JPH0534967A - Transfer method and developer composition used therefor - Google Patents

Transfer method and developer composition used therefor

Info

Publication number
JPH0534967A
JPH0534967A JP3216092A JP21609291A JPH0534967A JP H0534967 A JPH0534967 A JP H0534967A JP 3216092 A JP3216092 A JP 3216092A JP 21609291 A JP21609291 A JP 21609291A JP H0534967 A JPH0534967 A JP H0534967A
Authority
JP
Japan
Prior art keywords
toner
transfer
volume
image
conductive toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3216092A
Other languages
Japanese (ja)
Other versions
JP2979760B2 (en
Inventor
Keisuke Satsuta
恵介 薩▲た▼
Koichi Ogawa
孝一 小川
Tatsufumi Kiyomiya
龍文 清宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP3216092A priority Critical patent/JP2979760B2/en
Publication of JPH0534967A publication Critical patent/JPH0534967A/en
Application granted granted Critical
Publication of JP2979760B2 publication Critical patent/JP2979760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To provide a developer composition capable of electrostatically transferring a visible picture using a conductive toner on ordinary paper without complicating the transfer mechanism. CONSTITUTION:A visible picture is obtained from an electrostatic latent image formed on an electrostatic image developing carrier by using a developer composition obtained by incorporating 0.3-3 wt.% of the coarse grains having 30-150mum average diameter by volume into a conductive toner having <=about 1X1010OMEGAcm volume resistivity and 5-15 mum average grain diameter by volume, the coarse grains alone are brought into contact with a transfer paper to substantially avoid contact of the toner with the transfer paper, and the picture contg. the coarse grains is electrostatically transferred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真法、静電記録
法等による静電荷像を導電性トナーで現像した可視画像
を、転写紙に静電的に転写する転写方法およびそれに使
用する現像剤組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer method for electrostatically transferring a visible image obtained by developing an electrostatic charge image by an electrophotographic method, an electrostatic recording method, etc., with a conductive toner, and a transfer method used therefor. It relates to a developer composition.

【0002】[0002]

【従来の技術】導電性トナーによる現像は絶縁性トナー
と異なり電界により誘起される電荷を利用して現像する
ため、絶縁性トナーに比較して以下の利点がある。 (1) 摩擦帯電による静電荷を利用しないため、湿度によ
る画像低下の影響を排除できる。 (2) 静電潜像による誘起電荷または任意の偏倚電圧によ
りトナーの電荷を選択することができるので、摩擦帯電
を利用したトナーによる現像よりも定量的な現像がで
き、ハーフトーン再現、ベタ部の再現に優れた画像が得
られる。 (3) トナーの構成成分である、樹脂、顔料、添加物など
の選択に際し、帯電極性を考慮する必要がないため、選
択の幅が広範囲になる。 (4) 均一電荷をトナーに与えることができるので、地汚
れの少ない、解像度の優れた画像が得られる。 (5) 無理のない1成分現像が可能になる。 (6) 摩擦帯電機構が不必要なため、現像器の構造が簡単
になり、小型化できる。 (7) 同一トナーで、正現像、逆現像の双方を行うことが
できる。 (8) トナーが導電性であるため、静電気的付着力がなく
清掃が容易になる。 (9) 導電性トナー層を感光体に接触させるだけで良いの
で、トナー飛散のない現像ができる。 (10)トナー流動性がよく、現像器内部での凝集やブロッ
キング、トナー補給部の詰まり等が生じにくい。
2. Description of the Related Art Unlike the insulating toner, the developing using the conductive toner utilizes the electric charge induced by the electric field, and therefore has the following advantages as compared with the insulating toner. (1) Since the electrostatic charge due to triboelectrification is not used, the influence of image deterioration due to humidity can be eliminated. (2) Since the charge of the toner can be selected by the induced charge by the electrostatic latent image or an arbitrary bias voltage, quantitative development can be performed as compared with the development using the toner using triboelectrification, halftone reproduction, solid part An image excellent in reproduction of is obtained. (3) When selecting resins, pigments, additives, etc., which are the constituent components of the toner, it is not necessary to consider the charging polarity, so the selection range is wide. (4) Since a uniform charge can be applied to the toner, an image with less background stain and excellent resolution can be obtained. (5) Reasonable one-component development becomes possible. (6) Since the triboelectrification mechanism is unnecessary, the structure of the developing device is simplified and the size can be reduced. (7) Both normal development and reverse development can be performed with the same toner. (8) Since the toner is conductive, it has no electrostatic adhesion and cleaning is easy. (9) Since it suffices to bring the conductive toner layer into contact with the photoconductor, development can be performed without toner scattering. (10) The toner has good fluidity, and aggregation and blocking inside the developing device and clogging of the toner replenishing portion are unlikely to occur.

