JPH0535226A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0535226A
JPH0535226A JP595092A JP595092A JPH0535226A JP H0535226 A JPH0535226 A JP H0535226A JP 595092 A JP595092 A JP 595092A JP 595092 A JP595092 A JP 595092A JP H0535226 A JPH0535226 A JP H0535226A
Authority
JP
Japan
Prior art keywords
thin film
gate
source
tft
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP595092A
Other languages
Japanese (ja)
Other versions
JPH07120146B2 (en
Inventor
Toshiyuki Misawa
利之 三澤
Shinji Morozumi
伸治 両角
Yoshio Nakazawa
良雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4005950A priority Critical patent/JPH07120146B2/en
Publication of JPH0535226A publication Critical patent/JPH0535226A/en
Publication of JPH07120146B2 publication Critical patent/JPH07120146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To minimize the leak current in the OFF state of a non-single-crystal silicon thin film by setting the gate-source voltage range of a non-single-crystal silicon thin film transistor to a voltage range which includes a specific gate- source voltage corresponding to the minimum value of a source-drain current. CONSTITUTION:The semiconductor device consists of a gate line 501, a data line 502, a TFT 503 for switching, a liquid crystal display cell 504, a data line driving signal source 505, and a gate line driving signal source 506. A bias voltage VB is provided between the 0 level VG=0 of a gate line driving signal and the O level VD=0 of a data line driving signal so as to set the operation range of the TFT 503 in the OFF state, i.e., the variation range of the gate- source voltage of the TFT 503 in the OFF state to the area wherein the leak current is minimum. Consequently, the mean value of the leak current of the TFT in the OFF state is reduced to 50-90% of that of a conventional driving method. In this case, the value of the bias voltage VB is preferably adjustable from outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ(以
下、TFTと略記)の駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a thin film transistor (hereinafter abbreviated as TFT).

【0002】図1(a)はマトリクス型液晶表示装置の
構成を示しており、101〜103はゲート線、104
〜107はデータ線、108〜110等は画素である。
画素は、図1(b)のごとく、ゲート線111とデータ
線112との交点に形成されたスイッチング用TFT1
13、浮遊容量114及び液晶セル115より成ってい
る。116、117はそれぞれ液晶セルの駆動電極及び
共通電極である。
FIG. 1A shows a structure of a matrix type liquid crystal display device, 101 to 103 are gate lines, and 104 is a gate line.
˜107 are data lines, and 108˜110 and the like are pixels.
A pixel is a switching TFT 1 formed at an intersection of a gate line 111 and a data line 112, as shown in FIG.
13, a stray capacitance 114 and a liquid crystal cell 115. Reference numerals 116 and 117 are a drive electrode and a common electrode of the liquid crystal cell, respectively.

【0003】図1(b)のデータ線112に図1(c)
のVD のごときデータ信号に相当する電圧が印加され、
図1(b)のゲート線111に図1(c)のVG のごと
きゲート線駆動電圧が印加される。TFT113がN型
TFTである場合、VG がハイである期間にデータ線1
12の信号が液晶セル115に書き込まれ、115に書
き込まれた信号はVG がローである期間中保持される。
図1(c)においてAはVD <0である負フレームを、
BはVD >0である正フレームを表わす。
The data line 112 in FIG. 1B is shown in FIG.
A voltage corresponding to the data signal such as V D of
A gate line driving voltage such as V G in FIG. 1C is applied to the gate line 111 in FIG. When the TFT 113 is an N-type TFT, the data line 1 is supplied during the period when V G is high.
Twelve signals are written to the liquid crystal cell 115, and the signal written to 115 is held during the period when V G is low.
In FIG. 1C, A is a negative frame with V D <0,
B represents a positive frame with V D > 0.

