JPH01275470A - Production of silicon nitride-silicon carbide combined sintered body - Google Patents

Production of silicon nitride-silicon carbide combined sintered body

Info

Publication number
JPH01275470A
JPH01275470A JP63103770A JP10377088A JPH01275470A JP H01275470 A JPH01275470 A JP H01275470A JP 63103770 A JP63103770 A JP 63103770A JP 10377088 A JP10377088 A JP 10377088A JP H01275470 A JPH01275470 A JP H01275470A
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
silicon nitride
silicon
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103770A
Other languages
Japanese (ja)
Inventor
Hiromasa Isaki
寛正 伊崎
Tadamasa Kawakami
川上 殷正
Kouichi Yakiyou
八京 孝一
Kazuhiro Ando
和弘 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP63103770A priority Critical patent/JPH01275470A/en
Publication of JPH01275470A publication Critical patent/JPH01275470A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering

Abstract

PURPOSE:To obtain an Si3N4-SiC combined sintered body having high density, dense fine structure, and improved strength, fracture toughness, and oxidation resistance, by sintering a mixture consisting of specified spherical amorphous powder with a sintering aid in a nonoxidizing atmosphere under pressure. CONSTITUTION:Fine powder obtd. by a gaseous phase reaction of an organosilicon compd.(e.g. hexamethyl disilazane) contg. no halogen in nonoxidizing atmosphere contg. NH3, is heat-treated in nonoxidizing gaseous atmosphere at 1,000-1,400 deg.C, and spherical amorphous powder having <=1mum average particle size and consisting of Si, C, N and O of 10.5-24.0wt.% C content is obtd. The amorphous powder is mixed with 1-15wt.% sintering aid(e.g. MgO), and sintered under pressure at 1,750-1,850 deg.C for 0.5-3hr under 200-400kg/cm<2> in nonoxidizing gas atmosphere, and sintering particle consists of primarily beta-Si3N4 and 35-80wt.% beta-SiC. Thus, an Si3N4-SiC sintered body having <=1mum particle size of uniformly dispersed Si3N4 particles and SiC particles, and having dense and fine structure, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、緻密な窒化ケイ素−炭化ケイ素複合焼結体の
製造方法に関し、特に、主としてβ相の窒化ケイ素およ
び約35〜80重量%の主としてβ相の炭化ケイ素とか
らなり、焼結体を構成する窒化ケイ素および炭化ケイ素
の粒子が平均粒径が1μm以下で均一に分散した微細構
造を有する靭性、強度および耐酸化性に優れた複合焼結
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a dense silicon nitride-silicon carbide composite sintered body. A composite that is mainly composed of β-phase silicon carbide and has a fine structure in which the silicon nitride and silicon carbide particles constituting the sintered body are uniformly dispersed with an average particle size of 1 μm or less, and has excellent toughness, strength, and oxidation resistance. Regarding sintered bodies.

〔従来技術およびその問題点〕[Prior art and its problems]

窒化ケイ素、炭化ケイ素は高温構造材料としてのエンジ
ニアリンク1セラミツクス材料として近年冨に注目を集
めて来ている。特に窒化ケイ素は耐熱衝撃や破壊靭性に
、また炭化ケイ素は耐酸化性や高温強度にそれぞれ優れ
た性質を有している。
Silicon nitride and silicon carbide have recently attracted much attention as engineering link 1 ceramic materials as high-temperature structural materials. In particular, silicon nitride has excellent thermal shock resistance and fracture toughness, and silicon carbide has excellent oxidation resistance and high-temperature strength.

このため窒化ケイ素、炭化ケイ素はそれぞれの特性を生
かした分野で開発が行われている。一方、両者の利点を
生かすために窒化ケイ素−炭化ケイ素複合体の開発も種
々試みられている。
For this reason, silicon nitride and silicon carbide are being developed in fields that take advantage of their respective properties. On the other hand, various attempts have been made to develop silicon nitride-silicon carbide composites in order to take advantage of the advantages of both.

従来、窒化ケイ素−炭化ケイ素複合体セラミックスを得
る方法としては、 (1)窒化ケイ素(SIJ4)粉末と炭化ケイ素(Si
C)粉末とを機械的に混合してホットプレスなどの加圧
下で焼結する方法。
Conventionally, methods for obtaining silicon nitride-silicon carbide composite ceramics include (1) silicon nitride (SIJ4) powder and silicon carbide (Si
C) A method of mechanically mixing powder and sintering it under pressure such as a hot press.

(2)炭化ケイ素(SiC)粉末とケイ素(Si)粉末
からなる成型体を窒化反応によって窒化ケイ素(SiJ
4)を生成させたり、窒化ケイ素(Si、N4)粉末と
炭素からなる成型体にケイ素(Si)を浸透させて炭化
ケイ素(SiC)を生成させたりする反応焼結による方
法。  ・(3)有機ケイ素ポリマーを原料とし、これ
にケイ素(Si)粉末を加えて直接あるいは熱処理後成
型して窒化反応を行わせて窒化ケイ素−炭化ケイ素複合
体を生成させる方法。等がある。
(2) A molded body made of silicon carbide (SiC) powder and silicon (Si) powder is transformed into silicon nitride (SiJ) by a nitriding reaction.
4) or a reaction sintering method in which silicon (Si) is infiltrated into a molded body made of silicon nitride (Si, N4) powder and carbon to produce silicon carbide (SiC). (3) A method in which an organosilicon polymer is used as a raw material, silicon (Si) powder is added thereto, and molded directly or after heat treatment to cause a nitriding reaction to produce a silicon nitride-silicon carbide composite. etc.

