイ素化合物が例示される。 以上のごとき有機ケイ素化合物の少なくとも一
種を前記した方法により得られた原料微末は、乾
式あるいは湿式混合法により焼結助剤を混合して
焼結され、非晶質の粉末あるにもかかわらず、密
度の高い緻密な窒化ケイ素−炭化ケイ素複合焼結
体を与えるものである。 本発明における焼結方法は、通常のホツトプレ
ス、ガス圧焼結、あるいはHIP等の従来から実施
されている方法がそのまま適用できる。 例えば、代表的なホツトプレス法では1750〜
1850℃、200〜400Kg/cm2、0.5〜3hrsの条件で加
圧焼結される。 本発明に用いられる焼結助剤は、焼結時に液相
を生成し、Si3N4の柱状化を促進するものであれ
ばいずれのものも使用することができる。それら
のうち特に効果的なものは、MgO,Al2O3
Y2O3,CeO2およびLa2O3等が例示され、これら
は単独でもしくは混合して使用することができ
る。これら焼結助剤の使用量は通常1〜15重量%
の範囲である。 次に、本発明の複合焼結体を添付図面により説
明する。第1図及び第2図は本発明の複合焼結体
の微細構造を示すもので、第1図はSiC10%を含
有する3点曲げ強度試験片の破断面のSEM
(Scanning electron micrography)写真である。
第2図は本発明の焼結体におけるSi3N4および
SiC粒子の分散状態を示す光学顕微鏡写真(1000
倍)であるまた、第3図は比較例1のSi3N4粉末
の焼結体の3点曲げ強度試験片の破断面のSEM
写真である。第1図から明らかな様に、本発明の
焼結体は微細な柱状粒子と等軸状粒子からなつて
いることが分かる。そして大部分の柱状粒子は径
の短軸が0.2〜1.0μm、長軸が1〜10μmである。
この柱状状粒子はSiCの含有量の増加と共に減少
していることから、Si3N3の粒子であると理解さ
れる。また、等軸状粒子はその平均粒径が1μm以
下であり、SiCおよびSi3N4の粒子であると理解
される。 第2図において、灰色の粒子はSi3N4で、白色
の粒子寅SiCである。写真からSiCの粒子は平均
粒径1μm以下であり、しかも焼結体中に均一分散
していることが認められる。また、焼結体の
TEM(透過型電子顕微鏡)観察によれば、Si3N4
内部に数十ナノメートルの微細なSiC粉末の存在
が認められた。 第4図および第5図に本発明焼結体の強度を示
す。第4図は室温における3点曲げ強度を、第5
図は破壊靭性値を示す。 3点曲げ強度はSiCの含有量が約3〜35重量%
の範囲で95Kg/mm2以上の値を示す。これは従来の
Si3N4の焼結体よりも高い値である。また、実施
例8および比較例8に示すように高温強度も
Si3N4より高い値を示す。 この様に本発明の複合焼結体が高い強度を示す
のは、焼結体中にSiCの微粉末が均一に分散さ
れ、しかも構成粒子が従来のものよりも微細であ
ることによるものと推定される。また、破壊靭性
値もSi3N4の焼結体よりも高く、SiCの含有量が
約10%のとき最大値を示し、その後SiCの含有量
が増加するに従つて減少傾向を示す。これは焼結
体中のSi3N4の粒子が減少することによると推測
され、破壊靭性値がSi3N4の焼結体よりも高いの
は、焼結体を構成しているSi3N4の粒子構造によ
るものと考えられ、Si3N4の柱状粒子がクラツチ
の伝播を阻害していることが一因であると推測さ
れる。また、焼結体の硬度はSiCの含有量が増加
するにしたがつて上昇する傾向を示す。 〔発明の効果〕 本発明の窒化ケイ素−炭化ケイ素複合焼結体は
窒化ケイ素が、短軸の長さが0.2〜1.0μm、長軸の
長さが1〜10μmである柱状粒子および直径が
1μm以下の等軸状粒子からなる微粒子であり、平
均直径1μm以下の等軸状粒子からなる微粒子の炭
化ケイ素が均一に分散した微細構造で構成された
焼結体であり、室温における3点曲が強度が少な
くとも95Kg/mm2、破壊靭性値(KIC)が少なくと
も5.4MN/m3/2である靭性および強度に優れた複
合焼結体を与える。 次に本発明の実施例を比較例と共に示す。以下
に示す実施例は本発明の一例を示すものであつて
本発明の要旨を超えない限り、これに限定される
ものでない。 尚、本発明において、試験片の3点曲げ強度は
スパン20mm、クロスヘツドスピード0.5mm/min
で行つた。また、破壊靭性値は微小圧子圧入法
(IndentationMicrofracture法)を用い、J.
