JPH053566B2 - - Google Patents

Info

Publication number
JPH053566B2
JPH053566B2 JP22776184A JP22776184A JPH053566B2 JP H053566 B2 JPH053566 B2 JP H053566B2 JP 22776184 A JP22776184 A JP 22776184A JP 22776184 A JP22776184 A JP 22776184A JP H053566 B2 JPH053566 B2 JP H053566B2
Authority
JP
Japan
Prior art keywords
electrode
display device
serves
reflective film
thermo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22776184A
Other languages
Japanese (ja)
Other versions
JPS61107219A (en
Inventor
Juzo Kozono
Eiji Ashida
Akira Konuma
Satoshi Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22776184A priority Critical patent/JPS61107219A/en
Publication of JPS61107219A publication Critical patent/JPS61107219A/en
Publication of JPH053566B2 publication Critical patent/JPH053566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は熱光学効果または電気・熱光学効果を
有する表示体を用いた熱書込み型表示装置に係
り、特にゲストホスト表示方式の熱書込み型表示
装置に好適な表示装置及びその製造方法に関す
る。 〔発明の背景〕 熱光学効果または電気・熱光学効果を有する表
示体を利用する熱書込み型表示装置として、スメ
クチツク相を有する液晶の電気・熱光学効果を利
用した熱書込み型表示装置が知られている。(特
開昭53−70456、特開昭57−192925)。その液晶パ
ネルの基本構造を第2図に示す。ガラス基板1の
上に例えばストライプ状の液晶加熱電極2を設
け、もう一方のガラス基板6には液晶加熱電極2
と直交するようにストライプ状の透明電極5が設
けられている。加熱電極2と透明電極5の間にス
メクチツク相を有する液晶層4がある。加熱電極
2と透明電極5との交点が1画素となり、マトリ
ツクス状の表示パネルを構成している。なお、液
晶層4と各電極の間には配向膜3がある。スメク
チツク相を有する液晶は加熱電極2の抵抗発熱に
より加熱され、スメクチツクA相からネマチツク
相を経て等方性液体相に変化する。そして等方性
液体相から冷却する過程で、液晶に電界を印加す
ると液晶分子は電界方向に並び、この状態を保つ
たままスメクチツク相となる。この時、液晶層4
は透過率の高い非散乱状態である。一方、冷却過
程で、液晶に電界を印加しない場合、液晶分子は
ランダムな配向状態のスメクチツク相となり、透
過率の低い光散乱状態になる。各画素をこの光散
乱状態にするか非散乱状態にするかによつて、表
示を行なうものである。表示方式として散乱モー
ド方式とゲストホストモード方式がある。散乱モ
ード方式は、鏡面反射表面を有する加熱電極を用
いて外光の液晶による乱反射で表示するものであ
る。すなわち、非散乱状態の画素は外光が乱反射
せず電極表面の鏡面が見え、光散乱状態の画素は
外光が乱反射し、その画素は白濁して見えるよう
になるのを利用して表示を行なうものである。こ
の時、加熱電極はAl、Cr、Ni等の金属電極で、
表面は反射率の高い鏡面状態が用いられている。
しかし、この散乱モードの表示は、視角特性が悪
く、表示パネルに対してほぼ垂直の方向からのみ
しか、表示が見えない。またコントラストの向上
も限界がある。これに対し、液晶に色素を添加し
たゲストホスト方式は視角依存性が小さく、ま
た、コントラストの点から有利であるが、電極表
面すなわち表示の背景を白色の拡散反射面とする
ことが必要である。このため先行技術として、加
熱用電極部の素子構造として第3図aに示すよう
に加熱電極2+絶縁物7+白色Al反射膜8とす
るもの、また第3図bに示す様に白色Al加熱電
極2の方法がある。第3図aの方法はAlの加熱
電極2と白色反射膜8の絶縁膜7をはさんで別々
に設けたものであるが、素子構造が3層と複雑で
製造プロセスが複雑になる。また絶縁膜にピンホ
ール等の欠陥があると、加熱電極と白色反射膜の
間で短絡が発生しやすい。さらに、絶縁膜が断熱
層として作用するため、加熱用電極で発生した熱
が有効に液晶層の加熱のために働かないという問
題がある。 さらに、スメクチツク相を有する液晶を用いた
熱書込み液晶表示装置は表示だけでなく一度書き
込んだ情報を読み出せるという特徴がある。これ
はスメクチツク相の液晶の書込みを行なつた、画
素部と書込みを行なわない画素部の誘電率の差が
あることを利用したものである。すなわち、書込
み画素と非書込み画素の加熱電極と透明電極の間
のコンデンサ容量の差を検出して、書込まれた情
報を読み出すものである(特開昭59−34587号公
報、特開昭59−155880号公報)。第3図aの方法
では加熱電極2と透明電極5(第2図、透明電極
5参照)の間に絶縁膜7がある。この絶縁膜7の
誘電率は液晶に比べて非常に大であるため、液晶
層4の誘電率を検出しようとしても絶縁膜7の誘
電率に影響されて、書込み画素と非書込み画素の