【0004】従来、マトリクス型液晶表示装置のスイッ
チとして単結晶シリコン基板内に形成されたMOSトラ
ンジスタが用いられていた。単結晶シリコンMOSトラ
ンジスタが用いられていた。単結晶シリコンMOSトラ
ンジスタの電圧−電流特性(ゲート・ソース電圧VGS
ドレイン・ソース電流IDS特性)は、図2の201に示
すようにON/OFF比が大きく、弱反転領域での電流
変化が急しゅんであり遮断領域でのリーク電流は小さ
い。従って、非導通時のTFTが図2の202の領域で
動作するように、図3に示すごとく、ゲート線駆動信号
302とデータ線駆動信号301のバイアス関係が定め
られていた。
Conventionally, a MOS transistor formed in a single crystal silicon substrate has been used as a switch of a matrix type liquid crystal display device. Single crystal silicon MOS transistors have been used. Voltage-current characteristics of single crystal silicon MOS transistor (gate-source voltage V GS-
The drain / source current I DS characteristic) has a large ON / OFF ratio as shown by 201 in FIG. 2, the current change is abrupt in the weak inversion region, and the leakage current in the cutoff region is small. Therefore, as shown in FIG. 3, the bias relationship between the gate line drive signal 302 and the data line drive signal 301 is set so that the TFT in the non-conduction state operates in the region 202 in FIG.

【0005】しかし、単結晶シリコンMOSトランジス
タをスイッチに用いたマトリクス型液晶表示装置と同様
な方法でTFTをスイッチに用いたマトリクス型液晶表
示装置の駆動を行おうとすると、次に述べるような問題
が生ずる。シリコン薄膜によるTFTの電圧−電流特性
の一例を図4に示す。
However, when a matrix type liquid crystal display device using TFTs as switches is driven by a method similar to that of a matrix type liquid crystal display device using single crystal silicon MOS transistors as switches, the following problems occur. Occurs. FIG. 4 shows an example of the voltage-current characteristics of a TFT made of a silicon thin film.

【0006】IDSは、ドレイン・ソース電流、VGSは、
ゲート・ソース電圧である。401、402はそれぞれ
ドレイン・ソース電圧VDSをVDS=V1 、VDS=V2
した電圧−電流特性でる。ただし、V2 >V1 。TFT
の電圧−電流特性の特徴は、弱反転領域403で電流変
化が単結晶シリコンMOSトランジスタに比べて緩慢で
あること、遮断領域におけるリーク電流レベルが大きい
こと、及び遮断領域404においてPN接合部リーク電
流によるIDSの増加がみられることである。
I DS is drain / source current, and V GS is
It is the gate-source voltage. Reference numerals 401 and 402 denote voltage-current characteristics in which the drain-source voltage V DS is V DS = V 1 and V DS = V 2 , respectively. However, V 2 > V 1 . TFT
The characteristics of the voltage-current characteristics of are that the current change in the weak inversion region 403 is slower than that of the single crystal silicon MOS transistor, the leak current level in the cutoff region is large, and the PN junction leak current in the cutoff region 404. The increase of I DS due to

【0007】図3のごときバイアス関係で液晶セルの駆
動を行なうと、TFTのゲート・ソース間電圧VGSが図
4の405の範囲で変化する。このとき、非導通時のT
FTに流れるPN接合電流は相当大きくなり、これは画
面への表示ムラとして現われ表示性能を大きくそこなう
ものである。
When the liquid crystal cell is driven in the bias relationship as shown in FIG. 3, the gate-source voltage V GS of the TFT changes within the range of 405 in FIG. At this time, T when not conducting
The PN junction current flowing through the FT becomes considerably large, and this appears as display unevenness on the screen and greatly impairs the display performance.

【0008】本発明は、ゲート線駆動信号VG の零レベ
ルとデータ線駆動信号VD の零レベルとの間にTFTの
電圧−電流特性に合わせた適切なバイアス電圧VB を設
けることにより、上述の欠点を解決し良好な表示性能を
有するマトリクス型液晶表示装置の駆動方法を提供する
ものである。
According to the present invention, by providing an appropriate bias voltage V B according to the voltage-current characteristics of the TFT between the zero level of the gate line drive signal V G and the zero level of the data line drive signal V D , An object of the present invention is to provide a driving method of a matrix type liquid crystal display device which solves the above-mentioned drawbacks and has good display performance.

