JP2567748B2 - Toner for electrostatic charge development - Google Patents

Toner for electrostatic charge development

Info

Publication number
JP2567748B2
JP2567748B2 JP3084589A JP8458991A JP2567748B2 JP 2567748 B2 JP2567748 B2 JP 2567748B2 JP 3084589 A JP3084589 A JP 3084589A JP 8458991 A JP8458991 A JP 8458991A JP 2567748 B2 JP2567748 B2 JP 2567748B2
Authority
JP
Japan
Prior art keywords
toner
magnetic toner
insulating non
electrostatic charge
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3084589A
Other languages
Japanese (ja)
Other versions
JPH04296765A (en
Inventor
祐一 守屋
日出男 桃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd, Sanyo Denki Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP3084589A priority Critical patent/JP2567748B2/en
Priority to US07/856,717 priority patent/US5258254A/en
Publication of JPH04296765A publication Critical patent/JPH04296765A/en
Application granted granted Critical
Publication of JP2567748B2 publication Critical patent/JP2567748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は静電荷現像用トナーに関
し、特に低現像電位のシステムに使用される静電荷現像
用トナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic developing toner, and more particularly to an electrostatic developing toner used in a system having a low developing potential.

【0002】[0002]

【従来の技術】一般に電子写真法は感光体上に電気的な
潜像を形成し、ついで該潜像をトナーによって現像し、
必要に応じて紙などの転写材にトナー画像を転写した
後、加熱・加圧などの手段によって定着し被写物を得る
ものである。このような電子写真法に用いられる現像剤
としては、トナーとキャリアからなる二成分現像剤とト
ナーとキャリアの機能を同時に備えた一成分現像剤とが
ある。
2. Description of the Related Art Generally, in electrophotography, an electric latent image is formed on a photoreceptor, and the latent image is developed with toner.
The toner image is transferred to a transfer material such as paper as required, and then fixed by means such as heating and pressing to obtain a subject. As a developer used in such an electrophotographic method, there are a two-component developer composed of a toner and a carrier and a one-component developer having the functions of a toner and a carrier at the same time.

【0003】一成分現像剤には磁性一成分現像剤と非磁
性一成分現像剤があり、このうち磁性一成分現像剤とし
ては磁性粉を10〜70重量%程度含有した磁性トナー
が用いられる。また、磁性トナーは導電性磁性トナーと
絶縁性磁性トナーに分類され、前者は静電誘導あるいは
電荷注入が現像駆動力となり、後者は摩擦帯電による電
荷が現像駆動力となる。
The one-component developer includes a magnetic one-component developer and a non-magnetic one-component developer. Among them, a magnetic toner containing 10 to 70% by weight of magnetic powder is used as the magnetic one-component developer. Magnetic toners are classified into conductive magnetic toners and insulating magnetic toners. In the former case, electrostatic induction or charge injection serves as a development driving force, and in the latter case, electric charge due to frictional charging serves as a development driving force.

【0004】導電性磁性トナーを用いた一成分現像方式
では、導電性磁性トナー自体が現像電極となるため、エ
ッジ効果のない均一な画像が得られるという利点がある
ことが知られている。また、トナーの体積固有抵抗率を
およそ1×104 Ω・cm以下に抑えることによって現
像電位が100V以下の低電位現像システムにも利用で
きるという利点が生じる。
It is known that a one-component developing method using a conductive magnetic toner has an advantage that a uniform image without an edge effect can be obtained because the conductive magnetic toner itself serves as a developing electrode. Further, by suppressing the volume specific resistivity of the toner to about 1 × 10 4 Ω · cm or less, there is an advantage that the toner can be used in a low-potential developing system having a developing potential of 100 V or less.

【0005】しかし、導電性磁性トナーは静電転写時に
転写紙を介してトナーの電荷がリークしやすく、普通紙
への転写が困難であるという欠点がある。また、感光体
上にトナー粒子が1層しか現像されないため、画像濃度
の確保が困難であるという欠点もある。
However, the conductive magnetic toner has a drawback in that the charge of the toner is apt to leak through the transfer paper during electrostatic transfer, which makes it difficult to transfer the toner onto plain paper. Further, since only one layer of toner particles is developed on the photoreceptor, there is a disadvantage that it is difficult to secure image density.