差を検出できないという問題がある。 また第3図bの方法は加熱電極が白色反射膜を
兼ねたもので、素子構造は単純で望ましいもので
ある。しかし、従来第3図bの方法では加熱電極
の材料としてAlを用いている。Alはその薄膜形
成時の蒸着条件を適当に選定すれば、容易に白色
化できるためである。一般的には、Alの場合、
蒸着時の基板温度を300℃前後に加熱し、低蒸着
速度で蒸着し膜結晶を成長させることにより表面
を凹凸にし乳白色の表面を得ている。この場合、
表面を凹凸にし、拡散反射率の高い白色反射膜を
得るには、Alの膜厚として1.0〜2.0μm程度必要
である。しかし、Alの膜厚が1.0〜2.0μmになる
とシート抵抗は0.03Ω/□以下となる。抵抗が小
さいと、加熱電極2の抵抗発熱による液晶層の加
熱に大きな電流が必要となる。例えば加熱電極2
の長さ200mm、幅400μm、膜厚1.0μmの時、液晶
層を40〜50℃まで加熱するには1A以上の電流が
必要で、液晶パネルを駆動する回路が大型化し、
駆動回路のIC化、LSI化が困難となる。また当
然、電力の消費も大となる。従つて、加熱電極2
としては、第3図bの様に加熱電極2が白色反射
膜を兼ねた構造で、シート抵抗0.1〜1Ω/□と
することが課題である。この時、加熱電極2の膜
厚は、電極の温度上昇に伴う電極の溶断、電極の
許容通電電流の点から、例えば0.5μm以上の膜厚
が必要である。 〔発明の目的〕 本発明の目的は、比較的抵抗が高く、かつ簡単
な構成の白色反射膜を兼ねる電極を具備する表示
装置及びその製造方法を提供することにある。 〔発明の概要〕 上記目的を達成する本発明の第1の特徴とする
ところは、対向面に一方の電極と白色反射膜を兼
ねる他方の電極とが対向するように形成される一
対の基板と、該一対の基板間に保持される熱光学
効果または電気・熱光学効果を有する表示体とを
具備する表示装置に於いて、上記白色反射膜を兼
ねる他方の電極は、膜厚方向の中央付近の比抵抗
が、主表面付近の比抵抗より大きいことにある。 さらに、本発明の第2の特徴とするところは、
対向面に一方の電極と白色反射膜を兼ねる他方の
電極とが対向するように形成される一対の基板
と、該一対の基板間に保持される熱光学効果また
は電気・熱光学効果を有する表示体を具備する表
示装置に於いて、上記白色反射膜を兼ねる他方の
電極は、絶縁物が混入されて形成され、膜厚方向
の中央付近に於ける上記絶縁物の混入比が、主表
面付近に於ける上記絶縁物の混入比より大きいこ
とにある。 さらに、本発明表示装置の製造方法の特徴とす
るところは、白色反射膜を兼ねる他方の電極は、
スパツタガスとして酸素および/または窒素が混
入された第1の工程と、スパツタガスとして酸素
および/または窒素が上記第1の工程より少なく
混入された第2の工程とを含むスパツタ蒸着で形
成されることにある。 〔発明の実施例〕 以下、本発明につき詳細に説明する。 第1図a及び第1図bは、本発明の一実施例と
なる液晶表示装置の素子構造を示す分解斜視図お
よび断面構造図である。 一方のガラス基板1の上面には高熱伝導層9、
断熱層10および加熱電極11の順に積層され、
一方、ガラス基板1に対面する他方のガラス基板
6には透明電極5が配設され、この加熱電極3と
透明電極5との間に配向膜3を介してスメクチツ
ク相を有する液晶層4がはさみ込まれている。加
熱電極3と透明電極5との交点が画素を形成し、
全体としてマトリツクス状を形成している。この
実施例では、高熱伝導層9が一方のガラス基板1
の全面に形成した場合を示している。加熱電極1
1は白色反射膜を兼ねている。 本実施例のガラス基板1,6の材質は、硼硅酸
ガラスであり、SiO2が81%、B2O3が12%、Na2O
が4%、Al2O3が3%の組成のものを使用してい
る。尚、本実施例としては、基板として、ガラス
を用いたが、ガラスに限らず、プラスチツクを用
いるか、もしくは観察しない側の基板をSi等の不
透明な基板、観察する側の基板をガラス、プラス
チツク等の透明基板を用いても良い。 このように構成してなる液晶表示装置の素子で
あるガラス基板としては、板厚が1.1mmt、熱伝
導率が0.0027cal・cm-1・sec-1・℃-1本実施例で
は高熱伝導層9は銅(熱伝導率0.943cal・cm-1
sec-1・℃-1)の蒸着膜2μmを用いている。また、
断熱層10は熱伝導率0.0003cal・cm-1・sec-1
-1のキシレン重合体であり、膜厚が5μmであ
る。また、透明電極としてはIn2O3−SnO2の0.2μ
mの蒸着膜を用いている。 本実施例の液晶材料は、熱光学効果または電
気・熱光学効果を有するもので、例えば
[Field of Application of the Invention] The present invention relates to a thermal writing type display device using a display body having a thermo-optic effect or an electric/thermo-optic effect, and in particular to a display device and a display device suitable for a guest-host display type thermal writing type display device. It relates to its manufacturing method. [Background of the Invention] As a thermal writing type display device that utilizes a display body having a