【0003】上記のような多くの利点にもかかわらず、
導電性トナーは、絶縁性トナーを用いたプロセスで現在
広く用いられている、静電気力を利用した普通紙転写方
式、即ちコロナ放電やバイアスを印加した導電性または
誘電体ローラーにおいて、普通紙への良好な転写が困難
であるという最大の欠点のために、現在では殆ど利用さ
れていないのが現状である。
Despite the many advantages mentioned above,
Conductive toner is widely used in processes that use insulating toner, and is used in ordinary paper transfer methods that use electrostatic force, that is, in conductive or dielectric rollers to which corona discharge or bias is applied. At present, it is rarely used because of the greatest drawback that good transfer is difficult.

【0004】導電性トナーが、静電気力を利用した普通
紙転写方式において、転写性が劣化する原因は以下の通
りと推定される。即ち、導電性トナーは原理的に、電界
により生じる静電誘導電荷を利用して現像、転写を行
う。このため、特に高湿下においては転写紙が吸湿する
ことによる電気抵抗値の低下、その結果注入した電荷が
紙を通じてリークしてしまい導電性トナーに有効な電界
が働かなくなり転写しなくなると考えられる。よってこ
の現象を防止するために、従来は絶縁処理を施した静電
記録紙を用いていたが、紙が厚手になってしまい、また
コスト的にも高価であった。
It is presumed that the conductive toner is deteriorated in transferability in the plain paper transfer system using electrostatic force as follows. That is, in principle, the conductive toner is developed and transferred by utilizing the electrostatic induction charges generated by the electric field. For this reason, it is considered that, especially under high humidity, the transfer paper absorbs moisture to lower the electric resistance value, and as a result, the injected electric charge leaks through the paper, and the effective electric field does not work to the conductive toner to prevent transfer. . Therefore, in order to prevent this phenomenon, conventionally, electrostatic recording paper that has been subjected to insulation treatment has been used, but the paper becomes thick and the cost is high.

【0005】また、普通紙を用いこれを高抵抗化して静
電転写する方法として例えば特開昭54−48249、
54−60936、54−151040、特開平1−2
77266、特公昭58−26026各号公報に開示さ
れているが、機械が複雑になり大型化する、高湿下で転
写率が十分でない等の問題点が残されている。
Further, as a method of using plain paper and increasing the resistance of the plain paper to perform electrostatic transfer, for example, Japanese Patent Laid-Open No. 54-48249,
54-60936, 54-151040, JP-A 1-2
77266 and Japanese Examined Patent Publication No. 58-26026, there are still problems such as the machine becoming complicated and large, and the transfer rate being insufficient under high humidity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、転写機構を
複雑化することなく、導電性トナーを用いた可視画像を
普通紙に良好に静電転写することを可能にする、転写方
法およびそれに使用する現像剤組成物を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention provides a transfer method and a transfer method which enables good electrostatic transfer of a visible image using conductive toner onto plain paper without complicating the transfer mechanism. The purpose is to provide a developer composition for use.

【0007】[0007]

【課題を解決するための手段】本発明は、静電荷像担持
体上に形成された静電潜像を、体積固有抵抗約1×10
10Ωcm以下かつ体積基準平均粒径5〜15μmの導電
性トナーにより可視画像とし、上記導電性トナーと画像
を転写すべき転写紙とを実質的に非接触状態として静電
的に転写することを特徴とする転写方法に関する。
According to the present invention, an electrostatic latent image formed on an electrostatic charge image bearing member has a volume resistivity of about 1 × 10.
10 [Omega] cm or less and a conductive toner having a volume-based average particle diameter 5~15μm a visible image, that substantially electrostatically transferred as a non-contact state and a transfer sheet to be transferred to the conductive toner and image A characteristic transfer method.