【0006】この中で転写性の問題については高抵抗処
理を施した特殊紙を用いたり、ゴムローラによる圧力転
写方式を採用したりすることによってある程度解決され
るが、画像濃度の確保は本質的な問題であり、従来技術
ではいまだ満足される状況にない。
The transferability problem can be solved to some extent by using special paper that has been subjected to high resistance treatment or by using a pressure transfer system using a rubber roller, but ensuring image density is essential. This is a problem and the conventional technology is not yet satisfied.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の従来の
技術における問題点を解決し、低電位現像システムにお
いて十分な画像濃度を得、かつカブリのない良好な画像
特性を得ることができる静電荷現像用トナーを提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above problems in the prior art, and provides a sufficient image density in a low potential developing system and a good image characteristic without fog. The purpose is to provide a toner for charge development.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の課題を
解決するためになされたもので、磁性粉を30〜70重
量%含有し体積固有抵抗率が1×103 Ω・cm以下で
ある導電性磁性トナーと、体積固有抵抗率が1×109
Ω・cm以上で、真円度が0.5以上である絶縁性非磁
性トナーとを、重量比で60:40〜90:10の割合
で混合してなることを特徴とする静電荷現像用トナーで
ある。
The present invention has been made in order to solve the above-mentioned problems, and contains 30 to 70% by weight of magnetic powder and has a volume resistivity of 1 × 10 3 Ω · cm or less. Certain conductive magnetic toner and volume resistivity of 1 × 10 9
For electrostatic charge development, characterized by mixing an insulating non-magnetic toner having a circularity of 0.5 or more and an insulating non-magnetic toner of 0.5 or more at a weight ratio of 60:40 to 90:10. Toner.

【0009】導電性磁性トナーの体積固有抵抗率は、主
電極面積が1.00cm2 の円筒型電極に試料を入れて
200g/cm2 の荷重をかけ、100V/cmの電界
下で測定された値である。
[0009] conductive volume resistivity of the magnetic toner, a main electrode area under a load of 200 g / cm 2 and the sample was placed in a cylindrical electrode of 1.00 cm 2, it was measured under an electric field of 100 V / cm It is a value.

【0010】絶縁性非磁性トナーの体積固有抵抗率は導
電性磁性トナーのそれとはかなり異なるため、同様の測
定方法では測定できない。したがって、本発明の絶縁性
非磁性トナーの体積固有抵抗率は、絶縁性非磁性トナー
を200kg/cm2 の圧力下で成型し、SE−70型
固体電極(安藤電気社製)にセットした後、2500A
キャパシタンスブリッジ(東陽テクニカ社製)で測定し
た値である。
The volume resistivity of the insulating non-magnetic toner is considerably different from that of the conductive magnetic toner, and therefore cannot be measured by the same measuring method. Accordingly, the volume specific resistivity of the insulating non-magnetic toner of the present invention is determined by molding the insulating non-magnetic toner under a pressure of 200 kg / cm 2 and setting the SE-70 type solid electrode (manufactured by Ando Electric Co., Ltd.). 2500A
This is a value measured by a capacitance bridge (manufactured by Toyo Technica).

【0011】絶縁性非磁性トナー粒子の真円度は、以下
のようにして測定する。まず、SEM(走査型電子顕微
鏡)でトナー像を撮影し、その画像を画像処理装置に入
力して以下の式から求める。 真円度=(4π×面積)/(周囲の長さ)2 真円度は物体が真円の場合に最大1となり、不定形の場
合は0に近くなる。
The roundness of the insulating non-magnetic toner particles is measured as follows. First, a toner image is photographed with a SEM (scanning electron microscope), the image is input to the image processing apparatus, and the image is obtained from the following equation. Roundness = (4π × area) / (peripheral length) 2 The roundness is maximum 1 when the object is a perfect circle, and close to 0 when the object is an irregular shape.