thermo-optic effect or an electric/thermo-optic effect, a thermal writing type display device that utilizes the electric/thermo-optic effect of a liquid crystal having a smectic phase is known. ing. (Japanese Patent Publication No. 53-70456, Japanese Patent Application Publication No. 57-192925). The basic structure of the liquid crystal panel is shown in Figure 2. For example, a striped liquid crystal heating electrode 2 is provided on the glass substrate 1, and a liquid crystal heating electrode 2 is provided on the other glass substrate 6.
A striped transparent electrode 5 is provided so as to be perpendicular to the . Between the heating electrode 2 and the transparent electrode 5 there is a liquid crystal layer 4 having a smectic phase. The intersection of the heating electrode 2 and the transparent electrode 5 constitutes one pixel, forming a matrix-like display panel. Note that an alignment film 3 is provided between the liquid crystal layer 4 and each electrode. The liquid crystal having a smectic phase is heated by the resistance heat generated by the heating electrode 2, and changes from a smectic A phase to a nematic phase to an isotropic liquid phase. In the process of cooling from the isotropic liquid phase, when an electric field is applied to the liquid crystal, the liquid crystal molecules align in the direction of the electric field, and while maintaining this state, become a smectic phase. At this time, liquid crystal layer 4
is a non-scattering state with high transmittance. On the other hand, if no electric field is applied to the liquid crystal during the cooling process, the liquid crystal molecules become randomly oriented in a smectic phase and enter a light scattering state with low transmittance. Display is performed depending on whether each pixel is placed in this light scattering state or non-scattering state. There are two display methods: scatter mode and guest host mode. The scattering mode method uses a heating electrode with a specular reflective surface to display images by diffusely reflecting external light on a liquid crystal. In other words, when a pixel is in a non-scattering state, external light is not diffusely reflected and the mirror surface of the electrode can be seen.When a pixel is in a light-scattering state, external light is diffusely reflected, making the pixel appear cloudy. It is something to do. At this time, the heating electrode is a metal electrode such as Al, Cr, Ni, etc.
A mirror surface with high reflectance is used for the surface.