【0008】さらに本発明は、静電荷像担持体上に形成
された静電潜像を、体積固有抵抗約1×1010Ωcm以
下かつ体積基準平均粒径5〜15μmの導電性トナー
に、体積基準平均粒径30〜150μmの粗大粒子を
0.3〜3重量%含有させてなる現像剤組成物により可
視画像を形成し、次いで上記粗大粒子のみを画像を転写
すべき転写紙に接触させることによって、上記導電性ト
ナーと上記転写紙とを実質的に非接触状態として粗大粒
子を含む画像を静電的に転写することを特徴とする転写
方法に関する。
Further, according to the present invention, the electrostatic latent image formed on the electrostatic image carrier is applied to a conductive toner having a volume resistivity of about 1 × 10 10 Ωcm or less and a volume-based average particle diameter of 5 to 15 μm. A visible image is formed with a developer composition containing 0.3 to 3% by weight of coarse particles having a standard average particle diameter of 30 to 150 μm, and then only the coarse particles are brought into contact with a transfer paper to which the image is transferred. According to the method, the conductive toner and the transfer paper are substantially brought into non-contact with each other to electrostatically transfer an image containing coarse particles.

【0009】さらに本発明は、体積固有抵抗約1×10
10Ωcm以下かつ体積基準平均粒径5〜15μmの導電
性トナーに、体積基準平均粒径30〜150μmの粗大
粒子を0.3〜3重量%含有させてなる現像剤組成物に
関する。
Further, according to the present invention, the volume resistivity is about 1 × 10.
The present invention relates to a developer composition obtained by adding 0.3 to 3% by weight of coarse particles having a volume-based average particle diameter of 30 to 150 μm to a conductive toner having a volume-based average particle diameter of 5 to 15 μm and 10 Ωcm or less.

【0010】本発明をより具体的に説明する。まず、S
e系、a−シリコン系等の無機感光体、及び有機感光体
等の静電荷像担持体に光を当てない状態でコロナ放電等
を利用して帯電させることにより均一に電荷を分布させ
た後、画像情報を露光して静電潜像を形成する。その
後、この静電潜像に例えば磁気力により導電性トナーを
保持したトナー担持体を接近させると、静電潜像とトナ
ー担持体または導電性トナーとの間に発生する電界によ
って導電性トナーを静電潜像に選択的に付着する。
The present invention will be described more specifically. First, S
After the electrostatic charge image carrier such as the e-type or a-silicon type, or the electrostatic image-bearing member such as the organic type, is uniformly charged by using corona discharge without applying light. , Image information is exposed to form an electrostatic latent image. After that, when a toner carrier holding a conductive toner is brought close to this electrostatic latent image by, for example, magnetic force, the conductive toner is removed by an electric field generated between the electrostatic latent image and the toner carrier or the conductive toner. Selectively attach to electrostatic latent images.

【0011】本発明に用いる導電性トナーは、その体積
固有抵抗が約1×1010Ωcm以下であることが必要であ
る。トナーの体積固有抵抗の測定方法としては、まずト
ナーを200kg/cm2 以上の強い圧力で加圧してペレッ
トを作製し、ペレットの両端に導電性ペースト等を塗布
し電極とした後、この電極間に電圧を印加してその電流
値から算出する方法が採用される。トナーの体積固有抵
抗が約1×1010Ωcmを超える場合は、前記の導電性ト
ナーの各種利点が損なわれるため好ましくない。
The conductive toner used in the present invention must have a volume resistivity of about 1 × 10 10 Ωcm or less. To measure the volume resistivity of the toner, first press the toner with a strong pressure of 200 kg / cm 2 or more to prepare pellets, apply conductive paste or the like to both ends of the pellets to form electrodes, and then A method of applying a voltage to and calculating from the current value is adopted. When the volume resistivity of the toner exceeds about 1 × 10 10 Ωcm, it is not preferable because various advantages of the conductive toner described above are impaired.