Mater.Sci.Lett.,1,13(1982)に記載の式によ
り評価した。さらに焼結体の嵩密度測定はアルキ
メデス法により、硬度は微小硬度計によるビツカ
ース硬度測定(19.6N荷重、20秒保持)によつ
た。 実施例1〜5および比較例1〜2 90mm(直径)×1300mm(長さ)のアルミナ製反
応管を設置した縦型の抵抗式加熱炉を、1000℃の
温度に保持した。一方、反応原料のヘキサメチル
ジシラザン〔Si(CH32NHを約500g/hrの供給
量で蒸発器に導入し、完全に気化させた後表−1
に示した混合比のNH3/Ar混合ガスとよく混合
して上記反応炉に導入し反応させた。生成した粉
末を約200gアルミナ製容器に充填し、1350℃、
4hrs、線速、12.0mm/sec.アルゴン(Ar)気流下
に熱処理を行い焼結体形成用の原料粉末を得た。 得られた粉末はX線回折によれば非晶質の粉末
であり、SEM写真による観察では0.5μm以下の球
状粒子であつた。 かくして得た原料粉末にY2O36w%、
Al2O32wt%を加え窒素ガス気流中アルミナ乳鉢
で2時間混合した後、直径30mmの黒鉛ダイスに充
填し、窒素ガス中350Kg/cm2の圧力で1800℃、
2hrsのホツトプレス焼結を行つた。 得られた焼結体を切断し、#100、#600のダイ
ヤモンド砥石で研削したのち3μm、1μmのダイヤ
モンドペーストで研磨し、2x3x25mmの試験片を
作成し、物性を測定した。この結果を表−1に示
す。 第1図および第2図にSiC100wtを含有する実
施例2の焼結体の破断面のSEM写真および光学
顕微鏡写真(1000倍)を示す。また、第4図に室
温における3点曲げ強度、第5図に破壊靭性値を
示した。 比較例 3 市販の高純度の結晶質Si3N4粉末(α相90%平
均粒径0.6μm、不純物Fe,Al,Ca<50ppm0<
1wt%)にY2O36wt%,Al2O32wtを加え、エタ
ノールと共にSi3N4ボールで5hrs湿式混合した
後、実施例1〜4と同様の条件でホツトプレス焼
結を行つて焼結体を得た。得られた焼結体の物性
を測定した結果、密度3.26g/cm3、ビツカース硬
度14.5GPa、破壊靭性値5.2MN/m3/2、3点曲げ
強度87Kg/mm2であつた。
[Industrial Application Field] The present invention relates to a silicon nitride-silicon carbide composite sintered body and a method for producing the same, and in particular, silicon nitride mainly composed of β phase and about 5 to 35% by weight of silicon carbide mainly composed of β phase. The present invention relates to a composite sintered body having excellent toughness and strength and having a fine structure in which silicon carbide particles having an average diameter of 1 μm or less are uniformly dispersed. [Prior art and its problems] Silicon nitride and silicon carbide have recently attracted a lot of attention as engineering ceramic materials as high-temperature structural materials. In particular, silicon nitride has excellent thermal shock resistance and fracture toughness, and silicon carbide has excellent oxidation resistance and high-temperature strength.
For this reason, silicon nitride and silicon carbide are being developed in fields that take advantage of their respective properties. For example, Japanese Patent Application Laid-Open No. 61-201663 discloses that by devising a sintering method, the aspect ratio (length/
Attempts have been made to improve the strength and toughness of silicon nitride sintered bodies by producing fibrous bodies with large widths. On the other hand, various attempts have been made to develop silicon nitride-silicon carbide composites in order to take advantage of the advantages of both. Conventionally, methods for obtaining silicon nitride-silicon carbide composite ceramics include: (1) mechanically mixing silicon nitride (Si 3 N 4 ) powder and silicon carbide (SiC) powder and sintering the mixture under pressure using a hot press or the like; How to tie. (2) A molded body made of silicon carbide (SiC) powder and silicon (Si) powder is subjected to a nitriding reaction to generate silicon nitride (Si 3 N 4 ), or silicon nitride (Si 3 N 4 ) powder and carbon are A reaction sintering method in which silicon (Si) is infiltrated into a molded body to produce silicon carbide (SiC). (3) A method in which a silicon nitride-silicon carbide composite is produced by using an organic silicon polymer as a raw material, adding silicon (Si) powder to it, molding it directly or after heat treatment, and causing a nitriding reaction. etc. However, among these methods, methods (2) and (3) generally have the advantage of good dimensional accuracy and excellent moldability, but the resulting sintered bodies tend to be porous and have a high density. It is difficult to get the body. For this reason, the method (1) above is generally employed to obtain a dense and dense composite sintered body. For example, USP4184882 or J.Am.
Ceram.Soc., 56 , 445 (1973), by adding silicon carbide (SiC) powder of 5 to 32 μm to silicon nitride (Si 3 N 4 ) powder, the thermal conductivity was improved compared to silicon nitride (Si 3 N 4 ). It is disclosed that a molded article with improved high-temperature strength can be obtained. However, the room temperature strength, etc., tends to be lower than that of silicon nitride (Si 3 N 4 ), and it has been shown that it largely depends on the particle size of the silicon carbide (SiC) used. In addition, in USP3890250, the particle size is 3~
By using 5μm silicon carbide powder, silicon nitride has high strength even at room temperature and high electrical conductivity.