しかし、これらのうち、(2) 、(3)による方法は
一般に寸法精度がよく成型性に優れている利点はあるが
、得られる焼結体は多孔質になりやすく密度の高い緻密
な焼結体を得ることは困難である。このため得られる焼
結体物性は、緻密な窒化ケイ素、炭化ケイ素に比べて劣
る場合が多く、たとえば焼結体の強度は窒化ケイ素、炭
化ケイ素より低い。
However, among these methods, methods (2) and (3) generally have the advantage of good dimensional accuracy and excellent moldability, but the resulting sintered bodies tend to be porous and have a high density. It is difficult to get the body. Therefore, the physical properties of the obtained sintered body are often inferior to those of dense silicon nitride and silicon carbide, and for example, the strength of the sintered body is lower than that of silicon nitride and silicon carbide.

このため、高密度で緻密な複合焼結体を得るには通常前
記(1)の方法が採用されるのが一般的である。
Therefore, in order to obtain a high-density and dense composite sintered body, the method (1) above is generally employed.

例えば、U、S、P、 4,184,882、あるいは
J、Am、Ceram。
For example, U, S, P, 4,184,882, or J, Am, Ceram.

Soc、、 56.445 (1973)では5〜32
μmの炭化ケイ素(SiC)粉末(最大40体積%)を
窒化ケイ素(Si、N4)粉末に添加することにより窒
化ケイ素(SiJa)に比べ熱伝導度や高温強度の改善
された成型体が得られることが開示されている。しかし
、室温強度等はむしろ窒化ケイ素よりも低下する傾向を
みせ、用いた炭化ケイ素(SiC)の粒子径の大きさに
大きく依存することが示されている。さらに、炭化ケイ
素の含有量が多くなるにつれて、焼結体の密度及び強度
は低下する傾向がある。また、J、Am、Ceram、
 Soc、、 63+597 (1980)ではサブミ
クロン径の窒化ケイ素とサブミクロン径の0−30体積
%の炭化ケイ素を混合してホットプレス焼結により複合
焼結体を製造した結果、破壊靭性値は炭化ケイ素の含有
量によらずほぼ一定であり、また炭化ケイ素含有量が多
くなるに従って焼結体の密度は低くなることが示されて
いる。
5-32 in Soc, 56.445 (1973)
By adding μm silicon carbide (SiC) powder (up to 40% by volume) to silicon nitride (Si, N4) powder, a molded body with improved thermal conductivity and high temperature strength compared to silicon nitride (SiJa) can be obtained. This is disclosed. However, the room temperature strength, etc., tends to be lower than that of silicon nitride, and it has been shown that it largely depends on the particle size of the silicon carbide (SiC) used. Furthermore, as the content of silicon carbide increases, the density and strength of the sintered body tend to decrease. Also, J, Am, Ceram,
Soc,, 63+597 (1980) produced a composite sintered body by hot press sintering by mixing submicron diameter silicon nitride and submicron diameter silicon carbide in an amount of 0-30% by volume, and found that the fracture toughness value was as low as that of carbide. It has been shown that the density of the sintered body is approximately constant regardless of the silicon content, and that the density of the sintered body decreases as the silicon carbide content increases.

以上のように、(1)の方法においても炭化ケイ素含有
量が多くなるに従って焼結体の密度及び強度が低下する
という欠点を有していた。
As described above, method (1) also has the drawback that the density and strength of the sintered body decrease as the silicon carbide content increases.

さらに特開昭58−91070号公報では、気相反応に
より得た窒化ケイ素(Si3Nt)と炭化ケイ素(Si
C)との混合粉末を用いた高温強度と耐熱衝撃性に優れ
た複合焼結体が開示されている。しかしながら、この混
合粉末にはC2のごときハロゲンが含有しており高性能
の複合焼結体を得ることはできない。
Furthermore, in Japanese Patent Application Laid-Open No. 58-91070, silicon nitride (Si3Nt) and silicon carbide (Si
A composite sintered body with excellent high-temperature strength and thermal shock resistance using a mixed powder with C) has been disclosed. However, this mixed powder contains halogens such as C2, making it impossible to obtain a high-performance composite sintered body.

以上の様に、従来の方法においては一部の物性は向上さ
れるが、炭化ケイ素含有量の多い複合焼結体においては
、本発明の目的とする緻密で高強度、高靭性の複合焼結
体を得ることはできない。
As described above, some physical properties are improved in the conventional method, but in composite sintered bodies with a high silicon carbide content, it is difficult to achieve the dense, high strength, and high toughness composite sintered bodies that are the object of the present invention. You can't get a body.