【0012】本発明の導電性トナーの製造方法として
は、熱可塑性樹脂を主成分とするバインダー成分と着色
剤成分及び導電性付与成分、その他必要に応じて添加さ
れる成分を、2軸押出混練機、2本ロールミル、加圧ニ
ーダー等の混練機を用いて熱熔融混練した後、冷却固化
しジェットミル等に粉砕機を用いて微粉砕し、気流分級
機等により所望の粒度分布に調整するのが一般的であ
る。また、近年は懸濁重合法、乳化重合法等により、直
接トナー粒子を生成する方法も種々提案されており、こ
れらの方法により製造したトナーでも使用できる。上記
トナーは体積基準平均粒径が5〜15μmであることが
必要である。上記上限を超えると画像の荒れが顕著にな
り、また上記下限より小さいと通常の現像器ではトナー
としての流動性の悪化による補給性の悪化が顕著になる
ので好ましくない。
The conductive toner of the present invention is produced by biaxial extrusion kneading with a binder component containing a thermoplastic resin as a main component, a colorant component, a conductivity imparting component, and other components added as necessary. Melt kneading using a kneading machine such as a mill, two roll mill, pressure kneader, etc., then cooling and solidifying, finely pulverizing using a pulverizer such as a jet mill, and adjusting to a desired particle size distribution by an air stream classifier, etc. Is common. In recent years, various methods for directly producing toner particles have been proposed by a suspension polymerization method, an emulsion polymerization method, etc., and a toner manufactured by these methods can also be used. The toner needs to have a volume-based average particle diameter of 5 to 15 μm. If it exceeds the upper limit, the image becomes rough, and if it is smaller than the lower limit, the replenishment property is deteriorated remarkably due to the deterioration of the fluidity of the toner, which is not preferable.

【0013】熱可塑性樹脂としては、トナー用として通
常使用されるものであればよく、例えばポリスチレン
系、スチレンとアクリル酸エステルもしくはメタクリル
酸エステル、アクリロニトリルあるいはマレイン酸エス
テルとのスチレンを含む共重合体系、ポリアクリル酸エ
ステル系、ポリメタクリル酸エステル系、ポリエステル
系、ポリアミド系、エポキシ系、フェノール系、炭化水
素系、石油系等の樹脂を例示できる。
The thermoplastic resin may be any of those usually used for toners, and examples thereof include polystyrene-based resins, styrene-acrylic acid ester or methacrylic acid ester copolymers, and acrylonitrile- or maleic acid ester-containing styrene copolymer systems. Examples thereof include polyacrylic acid ester-based, polymethacrylic acid ester-based, polyester-based, polyamide-based, epoxy-based, phenol-based, hydrocarbon-based, and petroleum-based resins.

【0014】着色剤としては、通常使用されている顔料
や染料が使用できる。着色剤としては、例えば、カーボ
ンブラック、鉄黒、亜鉛華、黄色酸化鉄、ハンザイエロ
ー、ジスアゾイエロー、キノリンイエロー、パーマネン
トイエロー、ベンガラ、リソールレッド、ウォッチャン
レッドカルシウム塩、ウォッチャンレッドマンガン塩、
ピラゾロンレッド、レーキレッドC、レーキレッドD、
ブリリアントカーミン3B、紺青、フタロシアニンブル
ー、酸化チタン等の顔料、或いは油溶性の染料を使用で
きる。
As the colorant, commonly used pigments and dyes can be used. Examples of the colorant include carbon black, iron black, zinc white, yellow iron oxide, Hansa yellow, disazo yellow, quinoline yellow, permanent yellow, red iron oxide, resole red, watchyan red calcium salt, watchyan red manganese salt,
Pyrazolone red, rake red C, rake red D,
Brilliant carmine 3B, dark blue, phthalocyanine blue, pigments such as titanium oxide, or oil-soluble dyes can be used.

【0015】導電性付与剤としてはカーボンブラックが
最も一般的であるが、その他導電性亜鉛華、導電性酸化
スズ等の各種導電性金属酸化物、各種帯電防止剤等が例
示される。
Carbon black is most commonly used as the conductivity-imparting agent, but other examples include conductive zinc oxide, various conductive metal oxides such as conductive tin oxide, and various antistatic agents.

【0016】また必要に応じて磁性粉を含有しても差し
支えない。磁性粉としては、各種フェライト、マグネタ
イト、ヘマタイト等公知のものが使用できる。
Further, magnetic powder may be contained if necessary. As the magnetic powder, various known materials such as ferrite, magnetite and hematite can be used.