However, this scattering mode display has poor viewing angle characteristics and can only be seen from a direction substantially perpendicular to the display panel. Furthermore, there is a limit to the improvement in contrast. On the other hand, the guest-host method, in which a dye is added to the liquid crystal, has less viewing angle dependence and is advantageous in terms of contrast, but it requires that the electrode surface, that is, the background of the display, be a white diffuse-reflecting surface. . Therefore, as a prior art, the element structure of the heating electrode part is a heating electrode 2 + an insulator 7 + a white Al reflective film 8 as shown in Figure 3a, and a white Al heating electrode as shown in Figure 3b. There are two methods. In the method shown in FIG. 3a, the heating electrode 2 made of Al and the insulating film 7 of the white reflective film 8 are separately provided, but the element structure is complicated with three layers, and the manufacturing process is complicated. Furthermore, if the insulating film has defects such as pinholes, short circuits are likely to occur between the heating electrode and the white reflective film. Furthermore, since the insulating film acts as a heat insulating layer, there is a problem that the heat generated by the heating electrode does not effectively heat the liquid crystal layer. Furthermore, a thermal writing liquid crystal display device using a liquid crystal having a smectic phase is characterized in that it can not only display information but also read out information once written. This takes advantage of the fact that there is a difference in dielectric constant between a pixel portion to which writing is performed and a pixel portion to which writing is not performed in a smectic phase liquid crystal. That is, the difference in capacitance between the heating electrode and the transparent electrode of the written pixel and the non-written pixel is detected to read the written information (Japanese Patent Laid-Open No. 59-34587, −155880). In the method shown in FIG. 3a, an insulating film 7 is provided between the heating electrode 2 and the transparent electrode 5 (see FIG. 2, transparent electrode 5). The dielectric constant of this insulating film 7 is much higher than that of liquid crystal, so even if you try to detect the dielectric constant of the liquid crystal layer 4, it will be affected by the dielectric constant of the insulating film 7, and the difference between the written pixel and the non-written pixel will be detected. The problem is that it cannot be detected. Further, in the method shown in FIG. 3b, the heating electrode also serves as a white reflective film, and the element structure is simple and desirable. However, in the conventional method shown in FIG. 3b, Al is used as the material for the heating electrode. This is because Al can easily be whitened by appropriately selecting the deposition conditions when forming the thin film. Generally, in the case of Al,
The substrate temperature during deposition is heated to around 300°C, and the film is deposited at a low deposition rate to grow film crystals, making the surface uneven and giving it a milky white surface. in this case,
In order to obtain a white reflective film with an uneven surface and a high diffuse reflectance, the Al film thickness is required to be approximately 1.0 to 2.0 μm. However, when the Al film thickness becomes 1.0 to 2.0 μm, the sheet resistance becomes 0.03Ω/□ or less. If the resistance is small, a large current is required to heat the liquid crystal layer due to resistance heat generation of the heating electrode 2. For example, heating electrode 2
When the length is 200 mm, the width is 400 μm, and the film thickness is 1.0 μm, a current of 1 A or more is required to heat the liquid crystal layer to 40 to 50°C, and the circuit that drives the liquid crystal panel becomes larger.
It becomes difficult to convert the drive circuit into an IC or LSI. Naturally, power consumption also increases. Therefore, heating electrode 2
The problem is to have a structure in which the heating electrode 2 also serves as a white reflective film, as shown in FIG. 3b, and to have a sheet resistance of 0.1 to 1 Ω/□. At this time, the heating electrode 2 needs to have a thickness of, for example, 0.5 μm or more in view of melting of the electrode due to a rise in temperature of the electrode and allowable current flowing through the electrode. [Object of the Invention] An object of the present invention is to provide a display device having an electrode that also serves as a white reflective film, which has a relatively high resistance and a simple configuration, and a method for manufacturing the same. [Summary of the Invention] The first feature of the present invention that achieves the above object is that a pair of substrates are formed such that one electrode and the other electrode that also serves as a white reflective film are formed on opposing surfaces to face each other. In a display device comprising a display body having a thermo-optic effect or an electric/thermo-optic effect held between the pair of substrates, the other electrode that also serves as the white reflective film is located near the center in the film thickness direction. The reason is that the specific resistance of the main surface is larger than that near the main surface. Furthermore, the second feature of the present invention is that
A display having a thermo-optic effect or an electric/thermo-optic effect held between a pair of substrates formed such that one electrode and the other electrode that also serves as a white reflective film face each other on opposing surfaces, and the pair of substrates. In the display device including the white reflective film, the other electrode that also serves as the white reflective film is formed by mixing an insulator, and the mixing ratio of the insulator near the center in the film thickness direction is higher than that near the main surface. The reason is that the mixing ratio of the above-mentioned insulating material is higher than that of the above-mentioned insulating material. Furthermore, the method for manufacturing a display device of the present invention is characterized in that the other electrode that also serves as a white reflective film is
It is formed by sputter deposition including a first step in which oxygen and/or nitrogen is mixed as a sputter gas, and a second step in which less oxygen and/or nitrogen is mixed in as a sputter gas than in the first step. be. [Embodiments of the Invention] The present invention will be described in detail below. FIGS. 1a and 1b are an exploded perspective view and a sectional structural view showing the element structure of a liquid crystal display device according to an embodiment of the present invention. On the upper surface of one glass substrate 1, a high thermal conductive layer 9,
A heat insulating layer 10 and a heating electrode 11 are laminated in this order,
On the other hand, a transparent electrode 5 is disposed on the other glass substrate 6 facing the glass substrate 1, and a liquid crystal layer 4 having a smectic phase is sandwiched between the heating electrode 3 and the transparent electrode 5 with an alignment film 3 interposed therebetween. It's included. The intersection of the heating electrode 3 and the transparent electrode 5 forms a pixel,
The entire structure forms a matrix. In this embodiment, the high thermal conductivity layer 9 is formed on one glass substrate 1.