It is disclosed that a silicon carbide composite is obtained. However, this U.S. patent does not mention anything about the fracture toughness value, which is an important physical property, and as shown in the comparative example below, it simply describes the use of fine silicon nitride (Si 3 N 4 ) powder and silicon carbide (Si 3 N 4 ) powder. SiC)
By sintering a mixture mechanically mixed with powder, it is impossible to obtain a silicon nitride-silicon carbide composite sintered body having the high fracture toughness value and room temperature and high temperature strength shown in the present invention. Furthermore, JP-A No. 58-91070 describes a composite sintered product with excellent high-temperature strength and thermal shock resistance using a mixed powder of silicon nitride (Si 3 N 4 ) and silicon carbide (SiC) obtained by gas phase reaction. The body is revealed. However, this mixed powder contains halogens such as Cl, making it impossible to obtain a high-performance composite sintered body. As described above, although some of the physical properties of the conventional method are improved, it is not possible to obtain a composite sintered body with high strength and high toughness, which is the object of the present invention. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a silicon nitride-silicon carbide composite sintered body that has a high density and fine microstructure and is excellent in both strength and fracture toughness. Furthermore, another object of the present invention is to provide a silicon nitride-silicon carbide composite sintered body that has a high density and fine microstructure and is excellent in both strength and fracture toughness at room temperature and high temperature. The object of the present invention is to provide a spherical composite powder having a composition consisting of silicon, carbon, nitrogen, and oxygen. [Means for solving the problems] That is, the present invention. As an example, it is composed of silicon nitrogen consisting of the β phase and about 5 to 35% by weight of silicon carbide mainly consisting of the β phase, and has a microstructure in which silicon carbide particles with an average diameter of 1 μm or less are uniformly dispersed. The present invention relates to a silicon nitride-silicon carbide composite sintered body having a three-point bending strength of at least 95 Kg/mm 2 and a fracture toughness value (K IC ) of at least 5.4 MN/m 3/2 . Furthermore, in the silicon nitride-silicon carbide composite sintered body of the present invention, silicon nitride has a short axis length of 0.2 to
1.0 μm, the length of the long axis is 1 to 10 μm, and the silicon carbide particles are made of columnar particles with a length of 1 to 10 μm and equiaxed particles with a diameter of 1 μm or less. This invention relates to a composite sintered body composed of a dispersed microstructure. Silicon nitride-silicon carbide composite sintered bodies with such a microstructure can be produced by using silicon, carbon, nitrogen and It has a composition consisting of oxygen and a carbon content of 1.5
~10.5% by weight, an oxygen content of 5% by weight or less, and an amorphous spherical composite fine powder with an average particle size of 1 μm or less. A raw material fine powder suitable for obtaining such a sintered body of the present invention can be obtained by applying a synthesis method such as a gas phase reaction method. For the gas phase reaction, commonly known means such as external heating, plasma, laser, etc. are applied. Among the external heating methods, which have a wide range of industrial applications, it is preferable to use a resistance electric furnace or high-frequency heating furnace at a temperature of 800° C. or higher. Specifically, for example,
JP-A-60-200812, JP-A-60-200813, JP-A-60-221311, JP-A-60-235707
It can be obtained by the method shown in Japanese Patent Application Laid-Open No. 117108/1983. Specifically, an amorphous fine powder is obtained by vaporizing an organosilicon compound and thoroughly mixing it with a non-oxidizing gas containing ammonia, and then introducing the mixture into a reactor heated to a predetermined temperature and causing a reaction. However, if the amorphous fine powder synthesized in this way is used as a raw material for obtaining a sintered body, there is a risk that gas will be generated during sintering and create pores in the sintered body. However, it is preferable to heat-treat the fine powder obtained by the gas phase reaction to remove volatile components. This heat treatment is carried out in a non-oxidizing atmosphere or under vacuum, and within a temperature range where no crystalline material is formed, i.e. 1000~
It is important to perform in a controlled range of 1400°C. In other words, when performing heat treatment in a relatively low temperature range of less than 1000 to 1300℃, the atmospheric gas should be
Non-oxidizing gases such as Ar, N 2 , He, H 2 are used. The heat treatment time is determined by temperature conditions, sample amount, etc. For example, if the amount of the sample is about 200 g, the heat treatment can be completed at 1100° C. for about 8 hours or at 1250° C. for about 6 hours. Through this heat treatment, the amorphous powder composition obtained by gas phase reaction is CH 4 ,