【0017】上記導電性トナーを普通紙に良好に静電転
写するために、本発明者らは、導電性トナーと転写紙を
実質的に非接触状態とすることで、静電的に転写するこ
とが可能であることを見出した。導電性トナーと転写紙
を実質的に非接触状態とする方法としては具体的には、
例えば体積基準平均粒径5〜15μmの導電性トナー
に、体積基準平均粒径30〜150μmの粗大粒子を
0.3〜3重量%含有させてなる現像剤組成物を使用す
ることである。導電性トナーは静電荷像担持体上の静電
潜像に、ほぼ1〜2層程度の薄層を形成して付着する。
このとき、上記粗大粒子はこの導電性トナーと一緒に静
電潜像に現像されるため、導電性トナーで可視化した像
を転写紙に転写するため静電荷像担持体を転写紙に重ね
合わせた際、上記トナー層と転写紙間に空隙が生じる。
粗大粒子の体積基準平均粒径が30μm以下のときは上
記空隙が十分生じないため転写率が十分ではなく、また
150μmを超えると転写率は問題ないが、トナーが空
間を移動して転写紙へ転写するため画像に乱れを生じて
しまい不適である。また、上記粗大粒子の添加量は導電
性トナーに対して0.3〜3重量%であることが必要で
ある。3重量%を超えると画像中に上記粗大粒子による
画像の欠損(白点)が発生してしまい、また0.3重量
%以下の場合はその効果が十分現れないために不適であ
る。
In order to satisfactorily electrostatically transfer the above conductive toner to plain paper, the inventors of the present invention electrostatically transfer the conductive toner and the transfer paper in a substantially non-contact state. Found that it is possible. As a method of bringing the conductive toner and the transfer paper into a substantially non-contact state, specifically,
For example, a conductive toner having a volume-based average particle diameter of 5 to 15 μm and 0.3 to 3% by weight of coarse particles having a volume-based average particle diameter of 30 to 150 μm are used. The conductive toner adheres to the electrostatic latent image on the electrostatic image bearing member in a thin layer of about 1 to 2 layers.
At this time, since the coarse particles are developed into an electrostatic latent image together with the conductive toner, the electrostatic charge image carrier is superposed on the transfer paper in order to transfer the image visualized by the conductive toner onto the transfer paper. At this time, a gap is generated between the toner layer and the transfer paper.
When the volume-based average particle diameter of the coarse particles is 30 μm or less, the above-mentioned voids are not sufficiently generated, so that the transfer rate is not sufficient, and when it exceeds 150 μm, the transfer rate is not a problem, but the toner moves in the space and onto the transfer paper. Since it is transferred, the image is disturbed, which is not suitable. Further, the amount of the coarse particles added is required to be 0.3 to 3% by weight with respect to the conductive toner. If it exceeds 3% by weight, image defects (white spots) due to the above-mentioned coarse particles occur in the image, and if it is 0.3% by weight or less, the effect is not sufficiently exhibited, which is not suitable.

【0018】なお、本発明に関する転写方法によって導
電性トナーの転写率は従来に比較して大きく向上する
が、非常な高湿下では転写率が低下することがあるた
め、転写機構の前に簡単な転写紙前加熱装置を併設し、
転写紙の含水率を低下させることがより好ましい。転写
紙前加熱装置としては具体的には、通常定着器として使
用している熱圧ローラー、または熱プレート、フラッシ
ュ露光等が挙げられる。
Although the transfer rate of the conductive toner is greatly improved by the transfer method according to the present invention as compared with the conventional method, the transfer rate may decrease under extremely high humidity, so that the transfer mechanism can be easily installed before the transfer mechanism. With a transfer paper pre-heating device
It is more preferable to reduce the water content of the transfer paper. Specific examples of the transfer paper pre-heating device include a heat and pressure roller which is usually used as a fixing device, a heat plate, and flash exposure.

【0019】静電気力を利用した普通紙転写方式として
は、自体公知なコロナ放電を利用したコロナ転写方式、
バイアス電圧を印加した導電性または誘電体ローラーを
転写紙背後から接触させて転写するローラー転写方式等
がある。
As a plain paper transfer method using electrostatic force, a corona transfer method using corona discharge known per se,
There is a roller transfer system in which a conductive or dielectric roller to which a bias voltage is applied is contacted from behind the transfer paper to transfer.

【0020】以上により、従来静電転写が困難であった
導電性トナーによる可視画像が、静電記録紙等の加工紙
または特殊な前処理工程を用いることなく、良好に普通
紙に静電転写することが可能になった。
As described above, the visible image by the conductive toner, which has been difficult to be electrostatically transferred in the past, can be satisfactorily electrostatically transferred to the plain paper without using the processed paper such as the electrostatic recording paper or the special pretreatment process. It became possible to do.