【0009】本発明の駆動方法は、図5に示すごとくゲ
ート線駆動信号の零レベルとデータ線駆動信号の零レベ
ルの間にTFTの電圧−電流特性に合わせた一定のバイ
アス電圧VB を設けることにより、非導通時のTFTが
その動作範囲内において極小のリーク電流を有するよう
にするものである。
According to the driving method of the present invention, as shown in FIG. 5, a constant bias voltage V B according to the voltage-current characteristic of the TFT is provided between the zero level of the gate line driving signal and the zero level of the data line driving signal. As a result, the TFT at the time of non-conduction has a minimum leak current within its operating range.

【0010】図5において、501はゲート線、502
はデータ線、503はスイッチング用TFT、504は
液晶表示セル、505はデータ線駆動信号源、506は
ゲート線駆動信号源である。
In FIG. 5, reference numeral 501 denotes a gate line, and 502
Is a data line, 503 is a switching TFT, 504 is a liquid crystal display cell, 505 is a data line drive signal source, and 506 is a gate line drive signal source.

【0011】図6及び図7は本発明の実施例を示すもの
である。601、602はそれぞれ図4の401、40
2と同一の電圧−電流特性の曲線である。
6 and 7 show an embodiment of the present invention. Reference numerals 601 and 602 denote 401 and 40 in FIG. 4, respectively.
2 is a curve of the same voltage-current characteristics as No. 2.

【0012】601、602の電圧−電流特性を有する
TFTでマトリクス型液晶表示装置のスイッチを形成す
る場合、非導通時のTFTのリーク電流が極小となるよ
うな動作範囲は図6の603に示す範囲である。このよ
うに非導通時のTFTの動作範囲、即ち非導通時のTF
Tのゲート・ソース間電圧VGSの変化範囲を、リーク電
流が極小となるような領域に設定するために、本発明で
は、図7のごとくゲート線駆動信号702の零レベルV
G =0とデータ線駆動信号701の零レベルV D =0
との間にVB のバイアス電圧を設ける。
It has voltage-current characteristics 601 and 602.
The switch of the matrix type liquid crystal display device is formed by the TFT
In case of non-conduction, the leakage current of TFT at non-conduction becomes minimum.
Such an operation range is the range indicated by 603 in FIG. This
Operating range of the TFT when not conducting, that is, TF when not conducting
Gate-source voltage V of TGSThe change range of
In order to set a region where the flow becomes a minimum, the present invention
Is the zero level V of the gate line drive signal 702 as shown in FIG.
G = 0 and zero level V of the data line drive signal 701 D  = 0
Between VB Bias voltage of

【0013】上記の駆動方法によると、図3のごとき駆
動方法に比較して、非導通時のTFTのリーク電流の平
均値は50%〜90%低減される。本発明の駆動方法を
実現するための回路構成は、図5の例に示すごとくVB
の値を外部から調整可能とすることが望ましい。VB
外部から調整可能とすることによりTFT特性の製造ロ
ット間ばらつきに容易に対処できる。バイアス電圧VB
の値を外部から任意に設定することにより生ずるもう一
つの効果は、スイッチング用TFTのゲート及びゲート
線に付加する寄生容量への充放電電流を減らして低消費
電力化が達成されることである。TFTの寄生容量、ゲ
ート線の寄生容量はそのほとんどがゲート線とデータ線
の間又はゲート線と液晶駆動電極の間に付いている。従
って、VB を負の値に設定することにより前記寄生容量
を充放電するための電流は低減され低消費電力化が達成
される。
According to the above driving method, the average value of the leak current of the TFT at the time of non-conduction is reduced by 50% to 90% as compared with the driving method as shown in FIG. The circuit configuration for realizing the driving method of the present invention is V B as shown in the example of FIG.
It is desirable that the value of can be adjusted externally. By allowing V B to be adjusted from the outside, it is possible to easily deal with variations in TFT characteristics between manufacturing lots. Bias voltage V B
Another effect of externally setting the value of is that the charging / discharging current to the parasitic capacitance added to the gate and the gate line of the switching TFT is reduced to achieve low power consumption. . Most of the TFT parasitic capacitance and the gate line parasitic capacitance are attached between the gate line and the data line or between the gate line and the liquid crystal drive electrode. Therefore, by setting V B to a negative value, the current for charging and discharging the parasitic capacitance is reduced and low power consumption is achieved.