Releases H 2 , HCN, N 2 and hydrocarbons, 10~
Amorphous spherical powder of the present invention is produced with a weight loss of 20 wt%. Furthermore, when heat treatment is performed in a relatively high temperature range of 1300 to 1400℃, it has the advantage of being able to complete the heat treatment in a relatively short time, but depending on the conditions, crystallization may progress, resulting in coarse particles or spherical particles. It becomes difficult to maintain the shape. For example, H2
When a gas is used as the atmospheric gas, crystallization progresses and particles tend to become coarser, which is not preferable. Therefore, non-oxidizing gases such as Ar, N 2 and He are suitable as the atmospheric gas for heat treatment at a relatively high temperature as described above. Furthermore, the above-mentioned CH 4 , H 2 , HCN, N 2 and hydrocarbons released during the heat treatment also promote crystallization of particles, and therefore need to be promptly discharged from the system. Therefore, even when using a non-oxidizing gas such as Ar, N 2 or He, if the processing temperature is 1300°C or higher, the linear velocity is at least 0.05 cm/sec., usually 0.05 to 100 cm/sec. It is preferable to carry out under an atmospheric gas flow. For example, the desired amorphous spherical powder can be obtained by heat treatment at 1350° C. under an Ar flow for about 3 hours. The above-mentioned organosilicon compound used in the synthesis of the raw material fine powder preferably does not contain halogen, which would have an adverse effect on sintering. Such organosilicon compounds include, for example, the general formula [R 1 R 2 R 3 Si] 2 NR 4 or [R 1 R 2 Si-NR 3 ] o (wherein R 1 to R 4 are each hydrogen , alkyl group,
Represents an allyl group, a phenyl group, etc., where n is 3 or 4
A silazane compound represented by the general formula
R o Si (NR 1 R 2 ) n (in the formula, R, R 1 , R 2 represent hydrogen, an alkyl group, an allyl group, a phenyl group, and R, R 1 ,
n is 0 to 3, except when R 2 is hydrogen at the same time,
m is 4-n),
General formula R o Si (CN) n (wherein R is hydrogen,
a cyanosilicon compound having the general formula R 2+o (Si) o (in which R is hydrogen, n is 0 to 3, and m is 4-n);
Indicates an alkyl group, an allyl group, and a phenyl group. However, except when R is hydrogen at the same time, n is 1 to
an integer of 4);
and the general formula R 3 Si (−R′−R 2 Si)− n R 1 (where R 1 ,
R 2 and R 3 are a hydrogen atom, an alkyl group, an allyl group, or a phenyl group, and R' is a methylene group, an ethylene group, or a phenylene group. Examples include silicon compounds and organosilicon compounds having no SiH bond in the above general formula. Specifically, for example, [(CH 3 ) 3 Si] 2 NH, [(CH 3 ) 2 SiNH] 3 , [HSi(CH 3 ) 2 ] 2 NH, [(CH 3 ) 3 Si] 3 NCH 3 , [(CH 3 ) 2 Si-NCH 3 ] 3 , or a 6-membered cyclic tris(N-methylamino) having the following chemical formula and having an N-methylamino group as a substituent on silicon.
tri-N-methyl-cyclotrisilazane, Alternatively, CH 3 Si(NHCH 3 ) 3 , (CH 3 ) 2 Si
Aminosilicon compounds such as (NHCH 3 ) 2 , (CH 3 ) 2 Si [N(CH 3 ) 2 ], (CH 3 ) 3 SiCN, (CH 3 ) 2 Si
(CN) 2 , (C 6 H 5 ) 3 SiCN, (C 6 H 5 ) 2 Si(CN) 2 ,
Cyanosilicon compounds such as H3SiCN , (CH=CH) CH3Si (CN) 2 , ( CH3 ) 4Si , [( CH3 ) 3Si ] 2
[(CH 3 ) 3 Si] 2 CH 2 , [(CH 3 ) 2 HSi] 3 , [(CH 3 ) 2 HSi] 2 CH 2 , Examples include organosilicon compounds such as. The raw material fine powder obtained from at least one of the above organosilicon compounds by the method described above is mixed with a sintering aid by a dry or wet mixing method and sintered, and even though it is an amorphous powder, This provides a dense and precise silicon nitride-silicon carbide composite sintered body. As the sintering method in the present invention, conventional methods such as ordinary hot pressing, gas pressure sintering, or HIP can be applied as they are. For example, in the typical hot press method, 1750 ~
Pressure sintering is performed at 1850°C, 200-400Kg/cm 2 , and 0.5-3hrs. Any sintering aid that can be used in the present invention can be used as long as it generates a liquid phase during sintering and promotes columnarization of Si 3 N 4 . Among them, the most effective ones are MgO, Al 2 O 3 ,
Examples include Y 2 O 3 , CeO 2 and La 2 O 3 , and these can be used alone or in combination. The amount of these sintering aids used is usually 1 to 15% by weight.
is within the range of Next, the composite sintered body of the present invention will be explained with reference to the accompanying drawings. Figures 1 and 2 show the microstructure of the composite sintered body of the present invention, and Figure 1 is an SEM of the fracture surface of a three-point bending strength test piece containing 10% SiC.
(Scanning electron micrography) Photograph.
Figure 2 shows Si 3 N 4 and
Optical micrograph showing the dispersion state of SiC particles (1000
Fig. 3 is an SEM image of the fracture surface of the 3-point bending strength test piece of the sintered body of Si 3 N 4 powder of Comparative Example 1.