【0012】本発明における導電性磁性トナーは磁性粉
及びカーボンブラックを結着樹脂中に分散し機械的に粉
砕した後、体積平均粒子径7〜10μm程度に分級して
得られる。また、分級後にトナー表面の導電性を均一化
するためにカーボンブラックなどの導電性材料を、また
流動性向上のためにシリカなどの添加剤を各々トナー粒
子表面に付着させてもよい。
The conductive magnetic toner of the present invention is obtained by dispersing magnetic powder and carbon black in a binder resin, mechanically pulverizing them, and then classifying them into a volume average particle diameter of about 7 to 10 μm. Further, after classification, a conductive material such as carbon black may be adhered to the surface of the toner in order to make the conductivity of the toner uniform, and an additive such as silica may be adhered to the surface of the toner particle to improve fluidity.

【0013】本発明において、導電性磁性トナーに使用
される結着樹脂はポリスチレン、ポリエチレン、ポリプ
ロピレン、ビニル系樹脂、ポリアクリレート、ポリメタ
クリレート、ポリ塩化ビニリデン、ポリアクリロニトリ
ル、ポリエーテル、ポリカーボネート、熱可塑性ポリエ
ステル、熱可塑性エポキシ樹脂、セルロース系樹脂及び
それらのモノマーの共重合樹脂などの熱可塑性樹脂の
他、変性アクリル樹脂、フェノール樹脂、メラミン樹
脂、ユリア樹脂などの熱硬化性樹脂を使用することがで
きる。また磁性粉としては結晶学的にスピネル、ペロブ
スカイト、六方晶、ガーネット、オルソフェライト構造
を有するフェライトやマグネタイトなどが適用される。
フェライトの構成はニッケル、亜鉛、マンガン、マグネ
シウム、銅、リチウム、バリウム、バナジウム、クロ
ム、カルシウムなどの酸化物と3価の鉄酸化物との焼結
体である。
In the present invention, the binder resin used in the conductive magnetic toner is polystyrene, polyethylene, polypropylene, vinyl resin, polyacrylate, polymethacrylate, polyvinylidene chloride, polyacrylonitrile, polyether, polycarbonate, thermoplastic polyester. In addition to thermoplastic resins such as thermoplastic epoxy resins, cellulosic resins and copolymer resins of those monomers, thermosetting resins such as modified acrylic resins, phenol resins, melamine resins and urea resins can be used. Further, as the magnetic powder, spinel, perovskite, hexagonal, garnet, ferrite having an orthoferrite structure, magnetite, or the like is applied crystallographically.
The composition of ferrite is a sintered body of oxides of nickel, zinc, manganese, magnesium, copper, lithium, barium, vanadium, chromium, calcium and the like and trivalent iron oxides.

【0014】本発明において、絶縁性非磁性トナーも同
様にカーボンブラックなどの着色剤や帯電量調整剤を結
着樹脂中に分散させ、粉砕・分級した後熱気流中で球形
化処理を行ったり、高速気流中で衝撃力を加えたりし
て、真円度が0.5以上になるように調整する。また、
トナー材料を溶剤に分散させ、スプレードライすること
によっても所望の絶縁性非磁性トナーを得ることができ
る。さらに、結着樹脂重合時にカーボンブラックや帯電
量調整剤を分散し、直接所望の粒子径の絶縁性非磁性ト
ナーを作成してもよい。重合方法としては懸濁重合法や
乳化重合法等が好適に使用することができる。このよう
にして得られた絶縁性非磁性トナーの表面には流動性向
上のためにシリカなどの添加剤を付着させてもよい。
In the present invention, the insulating non-magnetic toner is also prepared by dispersing a colorant such as carbon black or a charge amount adjusting agent in a binder resin, pulverizing and classifying the same, and then subjecting it to spheroidizing treatment in a hot air stream. Adjust the roundness to 0.5 or more by applying impact force in a high-speed air stream. Also,
The desired insulating non-magnetic toner can also be obtained by dispersing the toner material in a solvent and spray drying. Further, carbon black or a charge amount adjusting agent may be dispersed during polymerization of the binder resin to directly produce an insulating non-magnetic toner having a desired particle size. As a polymerization method, a suspension polymerization method, an emulsion polymerization method or the like can be preferably used. An additive such as silica may be attached to the surface of the insulating nonmagnetic toner thus obtained in order to improve fluidity.