しかして、本発明は高密度で緻密な微細構造を有し、強
度、破壊靭性値および耐酸化性に優れた窒化ケイ素−炭
化ケイ素複合焼結体の製造法を提供することを目的とす
るものである。
Therefore, an object of the present invention is to provide a method for manufacturing a silicon nitride-silicon carbide composite sintered body that has a high density and fine microstructure and has excellent strength, fracture toughness, and oxidation resistance. It is.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、主としてβ相の窒化ケイ素および
約35〜80重量%の主としてβ相の炭化ケイ素とから
構成され、特に強度、靭性および耐酸化性に優れた緻密
な微細構造を有する窒化ケイ素−炭化ケイ素複合焼結体
の製造法に関する。
That is, the present invention provides silicon nitride which is composed mainly of β-phase silicon nitride and about 35 to 80% by weight of mainly β-phase silicon carbide, and has a dense microstructure with particularly excellent strength, toughness, and oxidation resistance. -Regarding a method for producing a silicon carbide composite sintered body.

本発明の窒化ケイ素−炭化ケイ素複合焼結体は、平均粒
径1μm以下の微細な窒化ケイ素および炭化ケイ素粒子
で構成され、緻密な微細構造からなる複合焼結体である
The silicon nitride-silicon carbide composite sintered body of the present invention is composed of fine silicon nitride and silicon carbide particles with an average grain size of 1 μm or less, and has a dense microstructure.

この様な微細構造で構成された窒化ケイ素−炭化ケイ素
複合焼結体は、従来のように窒化ケイ素と炭化ケイ素粉
末とを単に機械的に混合する方法ではなく、原料として
ケイ素、炭素、窒素及び酸素からなる組成を有し、かつ
炭素の含有量が10.5〜24.0重量%であり、酸素
含有量が5重量%以下であり、平均粒径が1am以下の
非晶質の球状複合微粉末を使用し、加圧下で焼結するこ
とにより得られる。
Silicon nitride-silicon carbide composite sintered bodies with such a microstructure can be produced by using silicon, carbon, nitrogen and An amorphous spherical composite having a composition consisting of oxygen, a carbon content of 10.5 to 24.0% by weight, an oxygen content of 5% by weight or less, and an average particle size of 1 am or less It is obtained by using fine powder and sintering it under pressure.

この様な本発明の焼結体を得るのに好適な原料微粉末は
、気相反応法などの合成法を応用することにより得るこ
とができる。気相反応は通常知られている外部加熱方式
、プラズマ、レーザー等の手段が適用される。なかでも
工業的に応用範囲の広い外部加熱方式では、抵抗式電気
炉や高周波加熱炉によって800゜C以上の温度で行う
のが好ましい。
A raw material fine powder suitable for obtaining such a sintered body of the present invention can be obtained by applying a synthesis method such as a gas phase reaction method. For the gas phase reaction, commonly known means such as external heating, plasma, laser, etc. are applied. Among these, in the external heating method, which has a wide range of industrial applications, it is preferable to use a resistance electric furnace or a high-frequency heating furnace at a temperature of 800° C. or higher.

具体的には、たとえば、特開昭60−200812号公
報、特開昭60−200813号公報、特開昭−60−
221311号公報、特開昭−60−235707号公
報、特開昭61−117108号公報、に示される方法
により得ることができる。具体的には、有機ケイ素化合
物を気化しアンモニアを含む非酸化性ガスとよく混合し
たのち、該混合物を所定温度に加熱された反応器に導入
反応させることにより非晶質微粉末が得られる。
Specifically, for example, JP-A-60-200812, JP-A-60-200813, JP-A-60-60-
It can be obtained by the method shown in JP-A-221311, JP-A-60-235707, and JP-A-61-117108. Specifically, an amorphous fine powder is obtained by vaporizing an organosilicon compound and thoroughly mixing it with a non-oxidizing gas containing ammonia, and then introducing the mixture into a reactor heated to a predetermined temperature and causing a reaction.

しかしながらこの様にして合成された非晶質微粉末はこ
のまま焼結体を得るための原料として用いた場合は、焼
結中にガスが発生し焼結体中に気孔を生成する虞れがあ
り好ましくなく、したがって気相反応によって得た微粉
末を一端熱処理して揮発性成分を除去することが好まし
い。この熱処理は非酸化性雰囲気下もしくは真空下で、
しかも結晶質の生成がない温度範囲、すなわち1000
〜1400’Cの制御された範囲で実施することが重要
である。すなわち、1000〜1300゜C未満の比較
的低い温度領域で熱処理を行う場合は、雰囲気ガスとし
てはAr、 NZ+ lie、 N11.、112など
の非酸化性ガスが用いられる。加熱処理時間は温度条件
や試料量等により決められる。
However, if the amorphous fine powder synthesized in this way is used as a raw material for obtaining a sintered body, there is a risk that gas will be generated during sintering and create pores in the sintered body. Therefore, it is preferable to heat-treat the fine powder obtained by the gas phase reaction to remove volatile components. This heat treatment is performed in a non-oxidizing atmosphere or under vacuum.
Moreover, the temperature range in which no crystalline material is formed is 1000.
It is important to operate in a controlled range of ~1400'C. That is, when heat treatment is performed in a relatively low temperature range of less than 1000 to 1300°C, the atmospheric gas may be Ar, NZ+lie, N11. , 112, etc. are used. The heat treatment time is determined by temperature conditions, sample amount, etc.