It's a photo. As is clear from FIG. 1, the sintered body of the present invention is composed of fine columnar grains and equiaxed grains. Most of the columnar particles have a short axis of diameter of 0.2 to 1.0 μm and a long axis of 1 to 10 μm.
Since these columnar particles decrease as the SiC content increases, they are understood to be Si 3 N 3 particles. Equiaxed particles have an average particle size of 1 μm or less and are understood to be SiC and Si 3 N 4 particles. In FIG. 2, the gray particles are Si 3 N 4 and the white particles are SiC. The photo shows that the SiC particles have an average particle size of 1 μm or less and are uniformly dispersed in the sintered body. In addition, the sintered body
According to TEM (transmission electron microscope) observation, Si 3 N 4
The presence of fine SiC powder of several tens of nanometers was observed inside. FIGS. 4 and 5 show the strength of the sintered body of the present invention. Figure 4 shows the three-point bending strength at room temperature.
The figure shows fracture toughness values. The 3-point bending strength is approximately 3-35% by weight of SiC.
Shows a value of 95Kg/mm 2 or more in the range of . This is the conventional
This value is higher than that of the Si 3 N 4 sintered body. In addition, as shown in Example 8 and Comparative Example 8, high temperature strength was also improved.
Shows a higher value than Si 3 N 4 . It is presumed that the reason why the composite sintered body of the present invention exhibits such high strength is that the fine SiC powder is uniformly dispersed in the sintered body, and the constituent particles are finer than those of conventional ones. be done. In addition, the fracture toughness value is also higher than that of the Si 3 N 4 sintered body, showing a maximum value when the SiC content is about 10%, and then showing a decreasing tendency as the SiC content increases. This is presumed to be due to the reduction of Si 3 N 4 particles in the sintered body, and the reason why the fracture toughness value is higher than that of the Si 3 N 4 sintered body is because of the Si 3 N 4 particles that make up the sintered body. This is thought to be due to the particle structure of N 4 , and it is speculated that one of the reasons is that columnar particles of Si 3 N 4 inhibit clutch propagation. Furthermore, the hardness of the sintered body tends to increase as the SiC content increases. [Effects of the Invention] The silicon nitride-silicon carbide composite sintered body of the present invention has silicon nitride in columnar particles having a short axis length of 0.2 to 1.0 μm and a long axis length of 1 to 10 μm, and a diameter of
It is a sintered body composed of fine particles consisting of equiaxed particles with an average diameter of 1 μm or less, and has a microstructure in which fine particles of silicon carbide consisting of equiaxed particles with an average diameter of 1 μm or less are uniformly dispersed. provides a composite sintered body with excellent toughness and strength, having a strength of at least 95 Kg/mm 2 and a fracture toughness value (K IC ) of at least 5.4 MN/m 3/2 . Next, examples of the present invention will be shown together with comparative examples. The examples shown below are merely examples of the present invention, and are not intended to be limiting unless they go beyond the gist of the present invention. In addition, in the present invention, the three-point bending strength of the test piece is measured at a span of 20 mm and a crosshead speed of 0.5 mm/min.
I went there. In addition, the fracture toughness value was determined using the microindentation method (Indentation Microfracture method), and J.
Evaluation was made using the formula described in Mater.Sci.Lett., 1, 13 (1982). Further, the bulk density of the sintered body was measured by the Archimedes method, and the hardness was measured by Vickers hardness using a microhardness meter (19.6N load, held for 20 seconds). Examples 1 to 5 and Comparative Examples 1 to 2 A vertical resistance heating furnace equipped with an alumina reaction tube measuring 90 mm (diameter) x 1300 mm (length) was maintained at a temperature of 1000°C. On the other hand, the reaction raw material hexamethyldisilazane [Si(CH 3 ) 2 NH] was introduced into the evaporator at a feed rate of about 500 g/hr, and after being completely vaporized, Table 1
The mixture was thoroughly mixed with an NH 3 /Ar mixed gas having the mixing ratio shown in , and introduced into the reactor for reaction. Approximately 200g of the generated powder was packed into an alumina container and heated to 1350℃.
Heat treatment was performed for 4 hours at a linear speed of 12.0 mm/sec under an argon (Ar) stream to obtain a raw material powder for forming a sintered body. The obtained powder was an amorphous powder according to X-ray diffraction, and spherical particles with a size of 0.5 μm or less were observed by SEM photography. 6w% of Y 2 O 3 was added to the raw material powder thus obtained.
After adding 2 wt% of Al 2 O 3 and mixing in an alumina mortar in a nitrogen gas stream for 2 hours, it was filled into a graphite die with a diameter of 30 mm, and heated at 1800°C under a pressure of 350 kg/cm 2 in nitrogen gas.