【0015】本発明において、絶縁性磁性トナーに使用
される結着樹脂には前述の導電性磁性トナーに例示した
ものが適宜使用される。また、必要に応じてモノアゾ系
の金属染料やニグロシン系の染料、第4級アンモニウム
塩などの帯電量調整剤を使用してもよい。
In the present invention, as the binder resin used for the insulating magnetic toner, those exemplified as the above-mentioned conductive magnetic toner are appropriately used. If necessary, a charge controlling agent such as a monoazo metal dye, a nigrosine dye, or a quaternary ammonium salt may be used.

【0016】[0016]

【作用】本発明の静電荷現像用トナーを構成する導電性
磁性トナーは、現像電解下で電荷が静電誘導あるいは現
像スリーブより注入され、感光体上の画像潜像部と導電
性磁性トナーとの静電引力が磁気束縛力より大きくなる
と画像潜像部に付着し現像される。一方、絶縁性非磁性
トナーは現像噐の穂高規制ブレードや導電性磁性トナー
等との間の摩擦帯電によって絶縁性非磁性トナーに電荷
が生じ画像潜像部に現像される。したがって、感光体上
の画像潜像部には多くの導電性磁性トナーと絶縁性非磁
性トナーとが混在して付着するため十分な画像濃度を得
ることができる。
In the conductive magnetic toner constituting the electrostatic charge developing toner of the present invention, the charge is electrostatically induced under the developing electrolysis or injected from the developing sleeve, and the latent image portion on the photoconductor and the conductive magnetic toner are combined. When the electrostatic attraction force of is larger than the magnetic binding force, it adheres to the latent image portion of the image and is developed. On the other hand, the insulating non-magnetic toner is charged in the insulating non-magnetic toner by frictional charging with the height control blade of the developing device, the conductive magnetic toner, or the like, and is developed on the latent image portion of the image. Therefore, a large amount of conductive magnetic toner and insulating non-magnetic toner are mixedly attached to the latent image portion of the image on the photoconductor, so that a sufficient image density can be obtained.

【0017】本発明の静電荷現像用トナーは現像器内で
混合攪拌され、マグネットローラーによって現像スリー
静電荷現像用トナーは現像器内で混合攪拌されマグネッ
トローラーによって現像スリーブ上に導電性磁性トナー
の穂が形成される。このため導電性磁性トナーに含有さ
れる磁性粉は30〜70重量%であることが必要であ
る。30重量%未満では静電荷現像用トナーの磁力が小
さくなるため搬送性が不良となる。また、70重量%を
越えて多い場合は、磁性粉を結着樹脂中に分散させるの
が困難になるだけでなく、カーボンブラック等の導電性
材料の配合量が少なくなるために導電性の確保が困難と
なる。絶縁性非磁性トナーは摩擦帯電による静電気力に
よって導電性磁性トナーに付着し、導電性磁性トナーと
同様に画像潜像部に搬送される。導電性磁性トナーと絶
縁性非磁性トナーの混合比率は60:40〜90:10
が良好に使用し得る。絶縁性非磁性トナーの比率が40
を越えて多い(導電性磁性トナーの比率が60未満)場
合は、導電性磁性トナーによる搬送性が悪くなり、トナ
ー落ちやトナー飛散などの問題が発生しやすい。また、
絶縁性非磁性トナーの比率が10未満(導電性磁性トナ
ーの比率が90を越えて多い)の場合は、十分な画像濃
度を得ることができなくなる。
The electrostatic charge developing toner of the present invention is mixed and stirred in the developing device, and the developing three electrostatic charge developing toner is mixed and stirred in the developing device by the magnet roller, and the conductive magnetic toner on the developing sleeve is mixed by the magnet roller. Ears are formed. Therefore, the magnetic powder contained in the conductive magnetic toner needs to be 30 to 70% by weight. When the amount is less than 30% by weight, the magnetic force of the toner for electrostatic charge development becomes small, so that the transportability becomes poor. If the amount exceeds 70% by weight, not only is it difficult to disperse the magnetic powder in the binder resin, but also the amount of the conductive material such as carbon black is reduced, so that the conductivity is secured. Becomes difficult. The insulative non-magnetic toner adheres to the conductive magnetic toner by electrostatic force due to frictional charging, and is conveyed to the image latent image portion in the same manner as the conductive magnetic toner. The mixing ratio of the conductive magnetic toner and the insulating non-magnetic toner is 60:40 to 90:10.
Can be used satisfactorily. The ratio of insulating non-magnetic toner is 40
If the ratio exceeds (the ratio of the conductive magnetic toner is less than 60), the transportability of the conductive magnetic toner becomes poor, and problems such as toner dropping and toner scattering are likely to occur. Also,
When the ratio of the insulating non-magnetic toner is less than 10 (the ratio of the conductive magnetic toner exceeds 90 and is large), it becomes impossible to obtain a sufficient image density.