たとえば、試料の量が200g程度の場合は、1100
゜Cで約8時間、1250゜Cで約6時間で熱処理を完
了することができる。この熱処理により気相反応で得ら
れた非晶質粉末組成物はCIl、、 II□、 HCN
、 Nzおよび炭化水素類を放出し、10〜20w t
Xの重量減を伴いながら本発明の非晶質球状粉末を生成
する。また、1300〜1400”Cの比較的高い温度
領域で熱処理を行う場合は、比較的短時間で熱処理を完
了できる利点はあるが、条件によっては結晶化が進み粒
子の粗大化や球状の粒子形状を維持することが困難とな
る。たとえば、11□ガスを雰囲気ガスとして用いた場
合は結晶化が進み粒子の粗大化が進行し易く好ましくな
い。したがって上記のごとき比較的高い温度で熱処理す
る場合の雰囲気ガスとしては、Ar、 N、、 NHユ
、■eなどの非酸化性ガスが好適である。さらに、熱処
理により放出される上記したCIl4. FICN、 
NZおよび炭化水素類も粒子の結晶化を促進するので速
やかに系外に排出することが必要である。したがって、
Ar+ NH:1lN21Heなどの非酸化性ガスを用
いる場合でも処理温度が1300゜C以上の場合は、少
なくとも0.05cm/ sec、、通常は0.05〜
100cm/sec、の線速をもつ雰囲気ガス気流下で
実施することが好ましい。たとえば、1350’C,A
r気流下、約3時間の熱処理で目的とする非晶質の球状
粉末が得られる。原料微粉末の合成に用いられる上記の
有機ケイ素化合物は焼結時に悪影苦を及ぼすハロゲンを
有しないものが好ましい。
For example, if the amount of sample is about 200g,
The heat treatment can be completed in about 8 hours at 1250°C and about 6 hours at 1250°C. The amorphous powder composition obtained by gas phase reaction by this heat treatment is CIl, II□, HCN
, releases Nz and hydrocarbons, 10-20wt
The amorphous spherical powder of the present invention is produced with a weight loss of X. In addition, when heat treatment is performed in a relatively high temperature range of 1300 to 1400"C, it has the advantage of being able to complete the heat treatment in a relatively short time, but depending on the conditions, crystallization may progress, resulting in coarse particles or spherical particle shapes. For example, if 11□ gas is used as the atmospheric gas, crystallization will progress and particles will tend to become coarser, which is undesirable. As the atmospheric gas, non-oxidizing gases such as Ar, N, NH, ■e are suitable.Furthermore, the above-mentioned CIl4.FICN, which is released by heat treatment,
Since NZ and hydrocarbons also promote crystallization of particles, they must be promptly discharged from the system. therefore,
Ar+ NH: Even when using a non-oxidizing gas such as 11N21He, if the processing temperature is 1300°C or higher, the rate is at least 0.05 cm/sec, usually 0.05~
It is preferable to carry out under an atmospheric gas flow having a linear velocity of 100 cm/sec. For example, 1350'C,A
The desired amorphous spherical powder is obtained by heat treatment for about 3 hours under r air flow. The above-mentioned organosilicon compound used in the synthesis of the raw material fine powder preferably does not contain halogen, which causes adverse effects during sintering.

この様な有機ケイ素化合物としては、例えば、■一般式
(R,−112−+13Si) Nl24または(R+
−RzSi−NRi)(ただし、式中R3〜R4はそれ
ぞれ水素、アルキル基、アリル基、フェニル基等を示し
、nは3〜4である)で示されるシラザン化合物、 ■一般数式、1Si(NR+−Rz)lI(式中R+R
1+R2は水素、アルキル基、アリル基、フェニル基を
示す、I?、 R,。
Such organosilicon compounds include, for example, general formula (R, -112-+13Si) Nl24 or (R+
-RzSi-NRi) (wherein R3 to R4 each represent hydrogen, an alkyl group, an allyl group, a phenyl group, etc., and n is 3 to 4), ■General formula, 1Si(NR+ -Rz)lI (R+R in the formula
1+R2 represents hydrogen, an alkyl group, an allyl group, a phenyl group, I? ,R,.

R3が同時に水素である場合を除く、nはO〜3、mは
4−nである)であるアミンケイ素化合物、■一般弐R
,,Si (CN)、%(ただし、式中Rは水素、アル
キル基、アリル基、フェニル基を示し、nは0〜3、m
は4−nである)であるシアンケイ素化合物、■一般数
式z−(Si)−(式中Rは水素、アルキル基、アリル
基、フェニル基を示す。ただし、Rが同時に水素である
場合を除く、nは1〜4の整数である)で示される有機
ケイ素化合物、および ■一般弐1?:1Si(R’−R2Si)、 L (式
中R1,R2,R3は水素原子、アルキル基、アリル基
、またはフェニル基であり、R”はメチレン基、エチレ
ン基またはフェニレン4mは1〜2の整数である)で示
される5ill結合を有する有機ケイ素化合物、あるい
は前記−数式において、5ill結合を有しない有機ケ
イ素化合物、があげられる。
(except when R3 is hydrogen at the same time, n is O~3, m is 4-n), ■General 2R
,,Si (CN),% (wherein R represents hydrogen, an alkyl group, an allyl group, a phenyl group, and n is 0 to 3, m
is 4-n), ■ General formula z-(Si)- (wherein R represents hydrogen, an alkyl group, an allyl group, or a phenyl group. However, when R is hydrogen at the same time, (excluding organosilicon compounds, n is an integer from 1 to 4), and ■General 21? :1Si(R'-R2Si), L (wherein R1, R2, R3 are hydrogen atoms, alkyl groups, allyl groups, or phenyl groups, R" is a methylene group, ethylene group or phenylene 4m is 1 to 2 Examples include organosilicon compounds having a 5ill bond represented by (which is an integer), or organosilicon compounds having no 5ill bond in the above formula.