Hot press sintering was performed for 2 hours. The obtained sintered body was cut, ground with #100 and #600 diamond grindstones, and then polished with 3 μm and 1 μm diamond paste to prepare 2 x 3 x 25 mm test pieces, and their physical properties were measured. The results are shown in Table-1. FIG. 1 and FIG. 2 show a SEM photograph and an optical microscope photograph (1000 times magnification) of the fractured surface of the sintered body of Example 2 containing 100 wt of SiC. Further, FIG. 4 shows the three-point bending strength at room temperature, and FIG. 5 shows the fracture toughness value. Comparative Example 3 Commercially available high-purity crystalline Si 3 N 4 powder (α phase 90% average particle size 0.6 μm, impurities Fe, Al, Ca<50ppm0<
1wt%), 6wt% of Y 2 O 3 and 2wt of Al 2 O 3 were added, and after wet mixing with ethanol in 4 Si 3 N balls for 5 hours, hot press sintering was performed under the same conditions as in Examples 1 to 4. Obtained a body. As a result of measuring the physical properties of the obtained sintered body, the density was 3.26 g/cm 3 , the Vickers hardness was 14.5 GPa, the fracture toughness was 5.2 MN/m 3/2 , and the three-point bending strength was 87 Kg/mm 2 .

【表】 実施例6および7 混合ガス組成NH3/Arを75/25、および50/
50〔vo1%)とし、実施例1および2と同様にし
て得られた気相反応生成物を、窒素ガス雰囲気下
に1100℃で10時間、および1200℃で7時間熱処理
し、それぞれSiC含含有量10wt%、17wt%、
C:3.1wt%,5.0wt%,N:35.0wt%,32.0wt
%,O:1.4wt%,1.5wt%の組成の粉末を得た。
(尚、他の成分はSiおよび不純物としてのFe,
Al,Caなどの金属である。)これを実施例1と同
様にホツトプレス焼結を行つて焼結体を得た。得
られた焼結体の物性は下記表−2の通りである。
[Table] Examples 6 and 7 Mixed gas composition NH 3 /Ar 75/25 and 50/
50 [vo1%], and the gas-phase reaction products obtained in the same manner as in Examples 1 and 2 were heat-treated at 1100°C for 10 hours and at 1200°C for 7 hours in a nitrogen gas atmosphere to obtain SiC-containing products. Amount 10wt%, 17wt%,
C: 3.1wt%, 5.0wt%, N: 35.0wt%, 32.0wt
%, O: 1.4 wt%, 1.5 wt% powder was obtained.
(Other components are Si and Fe as impurities,
Metals such as Al and Ca. ) This was subjected to hot press sintering in the same manner as in Example 1 to obtain a sintered body. The physical properties of the obtained sintered body are shown in Table 2 below.

【表】 比較例 4〜7 比較例3に使用したと同様のSi3N4粉末と、β
−SiC(平均粒径0.7μm、不純物Fe:0.02wt%,
Al:0.10wt%,Ca:0.04wt%,0:0.04wt%)
とを表−3に示す種々の割合で混合し、これに
Y2O36wt%,Al2O32wt%を加えたエタノールと
共にSi3N4ボールで5hrs湿式混合した後、実施例
1〜4と同様の条件でホツトプレス焼結を行つて
焼結体を得た。この物性を表−3に示した。
[Table] Comparative Examples 4 to 7 Si 3 N 4 powder similar to that used in Comparative Example 3 and β
-SiC (average particle size 0.7μm, impurity Fe: 0.02wt%,
Al: 0.10wt%, Ca: 0.04wt%, 0:0.04wt%)
and mixed in various proportions shown in Table 3, and
After wet mixing with ethanol containing 6 wt% of Y 2 O 3 and 2 wt% of Al 2 O 3 in a Si 3 N 4 ball for 5 hours, hot press sintering was performed under the same conditions as in Examples 1 to 4 to form a sintered body. Obtained. The physical properties are shown in Table 3.

【表】 〓比〓は〓比較例〓を示す。
実施例 8 実施例5で得られたSiC含有量34%の焼結体の
1200℃および1400℃での高温強度は、それぞれ
110Kg/mm2、73Kg/mm2であつた。 比較例 8 比較例3で得られたSi3N4焼結体の1200℃およ
び1400℃での高温強度は、それぞれ71Kg/mm2、25
Kg/mm2であつた。
[Table] 〓Ratio〓 indicates 〓Comparative example〓.
Example 8 The sintered body with a SiC content of 34% obtained in Example 5
The high temperature strength at 1200℃ and 1400℃ is respectively
They were 110Kg/mm 2 and 73Kg/mm 2 . Comparative Example 8 The high-temperature strengths of the Si 3 N 4 sintered body obtained in Comparative Example 3 at 1200°C and 1400°C are 71 Kg/mm 2 and 25 Kg/mm 2 , respectively.
It was Kg/ mm2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の複合焼結体の結晶
の微細構造を示すもので、第1図はSiC10%を含
有する3点曲げ強度試験片の破断面のSEM
(Scanning electron micrography)写真である。
第2図は本発明の焼結体におけるSi3N4および
SiC粒子の分散状態を示す光学顕微鏡写真(1000
倍)である。第3図はSi3N4粉末(比較例1)の
焼結体の3点げ強度試験片の破断面のSEM写真
である。第4図は室温における3点曲げ強度を、
第5図は破壊靭性値を示す。
Figures 1 and 2 show the crystal microstructure of the composite sintered body of the present invention, and Figure 1 is an SEM of the fracture surface of a three-point bending strength test piece containing 10% SiC.