【0021】以下実施例に基づいて本発明を詳細に説明
する。
The present invention will be described in detail based on the following examples.

【0022】導電性トナーの製造 下記配合の導電性トナー原料を予備混合した。 ポリエステル樹脂(商品名:タフトンNE382、花王社製) 50.0部 マグネタイト(商品名:MG−RF、三井金属工業社製) 40.0部 カーボンブラック(商品名:コンダクテックスSC、 コロンビアンカーボン社製) 10.0部Production of conductive toner The conductive toner raw materials having the following formulations were premixed.   Polyester resin (Product name: Tuffton NE382, manufactured by Kao Corporation) 50.0 parts   Magnetite (trade name: MG-RF, manufactured by Mitsui Metal Industry Co., Ltd.) 40.0 parts   Carbon black (Product name: Conductex SC,                       Colombian Carbon Co., Ltd.) 10.0 parts

【0023】予備混合した原料を2軸押出混練機にて加
熱熔融混練し、ジェットミルにて粉砕、気流分級機にて
分級し、体積基準平均粒径12μmで5μm以下と25
μm以上の粒子を実質的に含まないトナーを調製した。
粒度分布はコールターカウンター(TA−II型、コール
ターエレクトロニック社製)を用いて測定した。
The premixed raw materials are heated and melted and kneaded by a twin-screw extrusion kneader, pulverized by a jet mill, and classified by an air stream classifier. The volume-based average particle size of 12 μm is 5 μm or less and 25
A toner containing substantially no particles of μm or larger was prepared.
The particle size distribution was measured using a Coulter counter (TA-II type, manufactured by Coulter Electronic Co.).

【0024】こうして得られたトナーの体積固有抵抗
は、8×106 Ωcmであった。なお、体積固有抵抗は以
下のように測定した。市販の赤外線吸収スペクトル測定
用錠剤成型器(成型内部断面が20mmの円)に、予め2
3℃・50%RHの恒温恒湿槽に24時間放置したトナ
ー約0.8gを入れ、油圧プレス器を用い400kg/cm
2 で加圧して、厚さ約2mm、両端面が直径20mmの円形
である円筒形ペレットを作製した。このペレットの両方
の円形端面部の中央に、直径10mmの主電極を銀ペース
トを塗布して密着させ一端をグランドに接地した。次
に、一端をグランドに接地したガード電極をペレット外
周部に沿って設けた。主電極に直流100Vの電圧を印
加し、電流計で主電極間を流れる電流を直読し、安定し
た段階の電流値より下記式により体積固有抵抗値を算出
した。
The volume resistivity of the toner thus obtained was 8 × 10 6 Ωcm. The volume resistivity was measured as follows. 2 in advance on a commercially available tablet molding machine for measuring infrared absorption spectrum (circle having a molding internal cross section of 20 mm)
Approximately 0.8 g of toner left for 24 hours was placed in a thermo-hygrostat at 3 ° C and 50% RH and 400 kg / cm using a hydraulic press.
By pressurizing at 2, a cylindrical pellet having a thickness of about 2 mm and both end faces being circular with a diameter of 20 mm was prepared. A silver paste was applied to a central electrode having a diameter of 10 mm at the center of both circular end surfaces of the pellet to make them adhere to each other, and one end of the pellet was grounded. Next, a guard electrode whose one end was grounded was provided along the outer periphery of the pellet. A direct current of 100 V was applied to the main electrode, the current flowing between the main electrodes was directly read by an ammeter, and the volume specific resistance value was calculated from the stable value of the current value by the following formula.

【0025】体積固有抵抗〔Ωcm〕=(抵抗値〔Ω〕×
主電極面積〔cm2 〕)/ペレット厚み〔cm〕 なお導電性トナーの現像には手製の手現像実験装置を使
用した。即ち、市販の酸化亜鉛感光紙に手現像装置を用
い静電潜像を形成し、マグネットに導電性トナーを付着
させて磁気ブラシを形成しこれを感光紙に接触させるこ
とで現像した。
Volume specific resistance [Ωcm] = (resistance value [Ω] ×
Main electrode area [cm 2 ]) / pellet thickness [cm] Note that a handmade hand-developing experimental device was used for developing the conductive toner. That is, an electrostatic latent image was formed on a commercially available zinc oxide photosensitive paper using a hand developing device, conductive toner was attached to a magnet to form a magnetic brush, and the magnetic brush was brought into contact with the photosensitive paper for development.