具体的には、たとえば、((CIl:l) isi )
z NHl((CIl3) zsiNll L、[H5
i (C1h) 2 ]1NH2C(C11,)、Si
’l、NCl1.、((CIl:l) ZSi−NCI
+、 )。
Specifically, for example, ((CIl:l)isi)
z NHl((CIl3) zsiNll L, [H5
i (C1h) 2 ]1NH2C(C11,), Si
'l, NCl1. , ((CIl:l) ZSi-NCI
+, ).

のごときシラザン化合物、または下記化学式であって、
ケイ素上の置換基としてN−メチルアミノ基を有する6
員環状のトリス(N−メチルアミノ)トリーN−メチル
−シクロトリシラザン、 ■ あるいは、CH:+Si (NHCtl+)、1(CH
3) zsi (NHCH3) z。
A silazane compound such as, or the chemical formula below,
6 having an N-methylamino group as a substituent on silicon
membered cyclic tris(N-methylamino)triN-methyl-cyclotrisilazane, ■ Or CH:+Si (NHCtl+), 1(CH
3) zsi (NHCH3) z.

(C1lz)zSi (N(C1h)z )などのアミ
ノケイ素化合物、(CH3) zsicN、 (CL)
 zsi (CN) z 、(CJs) 35iCN 
 、(Calls) z Si (CN) z 、Hz
SiCN、 (C1l=CII) Cl1sSi (C
N) zなどのシアノケイ素化合物、 (C1lz)4si、  ((CH:+)zsi)z、
((CH3) 、lsi )JLCI+2、((CII
 3 ) 2 HS s %、   ((C11+) 
JSi 3っc+iz、等の有機ケイ素化合物が例示さ
れる。
Aminosilicon compounds such as (C1lz)zSi (N(C1h)z ), (CH3)zsicN, (CL)
zsi (CN) z, (CJs) 35iCN
, (Calls) z Si (CN) z , Hz
SiCN, (C1l=CII) Cl1sSi (C
N) cyanosilicon compounds such as z, (C1lz)4si, ((CH:+)zsi)z,
((CH3), lsi)JLCI+2, ((CII
3) 2HS %, ((C11+)
Examples include organosilicon compounds such as JSi 3c+iz.

以上のごとき有機ケイ素化合物の少な(とも一種を前記
した方法により得られた原料微粉末は、乾式あるいは湿
式混合法により焼結助剤を混合して焼結され、非晶質の
粉末であるにもかかわらず、密度の高い緻密な微細構造
を有する窒化ケイ素−炭化ケイ素複合焼結体を与えるも
のである。
The raw material fine powder obtained by the method described above containing a small amount of the above organosilicon compounds is sintered by mixing a sintering aid by a dry or wet mixing method, and is an amorphous powder. Nevertheless, a silicon nitride-silicon carbide composite sintered body having a dense and precise microstructure can be obtained.

本発明における焼結方法は、通常のホットプレス、ガス
圧焼結、あるいはHI P等の従来から実施されている
方法がそのまま適用できる。例えば、代表的なホットプ
レス法では1750〜1850″C1200〜400K
g/cm2.0.5〜3 hrsの条件で加圧焼結され
る。このような加圧焼結によって非晶質粉末は結晶化を
はじめ、結晶化とともに焼結が進行する。最終的に得ら
れる焼結体は、大部分が主としてβ相の窒化ケイ素と主
としてβ相の炭化ケイ素から構成される。
As the sintering method in the present invention, conventional methods such as ordinary hot pressing, gas pressure sintering, or HIP can be applied as they are. For example, in the typical hot press method,
g/cm2. Pressure sintering is performed under conditions of 0.5 to 3 hrs. By such pressure sintering, the amorphous powder begins to crystallize, and sintering progresses along with the crystallization. The finally obtained sintered body is mainly composed of silicon nitride mainly in the β phase and silicon carbide mainly in the β phase.

本発明に用いられる焼結助剤は、従来から窒化ケイ素、
炭化ケイ素に用いられているいずれのものも使用するこ
とができる。たとえば、MgO,Al2O2゜Y2O:
l+ Ce0z、およびLazOz等が例示され、これ
らは単独でもしくは混合して使用することができる。
The sintering aid used in the present invention has conventionally been silicon nitride,
Any used for silicon carbide can be used. For example, MgO, Al2O2゜Y2O:
l+ Ce0z, LazOz, etc. are exemplified, and these can be used alone or in combination.

これら焼結助剤の使用量は通常1〜15重量%の範囲で
ある。
The amount of these sintering aids used is usually in the range of 1 to 15% by weight.