(Scanning electron micrography) Photograph.
Figure 2 shows Si 3 N 4 and
Optical micrograph showing the dispersion state of SiC particles (1000
times). FIG. 3 is an SEM photograph of a fractured surface of a 3-point strength test piece of a sintered body of Si 3 N 4 powder (Comparative Example 1). Figure 4 shows the three-point bending strength at room temperature.
Figure 5 shows fracture toughness values.

Claims (1)

【特許請求の範囲】 1 主としてβ相からなる窒化ケイ素および約5
〜35重量%の主としてβ相からなる炭化ケイ素と
から構成され、かつ平均直径が1μm以下の炭化ケ
イ素粒子が均一に分散した微細構造からなり、室
温における3点曲げ強度が少なくとも95Kg/mm2
破壊靭性値(KIC)が少なくとも5.4MN/m3/2
ある窒化ケイ素−炭化ケイ素複合焼結体。 2 窒化ケイ素が、短軸の長さが0.2〜1.0μm、長
軸の長さが1〜10μmである柱状粒子および平均
値径が1μm以下の等軸状粒子からなる微粒子であ
り、炭化ケイ素が、平均直径1μm以下の等軸状粒
子からなる微粒子である特許請求の範囲第1項記
載の窒化ケイ素−炭化ケイ素複合焼結体。 3 ケイ素、炭素、窒素及び酸素からなる組成を
有し、炭素含有量が、1.5〜10.5重量%であり、
かつ平均粒径が1μm以下の球状の非晶質粉末に、
1〜15重量%の焼結助剤を混合し、該混合物を非
酸化性ガス雰囲気下で、加圧下に焼結することか
らなる主としてβ相からなる窒化ケイ素および約
5〜35重量%の主としてβ相からなる炭化ケイ素
とから構成され、且つ平均直径1μm以下の炭化ケ
イ素微粒子が均一に分散した微細構造からなる窒
化ケイ素−炭化ケイ素複合焼結体の製造法。 4 焼結助剤が、MgO,A l2O3,Y2O3
CeO2,およびLa2O3から選ばれた少なくとも1
種である特許請求の範囲第3項記載の方法。 5 ケイ素、炭素、窒素及び酸素からなる組成を
有し、炭素含有量が、1.5〜10.5重量%であり、
かつ平均粒径が1μm以下の球状の非晶質粉末は、
ハロゲンを含有しない有機ケイ素化合物をNH3
を含む非酸化性ガスの雰囲気下に気相反応させて
得られる微粉末を、非酸化性ガス雰囲気下に1000
〜1400℃の温度で加熱処理して得られたものであ
る特許請求の範囲第3項記載の方法。 6 ハロゲンを含有しない有機ケイ素化合物が、
一般式〔R1R2R3Si〕2NR4または〔−R1R2Si−
NR3−〕(ただし、式中R1〜R4はそれぞれ水素、
アルキル基、アリル基、フエニル基等を示し、n
は3〜4である)で示されるシラザン化合物、
一般式RoSi(NR1R2n(式中R,R1,R2は水素、
アルキル基、アリル基、フエニル基を示す、R,
R1,R2が同時に水素である場合を除く、nは0
〜3、mは4−nである)であるアミノケイ素化
合物、一般式RoSi(CN)n(ただし、式中Rは
水素、アルキル基、アリル基、フエニル基を示
し、nは0〜3、mは4−nである)であるシア
ノケイ素化合物、一般式R2+o(Si)o(式中Rは
水素、アルキル基、アリル基、フエニル基を示
す。ただし、Rが同時に水素である場合を除く、
nは1〜4の整数である)で示される有機ケイ素
化合物、および一般式R3Si(−R′−R2Si)−nR1
(式中R1,R2,R3は水素原子、アルキル基、アリ
ル基、またはフエニル基であり、R′はメチレン
基、エチレン基またはフエニレン基mは1〜2の
整数である)で示されるSiH結合を有する有機ケ
イ素化合物、あるいは前記一般式において、SiH
結合を有しない有機ケイ素化合物、から選ばれた
少なくとも一種である特許請求の範囲第5項記載
の方法。
[Scope of Claims] 1. Silicon nitride mainly consisting of β phase and about 5
~35% by weight of silicon carbide mainly consisting of β phase, and has a microstructure in which silicon carbide particles with an average diameter of 1 μm or less are uniformly dispersed, and has a three-point bending strength of at least 95 Kg/mm 2 at room temperature,
A silicon nitride-silicon carbide composite sintered body having a fracture toughness value (K IC ) of at least 5.4 MN/m 3/2 . 2 Silicon nitride is a fine particle consisting of columnar particles with a short axis length of 0.2 to 1.0 μm and a long axis length of 1 to 10 μm, and equiaxed particles with an average diameter of 1 μm or less, and silicon carbide is The silicon nitride-silicon carbide composite sintered body according to claim 1, which is fine particles consisting of equiaxed particles having an average diameter of 1 μm or less. 3 has a composition consisting of silicon, carbon, nitrogen and oxygen, and has a carbon content of 1.5 to 10.5% by weight,
and a spherical amorphous powder with an average particle size of 1 μm or less,
1 to 15% by weight of a sintering aid and sintering the mixture under pressure in a non-oxidizing gas atmosphere. A method for producing a silicon nitride-silicon carbide composite sintered body, which is composed of silicon carbide in the β phase and has a microstructure in which fine silicon carbide particles having an average diameter of 1 μm or less are uniformly dispersed. 4 The sintering aid is MgO, Al 2 O 3 , Y 2 O 3 ,
At least one selected from CeO 2 and La 2 O 3
The method according to claim 3, which is a species. 5 has a composition consisting of silicon, carbon, nitrogen and oxygen, and has a carbon content of 1.5 to 10.5% by weight,
And spherical amorphous powder with an average particle size of 1μm or less,
NH3 organosilicon compound that does not contain halogen
The fine powder obtained by vapor phase reaction in an atmosphere of non-oxidizing gas containing
The method according to claim 3, which is obtained by heat treatment at a temperature of ~1400°C. 6 An organosilicon compound containing no halogen is