【0014】図8、図9に本発明の他の実施例を示す。8 and 9 show another embodiment of the present invention.

【0015】図8において、801はゲート線、802
はデータ線、803はTFT、804は液晶表示セル、
805はデータ線駆動信号源、806はゲート線駆動信
号源、807は第1のバイアス電源、808は第2のバ
イアス電源、CS はTFTの寄生容量である。図9にお
いて、901はデータ線駆動信号波形、902はゲート
線駆動信号波形である。
In FIG. 8, reference numeral 801 denotes a gate line, and 802.
Is a data line, 803 is a TFT, 804 is a liquid crystal display cell,
Reference numeral 805 is a data line drive signal source, 806 is a gate line drive signal source, 807 is a first bias power supply, 808 is a second bias power supply, and C S is a parasitic capacitance of the TFT. In FIG. 9, 901 is a data line drive signal waveform and 902 is a gate line drive signal waveform.

【0016】図10は、液晶表示セルがゲート線駆動信
号VG 及びデータ線駆動信号VD によって駆動されてい
る様子を示し、VDCは液晶表示セルに加わる電圧の変化
の様子を示す。図8に示すTFTの寄生容量CS の影響
により、ゲート線駆動信号VG の立ち下がりと同時にV
LC
FIG. 10 shows how the liquid crystal display cell is driven by the gate line drive signal V G and the data line drive signal V D , and V DC shows how the voltage applied to the liquid crystal display cell changes. Due to the influence of the parasitic capacitance C S of the TFT shown in FIG. 8, the gate line driving signal V G falls at the same time as V
LC is

【0017】[0017]

【数1】 [Equation 1]

【0018】だけ負側に変化する。このため、負フレー
ムAにおいては、データが書き込まれた直後VLCの実効
値が大きくなるように変化し、正フレームBにおいては
データが書き込まれた直後VLCの実効値が小さくなるよ
うに変化する。従って、VLCの波形は図10に示すごと
く一定の直流分を含んだものとなり、液晶の寿命を著し
く短くするという問題を生ずる。
Only changes to the negative side. Therefore, in the negative frame A, the effective value of V LC increases immediately after the data is written, and in the positive frame B, the effective value of V LC changes immediately after the data is written. To do. Therefore, the waveform of V LC contains a constant DC component as shown in FIG. 10, which causes a problem of significantly shortening the life of the liquid crystal.

【0019】本発明は、データ線駆動信号の零レベルと
液晶セルの共通電極との間にも一定のバイアス電圧VB2
を設けることにより前述のVLCに含まれる直流分を除去
してVLCの波形の上下非対称性を補償し、直流駆動によ
る液晶の劣化を防ぐというものである。図8に示すごと
く、ゲート線駆動信号源のバイアス電圧VB1とデータ線
駆動信号源のバイアス電位VB2とは独立に外部から設定
できるようにすることによって、非導通時のTFTのリ
ーク電流低減による表示ムラの除去及び液晶に加わる直
流電圧の除去による表示装置の高信頼性を同時に実現す
ることができる。
According to the present invention, a constant bias voltage V B2 is applied between the zero level of the data line drive signal and the common electrode of the liquid crystal cell.
By providing the above, the DC component contained in V LC is removed to compensate the vertical asymmetry of the V LC waveform and prevent deterioration of the liquid crystal due to DC drive. As shown in FIG. 8, the bias voltage V B1 of the gate line drive signal source and the bias potential V B2 of the data line drive signal source can be set independently from the outside, thereby reducing the leak current of the TFT at the time of non-conduction. It is possible to simultaneously realize the high reliability of the display device by removing the display unevenness and the DC voltage applied to the liquid crystal.