この様な本発明の方法による複合焼結体は従来のものに
比較して密度が高(緻密であり、また室温並びに高温に
おける強度が高く、破壊靭性値も高い値を示す。また、
焼結体の硬度はSiCの含有量が増加するにしたがって
上昇する傾向を示し、窒化ケイ素より硬い焼結体となる
。さらに耐酸化性は窒化ケイ素より向上し、熱膨張係数
は炭化ケイ素のそれに近ずく。本発明によって得られる
複合焼結体の微細構造は炭化ケイ素の含有量にもよるが
、平均粒径が1ミクロン以下のサブミクロン径の粒子に
よって構成され窒化ケイ素と炭化ケイ素は均一に分散し
ている。
The composite sintered body produced by the method of the present invention has a higher density (denseness) than conventional ones, has high strength at room temperature and high temperature, and exhibits a high fracture toughness value.
The hardness of the sintered body tends to increase as the content of SiC increases, and the sintered body becomes harder than silicon nitride. Furthermore, its oxidation resistance is improved compared to silicon nitride, and its coefficient of thermal expansion approaches that of silicon carbide. Although the microstructure of the composite sintered body obtained by the present invention depends on the silicon carbide content, it is composed of submicron particles with an average particle size of 1 micron or less, and silicon nitride and silicon carbide are uniformly dispersed. There is.

また、本発明にかかる複合焼結体のTEM (透過型電
子顕微鏡)観察によると、炭化ケイ素粒子のなかには、
窒化ケイ素粒子の内部に数十ナノメートルの大きさで存
在しているものも認められる。
Furthermore, according to TEM (transmission electron microscope) observation of the composite sintered body according to the present invention, some silicon carbide particles include
Some particles with a size of several tens of nanometers are observed inside silicon nitride particles.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、35重量%以上の炭化ケイ素を含む緻
密な微細構造を有する窒化ケイ素−炭化ケイ素複合焼結
体を得ることができ、しかも得られる窒化ケイ素−炭化
ケイ素複合焼結体は、構成する粒子の平均粒径がサブミ
クロンであり両者は均一に分散している。なかには、一
方の粒子の内部に数十ナノメートルの粒子の大きさで入
り込んでいるものも認められる。
According to the present invention, it is possible to obtain a silicon nitride-silicon carbide composite sintered body having a dense microstructure containing 35% by weight or more of silicon carbide, and the obtained silicon nitride-silicon carbide composite sintered body has The average particle diameter of the constituent particles is submicron, and both are uniformly dispersed. In some cases, particles with a size of several tens of nanometers have entered the inside of one particle.

このため、本発明によって得られる窒化ケイ素−炭化ケ
イ素は、室温及び高温における強度に優れ破壊靭性値も
また高い値を与える。また、耐酸化性は窒化ケイ素より
優れ高温構造材料として好適である。
Therefore, the silicon nitride-silicon carbide obtained by the present invention has excellent strength at room temperature and high temperature, and also provides a high fracture toughness value. Furthermore, it has better oxidation resistance than silicon nitride and is suitable as a high-temperature structural material.

さらに熱膨張率は炭化ケイ素に近い値を示すため、炭化
ケイ素との積層複合材料や炭化ケイ素のCVDコーティ
ングなどに適した材料となる。
Furthermore, since the coefficient of thermal expansion exhibits a value close to that of silicon carbide, it becomes a material suitable for laminated composite materials with silicon carbide, CVD coatings of silicon carbide, and the like.

次に本発明の実施例を比較例と共に示す。以下に示す実
施例は本発明の一例を示すものであって本発明の要旨を
超えない限り、これに限定されるものでない。
Next, examples of the present invention will be shown together with comparative examples. The examples shown below are merely examples of the present invention, and are not intended to be limiting unless they go beyond the gist of the present invention.

尚、本発明において、試験片の3点曲げ強度はスパン2
0mm 、クロスヘツドスピード0.5 mm/min
で行った。破壊靭性値は微小圧子圧入法(Indent
ationMicrofracture法)を用い、J
、Mater、 Sci、 Lett、。
In addition, in the present invention, the three-point bending strength of the test piece is span 2
0mm, crosshead speed 0.5mm/min
I went there. The fracture toughness value was determined using the microindentation method (Indentation method).
tion Microfracture method), J
, Mater, Sci., Lett.

1、13 (19B2)に記載の式により評価した。焼
結体の嵩密度測定はアルキメデス法により、硬度は微小
硬度計によるビッカース硬度測定(19,6N  荷重
、20秒保持)によった。また、耐酸化性は1400’
C。
1, 13 (19B2). The bulk density of the sintered body was measured by the Archimedes method, and the hardness was measured by Vickers hardness using a microhardness meter (19.6N load, held for 20 seconds). In addition, the oxidation resistance is 1400'
C.

48時間、乾燥空気中で放置したときの重量増加を測定
した。熱膨張係数は室温から1000 ’Cまでの膨張
率から算出した。
The weight increase was measured when the sample was left in dry air for 48 hours. The thermal expansion coefficient was calculated from the expansion coefficient from room temperature to 1000'C.

実施例 1〜4 90mm (直径)x1300mm (長さ)のアルミ
ナ製反応管を設置した縦型の抵抗式加熱炉を、1050
″Cの温度に保持した。一方、反応原料のへキサメチル
ジシラザン(Si (CH3) s ) NHを約50
0g/hrの供給量で蒸発器に導入し、完全に気化させ
た後表−1に示した混合比のN/Ar混合ガスとよく混
合して上記反応炉に導入し反応させた。生成した粉末を
約200gアルミナ製容器に充填し、1300’C,4
hrs、アルゴン(Ar)アンモニア(Nlls)混合
気流下に熱処理を行い焼結体形成用の原料粉末を得た。
Examples 1 to 4 A vertical resistance heating furnace equipped with an alumina reaction tube of 90 mm (diameter) x 1300 mm (length) was
On the other hand, the reaction raw material hexamethyldisilazane (Si (CH3) s ) NH was kept at a temperature of about 50 °C.
After being introduced into the evaporator at a supply rate of 0 g/hr and completely vaporized, the mixture was thoroughly mixed with N/Ar mixed gas having the mixing ratio shown in Table 1, and introduced into the above reactor for reaction. Approximately 200g of the generated powder was packed into an alumina container and heated at 1300'C, 4
Heat treatment was performed under a mixed gas flow of hrs, argon (Ar), and ammonia (Nlls) to obtain a raw material powder for forming a sintered body.