General formula [R 1 R 2 R 3 Si] 2 NR 4 or [−R 1 R 2 Si−
NR 3 −] (However, in the formula, R 1 to R 4 are hydrogen,
Indicates an alkyl group, allyl group, phenyl group, etc., n
is 3 to 4),
General formula R o Si (NR 1 R 2 ) n (wherein R, R 1 and R 2 are hydrogen,
R, which represents an alkyl group, an allyl group, a phenyl group,
n is 0, except when R 1 and R 2 are hydrogen at the same time
-3, m is 4-n), an amino silicon compound having the general formula R o Si (CN) n (wherein R represents hydrogen, an alkyl group, an allyl group, a phenyl group, and n is 0 to 3, m is 4-n), a cyanosilicon compound with the general formula R 2+o (Si) o (wherein R represents hydrogen, an alkyl group, an allyl group, or a phenyl group. However, if R is hydrogen at the same time) except when
n is an integer from 1 to 4), and an organosilicon compound represented by the general formula R3Si ( -R' - R2Si ) -nR1
(In the formula, R 1 , R 2 , R 3 are a hydrogen atom, an alkyl group, an allyl group, or a phenyl group, and R' is a methylene group, an ethylene group, or a phenylene group, and m is an integer of 1 to 2.) organosilicon compound having a SiH bond, or in the general formula above, SiH
The method according to claim 5, which is at least one selected from organosilicon compounds having no bond.
JP61305393A 1986-12-23 1986-12-23 Silicon nitride-silicon carbide composite sintered body and manufacture Granted JPS63159256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61305393A JPS63159256A (en) 1986-12-23 1986-12-23 Silicon nitride-silicon carbide composite sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305393A JPS63159256A (en) 1986-12-23 1986-12-23 Silicon nitride-silicon carbide composite sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS63159256A JPS63159256A (en) 1988-07-02
JPH0535694B2 true JPH0535694B2 (en) 1993-05-27

Family

ID=17944581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305393A Granted JPS63159256A (en) 1986-12-23 1986-12-23 Silicon nitride-silicon carbide composite sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS63159256A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829229B2 (en) 1993-10-25 1998-11-25 株式会社東芝 Silicon nitride ceramic sintered body

Also Published As

Publication number Publication date
JPS63159256A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
US4800182A (en) Silicon nitride-silicon carbide composite material and process for production thereof
TW397807B (en) Aluminium nitride sintered body
JP4312293B2 (en) Silicon carbide ceramic composite material and manufacturing method thereof
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
US5360772A (en) Ceramic material reinforced by the incorporation of TiC, TiCN and TiN whiskers and processes for production thereof
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPH089506B2 (en) Silicon nitride body
KR100325325B1 (en) A method for manufacturing silicon nitride ceramic having excellent strength &amp;toughness
JPH0535694B2 (en)
JPH01275470A (en) Production of silicon nitride-silicon carbide combined sintered body
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPS6212663A (en) Method of sintering b4c base fine body
Wang et al. Thermal and mechanical properties of Si3N4 ceramics obtained via two-step sintering
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JP2524635B2 (en) Fiber reinforced ceramics
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JPH0535683B2 (en)
JPH01282154A (en) Production of fiber-reinforced silicon oxynitride sintered compact
JPH06128052A (en) Sintered compact of silicon nitride and its production
JPH02102108A (en) Production of raw material for silicon nitride-silicon carbide composite ceramic containing silicon carbide whisker
JPH02116617A (en) Preparation of compound powder of boron nitride and aluminium nitride
JPH09100167A (en) Ceramic nano composite crystalline substance