【0020】以上述べたごとく、本発明の駆動方法を採
用することにより、マトリクス型液晶表示装置の表示性
能及び信頼性の大幅な向上、駆動回路の低消費電力化が
可能となる。
As described above, by adopting the driving method of the present invention, it is possible to greatly improve the display performance and reliability of the matrix type liquid crystal display device and reduce the power consumption of the driving circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)はマトリクス型液晶表示装置の構成を
示す図、(b)はその画素の構成を説明するための図、
(c)は駆動信号を示す図。
1A is a diagram showing a configuration of a matrix type liquid crystal display device, FIG. 1B is a diagram for explaining a configuration of a pixel thereof,
(C) is a figure which shows a drive signal.

【図2】 従来のマトリクス型液晶表示装置に用いられ
ている単結晶シリコンMOSトランジスタの電圧−電流
特性を示した図。
FIG. 2 is a diagram showing voltage-current characteristics of a single crystal silicon MOS transistor used in a conventional matrix type liquid crystal display device.

【図3】 ゲート線及びデータ線の駆動方法の従来例を
示す図。
FIG. 3 is a diagram showing a conventional example of a method for driving a gate line and a data line.

【図4】 従来の駆動方法によるスイッチングTFTの
駆動を説明するための図。
FIG. 4 is a diagram for explaining driving of a switching TFT by a conventional driving method.

【図5】 本発明の第一の実施例を説明するための図。FIG. 5 is a diagram for explaining the first embodiment of the present invention.

【図6】 本発明の第一の実施例を説明するための図。FIG. 6 is a diagram for explaining the first embodiment of the present invention.

【図7】 本発明の第一の実施例を説明するための図。FIG. 7 is a diagram for explaining the first embodiment of the present invention.

【図8】 本発明の第二の実施例を説明するための図。FIG. 8 is a diagram for explaining a second embodiment of the present invention.

【図9】 本発明の第二の実施例を説明するための図。FIG. 9 is a diagram for explaining the second embodiment of the present invention.

【図10】 本発明の第二の実施例を説明するための
図。
FIG. 10 is a diagram for explaining the second embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された薄膜トランジスタ、
該薄膜トランジスタのゲート電極にゲート信号を供給し
てなるゲート線、該薄膜トランジスタのソース領域にデ
ータ信号を供給してなるデータ線を有する半導体装置に
おいて、 該薄膜トランジスタのソース、ドレイン領域は、非単結
晶シリコン薄膜で形成されてなり、該薄膜トランジスタ
のゲート・ソース電圧範囲(VGS)が、ソース・ドレイ
ン電流(IDS)の極小値に相当する所定のゲート・ソー
ス電圧を含む電圧範囲となるべく、ゲート・ソース電圧
のバイアス電圧値が設定されてなることを特徴とする半
導体装置。
1. A thin film transistor formed on a substrate,
In a semiconductor device having a gate line for supplying a gate signal to the gate electrode of the thin film transistor and a data line for supplying a data signal to the source region of the thin film transistor, the source and drain regions of the thin film transistor are made of non-single crystal silicon. The thin film transistor is formed of a thin film, and the gate-source voltage range (V GS ) of the thin film transistor is a voltage range including a predetermined gate-source voltage corresponding to the minimum value of the source-drain current (I DS ). A semiconductor device, wherein a bias voltage value of a source voltage is set.
【請求項2】 基板上に形成された薄膜トランジスタ、
該薄膜トランジスタのゲート電極にゲート信号を供給し
てなるゲート線、該薄膜トランジスタのソース電極にデ
ータ信号を供給してなるデータ線を有する半導体装置に
おいて、 該薄膜トランジスタのソース、ドレイン領域は、非単結
晶シリコン薄膜で形成されてなり、該ソース領域に印加
されてなるデータ信号は、該ゲート電極と該ドレイン領
域の間の静電容量に起因するドレイン電位の電位シフト
を補償すべく、バイアスされてなることを特徴とする半
導体装置。
2. A thin film transistor formed on a substrate,
In a semiconductor device having a gate line for supplying a gate signal to the gate electrode of the thin film transistor and a data line for supplying a data signal to the source electrode of the thin film transistor, the source and drain regions of the thin film transistor are made of non-single crystal silicon. The data signal formed of a thin film and applied to the source region is biased so as to compensate the potential shift of the drain potential due to the capacitance between the gate electrode and the drain region. A semiconductor device characterized by:
JP4005950A 1992-01-16 1992-01-16 Liquid crystal display Expired - Lifetime JPH07120146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4005950A JPH07120146B2 (en) 1992-01-16 1992-01-16 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4005950A JPH07120146B2 (en) 1992-01-16 1992-01-16 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2915588A Division JPS6463996A (en) 1988-02-10 1988-02-10 Driving of matrix type liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32203796A Division JP2716040B2 (en) 1996-12-02 1996-12-02 Liquid crystal device