得られた粉末はX線回折によれば非晶質の粉末であり、
SEM写真による観察では0.5μm以下の球状粒子で
あった。
The obtained powder was an amorphous powder according to X-ray diffraction,
Observation using a SEM photograph revealed that the particles were spherical particles with a diameter of 0.5 μm or less.

かくして得た原料粉末に’11036匈tχ、//!!
032wtχを加えエタノール中で湿式混合を行い乾燥
した後、直径30mmの黒鉛ダイスに充填し、窒素ガス
中350kg/cm2の圧力で1850゜Cl2hrs
のホットプレス焼結を行った。得られた焼結体を切断し
、# 100、#600のダイヤモンド砥石で研削した
のち3μm。
The raw material powder obtained in this way has '11036 匈tχ, //! !
After adding 032wtχ and wet mixing in ethanol and drying, it was packed into a graphite die with a diameter of 30mm and heated at a pressure of 350kg/cm2 in nitrogen gas for 1850°Cl2hrs.
Hot press sintering was performed. The obtained sintered body was cut and ground with #100 and #600 diamond grindstones to a thickness of 3 μm.

1μmのダイヤモンドペーストで研磨し、2x3x25
mmの試験片を作成し、物性を測定した。この結果を表
−1に示す。
Polished with 1μm diamond paste, 2x3x25
mm test pieces were prepared and their physical properties were measured. The results are shown in Table-1.

表−1 した 比較例 1 市販の高純度の結晶質 Si3N、粉末(α相90χ平
均粒径0.6μm、(不純物:  Fe、八l + C
a < 50ppm。
Table 1 Comparative Example 1 Commercially available high-purity crystalline Si3N, powder (α phase 90χ average particle size 0.6 μm, impurities: Fe, 8 l + C
a<50ppm.

0 < 1 wtχ)にhos 6wtχ、 //!、
0.2匈tχを加え、エタノールと共にSボールで5 
hrs湿式混合した後、実施例1〜4と同様の条件でホ
ットプレス焼結を行って焼結体を得た。得られた焼結体
の物性を測定した結果、密度3.26 g/cm” 、
ビッカース硬度14.5GPa、破壊靭性値5’、2M
N/m”” 、3点曲げ強度は室温で87kg/mm2
.1400゜Cで25kg/mm2であった。また酸化
増量は1.2 mg/cm”、熱膨張係数は3.4 x
lO−6/’Cであった。
0 < 1 wtχ) to hos 6wtχ, //! ,
Add 0.2 tx and mix with ethanol in S ball for 5 minutes.
After wet mixing, hot press sintering was performed under the same conditions as in Examples 1 to 4 to obtain a sintered body. As a result of measuring the physical properties of the obtained sintered body, the density was 3.26 g/cm'',
Vickers hardness 14.5GPa, fracture toughness value 5', 2M
N/m””, 3-point bending strength is 87kg/mm2 at room temperature
.. It was 25 kg/mm2 at 1400°C. Also, the oxidation weight increase is 1.2 mg/cm", and the thermal expansion coefficient is 3.4 x
It was lO-6/'C.

比較例 2−3 比較例1に使用したと同様のSiJ<粉末に、β−9i
C(平均粒径0.7μm、不純物Fe: 0.02 w
tχ。
Comparative Example 2-3 The same SiJ< powder used in Comparative Example 1, β-9i
C (average particle size 0.7 μm, impurity Fe: 0.02 w
tχ.

八l : 0.10 wtχ、 Ca: 0.04 w
Lχ、 O: 0.04wtχ)を表−2に示す割合で
混合し、これにYz(h 6 wtχ。
8l: 0.10 wtχ, Ca: 0.04 w
Lχ, O: 0.04wtχ) was mixed in the ratio shown in Table 2, and Yz (h 6 wtχ) was mixed therewith.

AI2!032智tχを加えエタノールと共に5i3N
aボールで5hrs湿式混合した後、実施例1〜4と同
様の条件でポットプレス焼結を行って焼結体を得た。
Add AI2!032chitχ and 5i3N with ethanol
After wet mixing with an a-ball for 5 hours, pot press sintering was performed under the same conditions as in Examples 1 to 4 to obtain a sintered body.

この物性を表−2に示した。The physical properties are shown in Table 2.