【0018】導電性磁性トナーの体積固有抵抗率が1×
103 Ω・cmを越えて大きい場合は、静電荷現像用ト
ナーとしての体積固有抵抗率が高くなってしまい、低電
位での現像が困難になる。また、絶縁性非磁性トナーの
体積固有抵抗率が1×109Ω・cm未満の場合には電
荷の漏洩によって十分な摩擦帯電量を得ることができな
くなり、結果として画像濃度が低くなる。
The volume resistivity of the conductive magnetic toner is 1 ×
If it exceeds 10 3 Ω · cm, the volume specific resistivity of the toner for electrostatic charge development becomes high, making it difficult to perform development at a low potential. On the other hand, if the volume resistivity of the insulating non-magnetic toner is less than 1 × 10 9 Ω · cm, a sufficient amount of triboelectric charge cannot be obtained due to leakage of electric charges, resulting in a low image density.

【0019】本発明の静電荷現像用トナーを現像器内で
攪拌すると、導電性磁性トナー表面に露出もしくは付着
しているカーボンブラックの一部が絶縁性非磁性トナー
表面に移行する。このため導電性磁性トナーへの電荷注
入が不良となり、カブリなどの画像不良が発生する。本
発明では絶縁性非磁性トナーの真円度を0.5以上と
し、表面積を極小にすることによって導電性磁性トナー
表面からのカーボンブラックの移行量を制限し、画像不
良の発生を予防するものである。
When the electrostatic charge developing toner of the present invention is stirred in the developing device, a part of the carbon black exposed or attached to the surface of the conductive magnetic toner is transferred to the surface of the insulating non-magnetic toner. As a result, the charge injection into the conductive magnetic toner becomes defective, and image defects such as fog occur. In the present invention, the circularity of the insulating non-magnetic toner is set to 0.5 or more and the surface area is minimized to limit the migration amount of carbon black from the surface of the conductive magnetic toner and prevent the occurrence of image defects. Is.

【0020】[0020]

【実施例】以下本発明の実施例について説明する。なお
「部」とは重量部を表わす。 実施例1 上記配合の材料を2本ロールの混練機で溶融混練を行
いジェットミルで粉砕をして分級し、体積平均粒子径9
μmの導電性磁性トナーを得た。この導電性磁性トナー
の体積固有抵抗率は5×102 Ω・cmであった。さら
に、 上記配合の材料を2本ロールの混練機で溶融混練を行
いジェットミルで粉砕をして分級した後、ナラ・ハイブ
リダイゼーション・システムにより高速気流中で衝撃力
を加えて体積平均粒子径9μmのトナー粒子を得た。さ
らにこのトナー粒子100部に対し0.2部の疎水性シ
リカ(Rー972:日本アエロジル社製)を混合して絶
縁性非磁性トナーを得た。この絶縁性非磁性トナーの体
積固有抵抗率は7×1010Ω・cmであり、真円度は
0.58であった。上記導電性磁性トナーと絶縁性非磁
性トナーを70:30重量部の割合で混合して本発明の
静電荷現像用トナーを得た。
EXAMPLES Examples of the present invention will be described below. The term "part" means part by weight. Example 1 The materials having the above composition are melt-kneaded with a two-roll kneader, pulverized with a jet mill and classified to have a volume average particle diameter of 9
A conductive magnetic toner of μm was obtained. The volume resistivity of this conductive magnetic toner was 5 × 10 2 Ω · cm. further, The material having the above composition is melt-kneaded by a two-roll kneader, crushed by a jet mill and classified, and then impact force is applied by a Nara hybridization system in a high-speed air stream to obtain a toner having a volume average particle diameter of 9 μm. The particles were obtained. Further, 0.2 part of hydrophobic silica (R-972: manufactured by Nippon Aerosil Co., Ltd.) was mixed with 100 parts of the toner particles to obtain an insulating non-magnetic toner. The volume specific resistivity of this insulating nonmagnetic toner was 7 × 10 10 Ω · cm, and the circularity was 0.58. The conductive magnetic toner and the insulating non-magnetic toner were mixed at a ratio of 70:30 parts by weight to obtain the electrostatic charge developing toner of the present invention.

【0021】実施例2 上記配合の材料をよく分散させた後懸濁重合を行い、
脱水、洗浄、乾燥して体積平均粒子径9μmのトナー粒
子を得た。さらにこのトナー粒子100部に対して0.
2部の疎水性シリカ(Rー972:日本アエロジル社
製)を混合して絶縁性非磁性トナーを得た。この絶縁性
非磁性トナーの体積固有抵抗率は3×1010Ω・cmで
あり、真円度は0.78であった。実施例1の導電性磁
性トナーと実施例2の絶縁性非磁性トナーを重量比で7
0:30の割合で混合して本発明の静電荷現像用トナー
を得た。
Example 2 After well dispersing the materials of the above formulation, carry out suspension polymerization,
It was dehydrated, washed and dried to obtain toner particles having a volume average particle diameter of 9 μm. Further, with respect to 100 parts of this toner particle, 0.
Two parts of hydrophobic silica (R-972: manufactured by Nippon Aerosil Co., Ltd.) was mixed to obtain an insulating non-magnetic toner. The volume specific resistivity of this insulating non-magnetic toner was 3 × 10 10 Ω · cm, and the circularity was 0.78. The conductive magnetic toner of Example 1 and the insulating non-magnetic toner of Example 2 were mixed in a weight ratio of 7
The mixture was mixed at a ratio of 0:30 to obtain the electrostatic charge developing toner of the present invention.

【0022】比較例1 上記配合の材料を2本ロールの混練機で溶融混練を行い
ジェットミルで粉砕して分級し、体積平均粒子径9μm
の導電性磁性トナーを得た。この導電性磁性トナーの体
積固有抵抗率は6×104 Ω・cmであった。上記導電
性磁性トナーと実施例1の絶縁性非磁性トナーを70:
30重量部の割合で混合して比較例1の静電荷現像用ト
ナーを得た。
Comparative Example 1 The materials of the above composition are melt-kneaded by a two-roll kneader, pulverized by a jet mill and classified, and the volume average particle diameter is 9 μm.
Was obtained. The volume resistivity of this conductive magnetic toner was 6 × 10 4 Ω · cm. The conductive magnetic toner and the insulating non-magnetic toner of Example 1 are 70:
The mixture was mixed at a ratio of 30 parts by weight to obtain an electrostatic charge developing toner of Comparative Example 1.

【0023】比較例2 上記配合の材料をよく分散させた後懸濁重合を行い、
脱水、洗浄、乾燥して体積平均粒子径9μmのトナー粒
子を得た。さらにこのトナー粒子100部に対して0.
2部の疎水性シリカ(Rー972:日本アエロジル社
製)を混合して絶縁性非磁性トナーを得た。この絶縁性
非磁性トナーの体積固有抵抗率は6×108 Ω・cmで
あり、真円度は0.75であった。実施例1の導電性磁
性トナーと上記の絶縁性非磁性トナーを重量比で70:
30の割合で混合して比較例2の静電荷現像用トナーを
得た。
Comparative Example 2 After well dispersing the materials of the above formulation, carry out suspension polymerization,
It was dehydrated, washed and dried to obtain toner particles having a volume average particle diameter of 9 μm. Further, with respect to 100 parts of this toner particle, 0.
Two parts of hydrophobic silica (R-972: manufactured by Nippon Aerosil Co., Ltd.) was mixed to obtain an insulating non-magnetic toner. The volume specific resistivity of this insulating nonmagnetic toner was 6 × 10 8 Ω · cm, and the circularity was 0.75. The conductive magnetic toner of Example 1 and the above insulating non-magnetic toner were in a weight ratio of 70:
The mixture was mixed at a ratio of 30 to obtain the electrostatic charge developing toner of Comparative Example 2.

【0024】比較例3 実施例1の絶縁性非磁性トナーにおいて、気流中での衝
撃力を加えずに体積平均粒子径9μmの絶縁性非磁性ト
ナーを得た。この絶縁性非磁性トナーの体積固有抵抗率
は7.2×1010Ω・cmであり、真円度は0.42で
あつた。さらに、実施例1の導電性磁性トナーと上記絶
縁性非磁性トナーを70:30重量部の割合で混合して
比較例3の静電荷現像用トナーを得た。
Comparative Example 3 An insulating non-magnetic toner having a volume average particle size of 9 μm was obtained from the insulating non-magnetic toner of Example 1 without applying an impact force in an air stream. The volume specific resistivity of this insulating non-magnetic toner was 7.2 × 10 10 Ω · cm, and the circularity was 0.42. Further, the conductive magnetic toner of Example 1 and the insulating non-magnetic toner were mixed at a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of Comparative Example 3.

【0025】比較例4 実施例1の導電性磁性トナーのみで比較例4の静電荷現
像用トナーを得た。
Comparative Example 4 An electrostatic charge developing toner of Comparative Example 4 was obtained using only the conductive magnetic toner of Example 1.

【0026】比較例5 実施例1の導電性磁性トナーと実施例1の絶縁性非磁性
トナーとを重量比で50:50の割合で混合して比較例
5の静電荷現像用トナーを得た。
Comparative Example 5 The conductive magnetic toner of Example 1 and the insulating non-magnetic toner of Example 1 were mixed at a weight ratio of 50:50 to obtain a toner for electrostatic charge development of Comparative Example 5. .

【0027】以上の実施例1〜2及び比較例1〜5の静
電荷現像用トナーを現像電位が40VであるLED反転
プリンタに適用して試験したところ、表1の結果を得
た。
The electrostatic charge developing toners of Examples 1 to 2 and Comparative Examples 1 to 5 described above were applied to an LED reversal printer having a developing potential of 40 V and tested. The results shown in Table 1 were obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の画像濃度はマクベスRD914反射
濃度計で測定した値である。また、カブリ値はREFL
ECTOMETER TC−6D(東京電色社製)で測
定した値である。表1から明らかなように本発明の静電
荷現像用トナーは画像濃度及び画像の解像度も良好であ
って、カブリも極めて少ないものであった。これに対し
て、比較例1、比較例2及び比較例4は画像濃度が低
く、比較例2、比較例3及び比較例5についてはカブリ
が多く実用上支障をきたすことが確認された。
The image densities in Table 1 are values measured by a Macbeth RD914 reflection densitometer. Also, the fog value is REFL
It is a value measured by ECTOMER TC-6D (manufactured by Tokyo Denshoku Co., Ltd.). As is clear from Table 1, the electrostatic charge developing toner of the present invention had good image density and image resolution, and had very little fog. On the other hand, it was confirmed that Comparative Example 1, Comparative Example 2 and Comparative Example 4 had low image densities, and Comparative Example 2, Comparative Example 3 and Comparative Example 5 had a lot of fog and caused a practical problem.

【0030】[0030]

【発明の効果】本発明は低電位現像システムにおいて十
分な画像濃度を得、かつカブリがなく良好な画像を得る
ことができる静電荷現像用トナーを提供することができ
る。
INDUSTRIAL APPLICABILITY The present invention can provide a toner for electrostatic charge development capable of obtaining a sufficient image density in a low potential developing system and obtaining a good image without fog.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−53960(JP,A) 特開 昭61−149968(JP,A) 特開 昭56−159653(JP,A) 特開 昭63−214781(JP,A) 特開 昭63−135969(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-53960 (JP, A) JP-A-61-149968 (JP, A) JP-A-56-155963 (JP, A) JP-A-63- 214781 (JP, A) JP 63-135969 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性粉を30〜70重量%及びカーボンブ
ラックを含有してなる体積固有抵抗率が1×10Ω・
cm以下である導電性磁性トナーと、体積固有抵抗率が
1×10Ω・cm以上、真円度が0.5以上である絶
縁性非磁性トナーとを、重量比で60:40〜90:1
0の割合で混合してなることを特徴とする静電荷現像用
トナー。
1. A magnetic powder in an amount of 30 to 70% by weight and carbon powder.
The volume specific resistance including the rack is 1 × 10 3 Ω ・
The conductive magnetic toner having a volume ratio of cm or less and the insulating non-magnetic toner having a volume resistivity of 1 × 10 9 Ω · cm or more and a circularity of 0.5 or more have a weight ratio of 60:40 to 90. : 1
An electrostatic charge developing toner characterized by being mixed at a ratio of 0.
JP3084589A 1991-03-26 1991-03-26 Toner for electrostatic charge development Expired - Lifetime JP2567748B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3084589A JP2567748B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development
US07/856,717 US5258254A (en) 1991-03-26 1992-03-24 Toner for developing static charge images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084589A JP2567748B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development

Publications (2)

Publication Number Publication Date
JPH04296765A JPH04296765A (en) 1992-10-21
JP2567748B2 true JP2567748B2 (en) 1996-12-25

Family

ID=13834864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084589A Expired - Lifetime JP2567748B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development

Country Status (1)

Country Link
JP (1) JP2567748B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159653A (en) * 1980-05-13 1981-12-09 Ricoh Co Ltd Developer for electrostatic latent image
JPS6053960A (en) * 1983-09-03 1985-03-28 Canon Inc Formation of image
JPS61149968A (en) * 1984-12-25 1986-07-08 Fujitsu Ltd Electrostatic recording device
JPS63135969A (en) * 1986-11-27 1988-06-08 Seiko Epson Corp Printing method
JPS63214781A (en) * 1987-03-04 1988-09-07 Fujitsu Ltd Image forming device

Also Published As

Publication number Publication date
JPH04296765A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JPH05273789A (en) Electrophotographic developer
GB1565596A (en) Developer for electrostatic image and process for preparation thereof
US5374978A (en) Developing method
JPH027062B2 (en)
JP2567748B2 (en) Toner for electrostatic charge development
JPH0259982B2 (en)
JPS63228174A (en) Magnetic carrier and its manufacture
US5532095A (en) Magnetic toner
JP2887717B2 (en) Electrostatic toner
US5258254A (en) Toner for developing static charge images
JP2533007B2 (en) Toner for electrostatic charge development
JP2686481B2 (en) Toner for electrostatic charge development
JPH0257302B2 (en)
JP2581631B2 (en) Electrostatic toner
JP3010917B2 (en) Method for developing one-component insulating magnetic toner
JP3249924B2 (en) Image forming method and magnetic toner used therefor
JP2510156B2 (en) Reverse development method
JPH08334932A (en) Two-component developer
JPH0119580B2 (en)
JPS6142665A (en) One component type insulating magnetic toner
JP2887713B2 (en) Electrostatic toner
JP2979760B2 (en) Transfer method
JPH0623868B2 (en) Reverse development method
JP2686480B2 (en) Toner for electrostatic charge development
JPH04296764A (en) Toner for developing electrostatic charge image

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960723