【0026】実施例 粗大粒子として下表の粒子を選択した。 粗大粒子 体積基準平均粒径〔μm〕 実施例1 馬鈴薯澱粉 約 50 実施例2 球形フェライト粒子 約100 比較例1 ベンゾグアナミン微粒子 約 15 比較例2 ポリMMA微粒子 約 1 比較例3 球形フェライト粒子 約200 なお、上記馬鈴薯澱粉は粒度分布が広いため風力分級機
にて粒度の調整を行った。これらの粒子を前記導電性ト
ナーに各種比率で混合した後現像し、普通紙にコロナ転
写した。なお、転写は手製のコロナ転写実験機を用い、
印加電圧は+6.5kVとした。転写率は下記式により
算出した。 転写率〔%〕={転写紙上の付着トナー重量〔mg〕/
(感光紙上の残留トナー重量〔mg〕+転写紙上の付着ト
ナー重量〔mg〕}×100
Example Particles shown in the table below were selected as coarse particles. Coarse particles Volume-based average particle size [μm ] Example 1 Potato starch Approximately 50 Example 2 Spherical ferrite particles Approximately 100 Comparative example 1 Benzoguanamine fine particles Approximately 15 Comparative example 2 PolyMMA fine particles Approximately 1 Comparative example 3 Spherical ferrite particles Approximately 200 Since the potato starch has a wide particle size distribution, the particle size was adjusted with an air classifier. These particles were mixed with the conductive toner in various ratios, developed, and then subjected to corona transfer to plain paper. For transfer, use a handmade corona transfer experiment machine,
The applied voltage was +6.5 kV. The transfer rate was calculated by the following formula. Transfer rate [%] = {weight of toner attached to transfer paper [mg] /
(Weight of residual toner on photosensitive paper [mg] + weight of toner on transfer paper [mg]} × 100

【0027】転写率の測定結果を以下の表に示した。 粗大粒子添加量〔%0.1 0.3 1.0 3.0 5.0 実施例1 58.4 60.9 61.1 60.7 62.6 実施例2 54.2 78.1 95.0 95.5 94.2 比較例1 56.4 57.1 57.7 52.1 50.4 比較例2 58.7 58.4 55.1 53.9 55.7 比較例3 70.5 96.8 94.6 95.7 96.4 なお、測定は20℃、40%RHの低湿下で行った。ま
た、粗大粒子未添加のときの転写率は58.6%であっ
た。実施例1及び2は粗大粒子添加量0.3〜5重量%
で転写率向上の効果が認められた。しかし5重量%では
画像の白点が顕著になり不適であった。また比較例1及
び2は転写率向上の効果が認められなかった。また比較
例3は転写後の画像の乱れが著しく不適であった。
The measurement results of the transfer rate are shown in the following table. Coarse particle addition amount [% ] 0.1 0.3 1.0 1.0 3.0 5.0 Example 1 58.4 60.9 61.1 60.7 62.6 Example 2 54.2 78.1 95 .0 95.5 94.2 Comparative Example 1 56.4 57.1 57.7 52.1 50.4 Comparative Example 2 58.7 58.4 55.1 53.9 55.7 Comparative Example 3 70.5 96.8 94.6 95.7 96.4 The measurement was performed at 20 ° C. and low humidity of 40% RH. Further, the transfer rate when no coarse particles were added was 58.6%. In Examples 1 and 2, the amount of coarse particles added is 0.3 to 5% by weight.
Thus, the effect of improving the transfer rate was recognized. However, at 5% by weight, the white spots on the image became noticeable, which was not suitable. Further, in Comparative Examples 1 and 2, the effect of improving the transfer rate was not recognized. Further, in Comparative Example 3, the disorder of the image after transfer was remarkably unsuitable.