Claims (2)

【特許請求の範囲】[Claims] (1).ケイ素、炭素、窒素及び酸素からなる組成を有
し、炭素含有量が10.5〜24.0重量%であり、か
つ平均粒径が1μm以下の球状の非晶質粉末に焼結助剤
を混合し、該混合物を非酸化性ガス雰囲気下で加圧下に
焼結し、主としてβ相の窒化ケイ素および35〜80重
量%の主としてβ相の炭化ケイ素からなり、焼結体を構
成する窒化ケイ素および炭化ケイ素の粒子の平均粒径が
1μm以下で均一に分散した緻密な微細構造を有するこ
とを特徴とする窒化ケイ素−炭化ケイ素複合焼結体の製
造法。
(1). A sintering aid is added to a spherical amorphous powder having a composition of silicon, carbon, nitrogen and oxygen, a carbon content of 10.5 to 24.0% by weight, and an average particle size of 1 μm or less. The mixture is sintered under pressure in a non-oxidizing gas atmosphere to form a sintered body consisting of mainly β-phase silicon nitride and 35 to 80% by weight of mainly β-phase silicon carbide. and a method for producing a silicon nitride-silicon carbide composite sintered body, characterized in that silicon carbide particles have an average particle size of 1 μm or less and have a uniformly dispersed, dense microstructure.
(2).ケイ素、炭素、窒素及び酸素からなる組成を有
し、炭素含有量が、10.5〜24.0重量%であり、
かつ平均粒径が1μm以下の球状の非晶質粉末は、ハロ
ゲンを含有しない有機ケイ素化合物をNH_3を含む非
酸化性ガスの雰囲気下に気相反応させて得られる微粉末
を、非酸化性ガス雰囲気下に1000〜1400゜Cの
温度で加熱処理して得られたものである特許請求の範囲
第1項記載の方法。
(2). It has a composition consisting of silicon, carbon, nitrogen and oxygen, and the carbon content is 10.5 to 24.0% by weight,
Spherical amorphous powder with an average particle size of 1 μm or less is obtained by subjecting a halogen-free organosilicon compound to a gas phase reaction in an atmosphere of a non-oxidizing gas containing NH_3. The method according to claim 1, which is obtained by heat treatment at a temperature of 1000 to 1400°C in an atmosphere.
JP63103770A 1988-04-28 1988-04-28 Production of silicon nitride-silicon carbide combined sintered body Pending JPH01275470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103770A JPH01275470A (en) 1988-04-28 1988-04-28 Production of silicon nitride-silicon carbide combined sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103770A JPH01275470A (en) 1988-04-28 1988-04-28 Production of silicon nitride-silicon carbide combined sintered body

Publications (1)

Publication Number Publication Date
JPH01275470A true JPH01275470A (en) 1989-11-06

Family

ID=14362698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103770A Pending JPH01275470A (en) 1988-04-28 1988-04-28 Production of silicon nitride-silicon carbide combined sintered body

Country Status (1)

Country Link
JP (1) JPH01275470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122485A (en) * 1990-01-29 1992-06-16 Nissan Motor Co., Ltd. Sintered silicon carbide and silicon nitride base composite
JPH04231381A (en) * 1990-12-27 1992-08-20 Kyocera Corp Silicon nitride-silicon carbide composite sintered body and its production
WO1993004012A1 (en) * 1991-08-13 1993-03-04 Sumitomo Electric Industries Ltd. Composite silicon nitride sinter and production thereof
US5559062A (en) * 1993-12-17 1996-09-24 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing a composite sintered body
JP4685257B2 (en) * 2001-03-09 2011-05-18 日本特殊陶業株式会社 Silicon nitride sintered body and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122485A (en) * 1990-01-29 1992-06-16 Nissan Motor Co., Ltd. Sintered silicon carbide and silicon nitride base composite
JPH04231381A (en) * 1990-12-27 1992-08-20 Kyocera Corp Silicon nitride-silicon carbide composite sintered body and its production
WO1993004012A1 (en) * 1991-08-13 1993-03-04 Sumitomo Electric Industries Ltd. Composite silicon nitride sinter and production thereof
US5352641A (en) * 1991-08-13 1994-10-04 Sumitomo Electric Industries, Ltd. Silicon nitride composite sintered body and process for producing same
US5559062A (en) * 1993-12-17 1996-09-24 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing a composite sintered body
JP4685257B2 (en) * 2001-03-09 2011-05-18 日本特殊陶業株式会社 Silicon nitride sintered body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4800182A (en) Silicon nitride-silicon carbide composite material and process for production thereof
EP0385509B1 (en) Process for producing ceramic composites
JPH055782B2 (en)
JP2001511106A (en) 312 Surface treatment of ternary ceramic material and its product
JPH01275470A (en) Production of silicon nitride-silicon carbide combined sintered body
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
Chollon et al. Processing and characterization of an amorphous Si–N–(O) fibre
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
JPS6212663A (en) Method of sintering b4c base fine body
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JPS63159256A (en) Silicon nitride-silicon carbide composite sintered body and manufacture
JPH06128052A (en) Sintered compact of silicon nitride and its production
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPS63159204A (en) Amorphous spherical composite powder and production thereof
JP2910359B2 (en) Method for producing silicon nitride based sintered body
US5173459A (en) Si3 N4 -A12 O3 composite sintered bodies and method of producing the same
JP2631109B2 (en) Method for producing silicon nitride composite sintered body
JP2610156B2 (en) Method for producing silicon nitride powder
JPH0316983A (en) Ceramic thermal insulating member and production thereof
JPH06128040A (en) Silicon nitride-based sintered compact and its production
JPH02116617A (en) Preparation of compound powder of boron nitride and aluminium nitride
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPH0250074B2 (en)
JPS6126566A (en) Method of sintering sic composite body