Publications (2)

Publication Number Publication Date
JPH0535226A true JPH0535226A (en) 1993-02-12
JPH07120146B2 JPH07120146B2 (en) 1995-12-20

Family

ID=11625178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4005950A Expired - Lifetime JPH07120146B2 (en) 1992-01-16 1992-01-16 Liquid crystal display

Country Status (1)

Country Link
JP (1) JPH07120146B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368514A (en) * 1976-11-30 1978-06-19 Matsushita Electric Ind Co Ltd Driving system for matrix panel
JPS5621193A (en) * 1979-07-30 1981-02-27 Sharp Kk Drive method of liquid crystal display unit
JPS5640888A (en) * 1979-09-11 1981-04-17 Canon Kk Driving method
JPS5646298A (en) * 1979-09-20 1981-04-27 Matsushita Electric Ind Co Ltd Liquid crystal display panel drive unit
JPS5748788A (en) * 1980-08-06 1982-03-20 Matsushita Electric Ind Co Ltd Matrix type liquid crystal display unit
JPS58173794A (en) * 1982-04-06 1983-10-12 セイコーエプソン株式会社 Driving of matrix type liquid crystal display unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368514A (en) * 1976-11-30 1978-06-19 Matsushita Electric Ind Co Ltd Driving system for matrix panel
JPS5621193A (en) * 1979-07-30 1981-02-27 Sharp Kk Drive method of liquid crystal display unit
JPS5640888A (en) * 1979-09-11 1981-04-17 Canon Kk Driving method
JPS5646298A (en) * 1979-09-20 1981-04-27 Matsushita Electric Ind Co Ltd Liquid crystal display panel drive unit
JPS5748788A (en) * 1980-08-06 1982-03-20 Matsushita Electric Ind Co Ltd Matrix type liquid crystal display unit
JPS58173794A (en) * 1982-04-06 1983-10-12 セイコーエプソン株式会社 Driving of matrix type liquid crystal display unit

Also Published As

Publication number Publication date
JPH07120146B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US11232734B2 (en) Shift register unit, driving method, gate driving circuit and display device
KR100443219B1 (en) Active matrix device and display
JP3187722B2 (en) Screen blanking circuit, liquid crystal display device having the same, and method of driving the same
US20050258867A1 (en) Electronic circuit, electro-optical device, electronic device and electronic apparatus
US7714826B2 (en) Liquid crystal display and driving method thereof
KR20070005577A (en) Active matrix display device
CN111653247B (en) Pixel driving circuit and display panel
CN110148390B (en) Array substrate, driving method thereof and display device
KR100941843B1 (en) Inverter and display device having the same
JPH0126077B2 (en)
KR100367527B1 (en) Image display device
JPH05265042A (en) Active matrix type display device
JP3610415B2 (en) Switching circuit and display device having this circuit
KR20080061823A (en) Bias-aging method and the circuit structure for amoled
JPH0535226A (en) Semiconductor device
JP2626651B2 (en) Liquid crystal device
JP3514000B2 (en) Display drive
JP2716040B2 (en) Liquid crystal device
JP2006098437A (en) Pixel circuit and display device
JP2004340981A (en) Liquid crystal display device
JPH05341738A (en) Liquid crystal display device and its driving method
JP3207760B2 (en) Semiconductor device and image display device using the same
JPH0350528A (en) Active matrix substrate for liquid crystal display device
US20240274611A1 (en) Display substrate and display device
JPH0846204A (en) Display device