The case where it is formed on the entire surface is shown. Heating electrode 1
1 also serves as a white reflective film. The material of the glass substrates 1 and 6 in this example is borosilicate glass, which contains 81% SiO 2 , 12% B 2 O 3 , and Na 2 O
The composition used is 4% Al 2 O 3 and 3% Al 2 O 3 . Although glass was used as the substrate in this example, it is not limited to glass; plastic may also be used, or the substrate on the side not to be observed may be an opaque substrate such as Si, and the substrate on the observation side may be glass or plastic. A transparent substrate such as the above may also be used. The glass substrate that is the element of the liquid crystal display device constructed in this manner has a thickness of 1.1 mm and a thermal conductivity of 0.0027 cal cm -1 sec -1 °C -1. In this example, a high thermal conductive layer is used. 9 is copper (thermal conductivity 0.943 cal・cm -1
sec -1・℃ -1 ) evaporated film of 2 μm is used. Also,
The thermal conductivity of the heat insulating layer 10 is 0.0003 cal・cm -1・sec -1
It is a xylene polymer with a temperature of ℃ -1 and a film thickness of 5 μm. In addition, as a transparent electrode, 0.2μ of In 2 O 3 −SnO 2
A vapor-deposited film of m is used. The liquid crystal material of this example has a thermo-optic effect or an electric/thermo-optic effect, for example.

【式】(ただしRはアル キル基)で一般に表わされるものの混合物で、正
の誘電異方性を示し室温でスメクチツクA相を呈
し、42℃でスメクチツクA相からネマチツク相
へ、さらに45℃においてネマチツク相から等方性
液体相(アイソトロピツク相)へ転移し、ゲス
ト・ホスト表示のための公知の色素を混入させた
ものを用いる。 また、他のスメクチツク相を有する液晶として
は、4,4′−アルコキシビフエニルカルボン酸ア
ルキルエステルと4,4′−アルキルシアノトラン
との混合あるいは4−アルコキシフエニル−4′−
アルキル安息香酸エステルとP,P′−アルキルシ
アノビフエニルとの混合物などが挙げられる。 本実施例では液晶4は、配向膜3によつて、初
期状態でホメオトロピツク配向、すなわち、スメ
クチツク相を有する液晶分子を基板に対し垂直に
配向させるようにするが、水平配向でも良い。 第1図bに於ける一つの白色反射膜を兼ねる加
熱電極11の断面拡大図を第4図に示す。 第4図に於いて、配向膜3、高熱伝導層9、断
熱層10は省略してある。 白色反射膜を兼ねる加熱電極11は、AlにCu、
Siを添加したAl合金〔Al−20重量(wt)%Cu−
4重量(wt)%Si〕であり、膜厚方向の中央及
び基板付近11bは絶縁物である酸化物の混入比
が大きいので比抵抗が大きく、かつ、灰黒色であ
り、また、主表面付近11aは、酸化物の混入比
が小さいので比抵抗は小さく、かつ白色である。 次に、加熱電極11の製造方法及び本発明の基
礎となつた実験について、詳細に述べる。 第5図は、純Al及び本発明の一実施例で用い
るAl合金(Al−20wt%Cu−4wt%Si)のシート
抵抗ρSと膜厚との関係を示すグラフである。高周
波プレーナマグネツトロンスパツタ装置を用い
て、基板1上にスパツタ蒸着した膜のシート抵抗
を公知の4探針抵抗測定法で測定したものであ
る。第5図中破線は純Alの場合であり、また曲
線〜はスパツタ時のスパツタガスと基板温度
の条件を変化した場合である。この結果をまとめ
たのが表1であり、第5図中の〜と表1の
〜が対応する。
It is a mixture of compounds generally represented by the formula (where R is an alkyl group), exhibiting positive dielectric anisotropy, exhibiting a smectic A phase at room temperature, changing from a smectic A phase to a nematic phase at 42°C, and further changing to a nematic phase at 45°C. A phase transition is made from an isotropic liquid phase to an isotropic liquid phase, and a known dye for guest-host display is mixed therein. Other liquid crystals having a smectic phase include a mixture of 4,4'-alkoxybiphenylcarboxylic acid alkyl ester and 4,4'-alkylcyanotrane, or 4-alkoxyphenyl-4'-
Examples include mixtures of alkyl benzoate and P,P'-alkylcyanobiphenyl. In this embodiment, the liquid crystal 4 is initially homeotropically aligned, that is, the liquid crystal molecules having a smectic phase are aligned perpendicularly to the substrate by the alignment film 3, but the liquid crystal 4 may be aligned horizontally. FIG. 4 shows an enlarged cross-sectional view of the heating electrode 11 which also serves as one white reflective film in FIG. 1b. In FIG. 4, the alignment film 3, high thermal conductivity layer 9, and heat insulating layer 10 are omitted. The heating electrode 11, which also serves as a white reflective film, is made of Al, Cu,
Al alloy with Si added [Al-20 weight (wt)% Cu-
4 weight (wt)% Si], and the center in the film thickness direction and the vicinity of the substrate 11b have a high mixing ratio of oxide, which is an insulator, so the resistivity is high and the color is grayish-black, and the area near the main surface 11a has a low specific resistance because the mixing ratio of oxides is low, and is white in color. Next, the method for manufacturing the heating electrode 11 and the experiments that formed the basis of the present invention will be described in detail. FIG. 5 is a graph showing the relationship between sheet resistance ρ S and film thickness of pure Al and an Al alloy (Al-20wt%Cu-4wt%Si) used in one embodiment of the present invention. The sheet resistance of a film sputter-deposited on a substrate 1 using a high-frequency planar magnetron sputtering device was measured by a known four-probe resistance measurement method. The broken line in FIG. 5 shows the case of pure Al, and the curves ~ show the case where the sputtering gas and substrate temperature conditions during sputtering were changed. Table 1 summarizes the results, and ~ in Figure 5 corresponds to ~ in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、比較的抵抗が高く、かつ簡単
な構成の白色反射膜を兼ねる電極を具備する表示
装置及びその製造方法を得ることができる。
According to the present invention, it is possible to obtain a display device that has an electrode that also serves as a white reflective film and has a relatively high resistance and a simple configuration, and a method for manufacturing the display device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例となる液晶表示装置
の分解斜視図および断面構造図、第2図及び第3
図は従来の液晶表示装置の断面図、第4図は第1
図に於ける加熱電極11の断面拡大図、第5図は
液晶表示装置のシート抵抗と膜厚との関係を示す
図、第6図は第5図の膜表面の粒子構造のSEM
写真、第7図は本発明の一実施例の製造方法を示
す図、第8図は本発明の一実施例の拡散反射率特
性を示す図、第9図及び第10図は本発明の一実
施例の膜厚方向の比抵抗分布の一例を示す図、第
11図は本発明の一実施例となる液晶表示装置の
全体構成図、第12図は第11図の動作タイミン
グチヤート、第13図は第11図の表示装置の情
報読み出しについての構成図、第14図は第13
図の動作タイミングチヤート、第15図は第11
図と第13図とを一体化したときの一実施例を示
す構成図である。 1,6……基板、2,11……加熱電極、4…
…液晶層、5……透明電極。
FIG. 1 is an exploded perspective view and a sectional structure diagram of a liquid crystal display device according to an embodiment of the present invention, and FIGS.
The figure is a cross-sectional view of a conventional liquid crystal display device, and Figure 4 is a cross-sectional view of a conventional liquid crystal display device.
Figure 5 is an enlarged cross-sectional view of the heating electrode 11 in the figure, Figure 5 is a diagram showing the relationship between sheet resistance and film thickness of a liquid crystal display device, and Figure 6 is an SEM of the particle structure of the film surface in Figure 5.
The photographs, FIG. 7, are diagrams showing the manufacturing method of one embodiment of the present invention, FIG. 8 are diagrams showing the diffuse reflectance characteristics of one embodiment of the present invention, and FIGS. 9 and 10 are diagrams showing the manufacturing method of one embodiment of the present invention. 11 is an overall configuration diagram of a liquid crystal display device according to an embodiment of the present invention. FIG. 12 is an operation timing chart of FIG. 11, and FIG. The figure is a block diagram of information readout of the display device in FIG. 11, and FIG.
The operation timing chart in the figure, Figure 15 is the 11th
FIG. 14 is a configuration diagram showing an example when FIG. 13 and FIG. 13 are integrated. 1, 6... Substrate, 2, 11... Heating electrode, 4...
...Liquid crystal layer, 5...Transparent electrode.

Claims (1)

【特許請求の範囲】 1 対向面に一方の電極と白色反射膜を兼ねる他
方の電極とが対向するように形成される一対の基
板と、該一対の基板間に保持される熱光学効果ま
たは電気・熱光学効果を有する表示体とを具備す
る表示装置に於いて、上記白色反射膜を兼ねる他
方の電極は、膜厚方向の中央付近の比抵抗が、主
表面付近の比抵抗より大きいことを特徴とする表
示装置。 2 対向面に一方の電極と白色反射膜を兼ねる他
方の電極とが対向するように形成される一対の基
板と、該一対の基板間に保持される熱光学効果ま
たは電気・熱光学効果を有する表示体を具備する
表示装置に於いて、上記白色反射膜を兼ねる他方
の電極は、絶縁物が混入されて形成され、膜厚方
向の中央付近に於ける上記絶縁物の混入比が、主
表面付近に於ける上記絶縁物の混入比より大きい
ことを特徴とする表示装置。 3 特許請求の範囲第1項または第2項に於い
て、一方の電極は透明電極であり、白色反射膜を
兼ねる表示装置。 4 特許請求の範囲第1項または第2項に於い
て、熱光学効果または電気・熱光学効果を有する
表示体は、スメクチツク相を有する液晶であるこ
とを特徴とする表示装置。 5 特許請求の範囲第1項または第2項に於い
て、白色反射膜を兼ねる他方の電極は、膜厚0.5μ
m以上で、シート抵抗0.1〜1.0Ω/□であること
を特徴とする表示装置。 6 特許請求の範囲第1項または第2項に於い
て、白色反射膜を兼ねる他方の電極は、Al合金
で形成されることを特徴とする表示装置。 7 特許請求の範囲第6項に於いて、Al合金は
AlにCu、Siを添加した合金であることを特徴と
する表示装置。 8 特許請求の範囲第7項に於いて、上記Al合
金は、Cu、Siの添加量の合計が7〜40重量%の
範囲であることを特徴とする表示装置。 9 特許請求の範囲第2項に於いて、絶縁物は酸
化物または窒化物であることを特徴とする表示装
置。 10 対向面に一方の電極と白色反射膜を兼ねる
他方の電極とが対向するように形成される一対の
基板と、該一対の基板間に保持される熱光学効果
または電気・熱光学効果を有する表示体を具備す
る表示装置に於いて、上記白色反射膜を兼ねる他
方の電極は、スパツタガスとして酸素および/ま
たは窒素が混入された第1の工程と、スパツタガ
スとして酸素および/または窒素が上記第1の工
程より少なく混入された第2の工程とを含むスパ
ツタ蒸着で形成されることを特徴とする表示装置
の製造方法。 11 特許請求の範囲第10項に於いて、上記第
2の工程は、スパツタガスとして酸素および/ま
たは窒素が混入されていない工程であることを特
徴とする表示装置の製造方法。
[Claims] 1. A pair of substrates formed such that one electrode and the other electrode that also serves as a white reflective film are opposed to each other on opposing surfaces, and a thermo-optical effect or electric field held between the pair of substrates. - In a display device equipped with a display body having a thermo-optical effect, the other electrode that also serves as the white reflective film has a specific resistance near the center in the film thickness direction that is larger than a specific resistance near the main surface. Characteristic display device. 2 A pair of substrates formed such that one electrode and the other electrode that also serves as a white reflective film face each other on opposing surfaces, and a thermo-optic effect or an electric/thermo-optic effect maintained between the pair of substrates. In a display device equipped with a display body, the other electrode that also serves as the white reflective film is formed by mixing an insulator, and the mixing ratio of the insulator near the center in the film thickness direction is higher than that of the main surface. A display device characterized in that the mixing ratio of the insulator is higher than that of the insulating material in the vicinity. 3. The display device according to claim 1 or 2, wherein one electrode is a transparent electrode and also serves as a white reflective film. 4. The display device according to claim 1 or 2, wherein the display body having a thermo-optic effect or an electro-thermo-optic effect is a liquid crystal having a smectic phase. 5 In claim 1 or 2, the other electrode that also serves as a white reflective film has a film thickness of 0.5 μm.
m or more, and a sheet resistance of 0.1 to 1.0 Ω/□. 6. The display device according to claim 1 or 2, wherein the other electrode that also serves as a white reflective film is formed of an Al alloy. 7 In claim 6, the Al alloy is
A display device characterized by being an alloy of Al with Cu and Si added. 8. The display device according to claim 7, wherein the Al alloy has a total amount of Cu and Si added in a range of 7 to 40% by weight. 9. The display device according to claim 2, wherein the insulator is an oxide or a nitride. 10 A pair of substrates formed such that one electrode and the other electrode that also serves as a white reflective film face each other on opposing surfaces, and a thermo-optic effect or an electric/thermo-optic effect maintained between the pair of substrates. In a display device equipped with a display body, the other electrode that also serves as the white reflective film is formed in the first step in which oxygen and/or nitrogen is mixed as a sputtering gas, and in the first step in which oxygen and/or nitrogen is mixed in as a sputtering gas. A method for manufacturing a display device, characterized in that the display device is formed by sputter deposition, including a second step mixed in less than the second step. 11. The method of manufacturing a display device according to claim 10, wherein the second step is a step in which oxygen and/or nitrogen is not mixed as a sputter gas.
JP22776184A 1984-10-31 1984-10-31 Display device and its manufacture Granted JPS61107219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22776184A JPS61107219A (en) 1984-10-31 1984-10-31 Display device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22776184A JPS61107219A (en) 1984-10-31 1984-10-31 Display device and its manufacture

Publications (2)

Publication Number Publication Date
JPS61107219A JPS61107219A (en) 1986-05-26
JPH053566B2 true JPH053566B2 (en) 1993-01-18

Family

ID=16865959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22776184A Granted JPS61107219A (en) 1984-10-31 1984-10-31 Display device and its manufacture

Country Status (1)

Country Link
JP (1) JPS61107219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3866156A1 (en) 2020-02-14 2021-08-18 Yamaha Corporation Impact detection device and percussion instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3866156A1 (en) 2020-02-14 2021-08-18 Yamaha Corporation Impact detection device and percussion instrument

Also Published As

Publication number Publication date
JPS61107219A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
JP2770944B2 (en) Liquid crystal element
US4093355A (en) Symmetrical internal heater for liquid crystal display
JP3097945B2 (en) Method for manufacturing reflective liquid crystal display device
JP2985763B2 (en) Multilayer conductive film, and transparent electrode plate and liquid crystal display device using the same
JP3063618B2 (en) Electrode substrate for display device
JPS6134130B2 (en)
JPH053566B2 (en)
JP2943679B2 (en) Electrode substrate
US4059340A (en) Doped liquid crystal display device
JP3824772B2 (en) Liquid crystal display
JP2871592B2 (en) Electrode substrate for display device
US6608659B1 (en) Reflective liquid crystal display apparatus
JPH086052A (en) Liquid crystal optical element
JP2792492B2 (en) Liquid crystal display
JP3586779B2 (en) Ferroelectric liquid crystal display
JPH067236B2 (en) LCD panel
JP2804763B2 (en) Liquid crystal electro-optical device
JPS61159623A (en) Liquid-crystal display device
JPH09183181A (en) Forming of multi-layer conductive film
US5568298A (en) Ferroelectric liquid crystal blue color shutter with color correction filter
JP4572446B2 (en) Liquid crystal display element
JP3044799B2 (en) Liquid crystal device
JP2816686B2 (en) Liquid crystal device
JP3258919B2 (en) Liquid crystal element and manufacturing method thereof
JPS61223825A (en) Liquid crystal display device