【0028】[0028]

【発明の効果】本発明に依って、従来静電転写が困難で
あった導電性トナーによる可視画像が、静電記録紙等の
加工紙または特殊な前処理工程を用いることなく、良好
に普通紙に静電転写することが可能になった。
EFFECTS OF THE INVENTION According to the present invention, a visible image with a conductive toner, which has been difficult to be electrostatically transferred in the past, can be processed normally without using a processed paper such as electrostatic recording paper or a special pretreatment process. It became possible to electrostatically transfer to paper.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 静電荷像担持体上に形成された静電潜像
を、体積固有抵抗約1×1010Ωcm以下かつ体積基準
平均粒径5〜15μmの導電性トナーにより可視画像と
し、上記導電性トナーと画像を転写すべき転写紙とを実
質的に非接触状態として静電的に転写することを特徴と
する転写方法。
1. An electrostatic latent image formed on an electrostatic charge image carrier is visualized with a conductive toner having a volume resistivity of about 1 × 10 10 Ωcm or less and a volume-based average particle diameter of 5 to 15 μm. A transfer method characterized in that a conductive toner and a transfer paper on which an image is transferred are electrostatically transferred in a substantially non-contact state.
【請求項2】 静電荷像担持体上に形成された静電潜像
を、体積固有抵抗約1×1010Ωcm以下かつ体積基準
平均粒径5〜15μmの導電性トナーに、体積基準平均
粒径30〜150μmの粗大粒子を0.3〜3重量%含
有させてなる現像剤組成物により可視画像を形成し、次
いで上記粗大粒子のみを画像を転写すべき転写紙に接触
させることによって、上記導電性トナーと上記転写紙と
を実質的に非接触状態として粗大粒子を含む画像を静電
的に転写することを特徴とする転写方法。
2. A conductive toner having a volume resistivity of about 1 × 10 10 Ωcm or less and a volume-based average particle diameter of 5 to 15 μm, and an electrostatic latent image formed on the electrostatic charge image carrier is added to the volume-based average particle. A visible image is formed with a developer composition containing 0.3 to 3% by weight of coarse particles having a diameter of 30 to 150 μm, and then only the coarse particles are brought into contact with a transfer paper to which the image is transferred. A transfer method, characterized in that an image containing coarse particles is electrostatically transferred by placing the conductive toner and the transfer paper in a substantially non-contact state.
【請求項3】 体積固有抵抗約1×1010Ωcm以下か
つ体積基準平均粒径5〜15μmの導電性トナーに、体
積基準平均粒径30〜150μmの粗大粒子を0.3〜
3重量%含有させてなる現像剤組成物。
3. A conductive toner having a volume resistivity of about 1 × 10 10 Ωcm or less and a volume-based average particle diameter of 5 to 15 μm, and coarse particles of a volume-based average particle diameter of 30 to 150 μm of 0.3 to
A developer composition containing 3% by weight.
JP3216092A 1991-08-01 1991-08-01 Transfer method Expired - Fee Related JP2979760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3216092A JP2979760B2 (en) 1991-08-01 1991-08-01 Transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216092A JP2979760B2 (en) 1991-08-01 1991-08-01 Transfer method

Publications (2)

Publication Number Publication Date
JPH0534967A true JPH0534967A (en) 1993-02-12
JP2979760B2 JP2979760B2 (en) 1999-11-15

Family

ID=16683126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216092A Expired - Fee Related JP2979760B2 (en) 1991-08-01 1991-08-01 Transfer method

Country Status (1)

Country Link
JP (1) JP2979760B2 (en)

Also Published As

Publication number Publication date
JP2979760B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US4265993A (en) Magnetic toner for electrostatic images and transfer copying
JPS6046428B2 (en) electrostatography
JPH0772809B2 (en) Thermal fixing toner for high speed copying
JPH0338588B2 (en)
JPH0232622B2 (en)
US5374978A (en) Developing method
EP0254436B1 (en) Magnetic brush developer for electrophotography
JPH0534967A (en) Transfer method and developer composition used therefor
US4273848A (en) Oriented magnetic toner
JP2643136B2 (en) Carrier for electrophotography
JPH0561272A (en) Transfer method of conductive toner
JPH0327115B2 (en)
JP3057817B2 (en) Toner for developing electrostatic latent images
JPS6371862A (en) Developer composition
JP2962040B2 (en) Method for developing one-component insulating magnetic toner
JP3158813B2 (en) Resin coated carrier
JPH03278067A (en) Color toner and image forming method using the same
JPH0257302B2 (en)
JPH04181947A (en) Conductive toner
JPS59170849A (en) Magnetic color developer
JP2590962B2 (en) Carrier for developing electrostatic images
JPH04211279A (en) Image recording method
JPS6083038A (en) Developer for electrostatic latent image
JP2567748B2 (en) Toner for electrostatic charge development
JP2906818B2 (en) Carrier composition for electrostatic image developer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees