JPH05346541A - Rear conversion lens - Google Patents

Rear conversion lens

Info

Publication number
JPH05346541A
JPH05346541A JP4154787A JP15478792A JPH05346541A JP H05346541 A JPH05346541 A JP H05346541A JP 4154787 A JP4154787 A JP 4154787A JP 15478792 A JP15478792 A JP 15478792A JP H05346541 A JPH05346541 A JP H05346541A
Authority
JP
Japan
Prior art keywords
lens
rear conversion
conversion lens
focal length
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4154787A
Other languages
Japanese (ja)
Inventor
Masaru Takashima
勝 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4154787A priority Critical patent/JPH05346541A/en
Publication of JPH05346541A publication Critical patent/JPH05346541A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the rear conversion lens which has an about X1.6 variable power ratio and never spoils size reduction while making the field angle of the field angle range of a conversion lens system wide. CONSTITUTION:This rear conversion lens RC is a rear conversion lens with negative refracting power which is arranged on the image plane side of a main lens system ML so that it can be inserted and extracted and varies the focal length of the whole system by the insertion and extraction; and this lens consists of a 1st lens which is a positive meniscus lens having a convex surface on the image side, a 2nd lens which is a positive lens, and a 3rd lens which is a negative lens and satisfies (1) -6.0<(R2+R1)/(R2--R1)<-2.0 and (2) 0.02<D2/¦fR¦<0.05. Here, R1 and R2 are the radii of curvature of the front and rear surfaces of the 1st lens, D2 is the on-axis interval between the 1st and 2nd lenses, and fR is the focal length of the whole conversion lens system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主レンズ系の像面側に
挿脱することにより全系の焦点距離を変化させるリアコ
ンバージョンレンズに関し、特に、レンズシャッターカ
メラに好適なリアコンバージョンレンズに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rear conversion lens for changing the focal length of the whole system by inserting and removing it in the image plane side of a main lens system, and more particularly to a rear conversion lens suitable for a lens shutter camera. Is.

【0002】[0002]

【従来の技術】近年、レンズシャッターカメラにおい
て、主レンズ系の像面側にコンバージョンレンズを挿入
して焦点距離を切り換える、いわゆる2焦点カメラ用の
レンズ系が種々提案されている。このようなレンズ系の
例として、特開昭61−144617号、特開昭62−
247315号のものがあげられる。近年、レンズシャ
ッターカメラのレンズ系の画角をより広くすることが望
まれているが、画角を広くすることにより、軸上収差と
軸外収差のバランスがとり難くなり、また、バランスを
とるためにレンズ枚数を増すと、レンズ系が大きくなっ
てしまい、小型化が望まれているレンズシャッターカメ
ラには不向きなものとなってしまう。上記の先行例に
は、広画角化に対する処置がとられていない。
2. Description of the Related Art In recent years, in lens shutter cameras, various lens systems for so-called bifocal cameras have been proposed in which a conversion lens is inserted on the image plane side of a main lens system to switch the focal length. Examples of such a lens system include JP-A-61-144617 and JP-A-62-162.
No. 247315 can be given. In recent years, it has been desired to widen the angle of view of the lens system of the lens shutter camera. However, by widening the angle of view, it becomes difficult to balance the axial aberration and the off-axis aberration, and also the balance is achieved. Therefore, if the number of lenses is increased, the lens system becomes large, which is unsuitable for a lens shutter camera that is desired to be downsized. No measures have been taken for widening the angle of view in the preceding examples.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような問
題に鑑みてなされたものであり、その目的は、コンバー
ジョンレンズ方式による画角域の広画角化を達成しつ
つ、変倍比約1.6程度で、小型化を損なわないリアコ
ンバージョンレンズを提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to achieve a wide field angle in a field angle range by a conversion lens system while achieving a variable power ratio. It is to provide a rear conversion lens having a size of about 1.6, which does not impair miniaturization.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明のリアコンバージョンレンズは、主レンズ系の像面側
に挿脱可能に配置され、その挿脱に伴って全系の焦点距
離を変化させる負の屈折力のリアコンバージョンレンズ
において、主レンズ側から順に、像側に凸面を向けた正
メニスカスレンズの第1レンズと、正レンズの第2レン
ズと、負レンズの第3レンズとからなると共に、以下の
条件(1)、(2)を満足することを特徴とするもので
ある。
A rear conversion lens of the present invention that achieves the above object is arranged so that it can be inserted and removed on the image plane side of the main lens system, and the focal length of the entire system changes with the insertion and removal. In the rear conversion lens having a negative refractive power, the first lens is a positive meniscus lens having a convex surface facing the image side, the second lens is a positive lens, and the third lens is a negative lens, in order from the main lens side. In addition, it is characterized in that the following conditions (1) and (2) are satisfied.

【0005】 (1)−6.0<(R2 +R1 )/(R2 −R1 )<−2.0 (2)0.02<D2 /|fR <0.05 ただし、ここで、R1 、R2 はそれぞれ前記第1レンズ
の前面、後面の曲率半径、D2 は前記第1レンズと第2
レンズの軸上間隔、fR は前記リアコンバージョンレン
ズ全系の焦点距離である。
(1) −6.0 <(R 2 + R 1 ) / (R 2 −R 1 ) <− 2.0 (2) 0.02 <D 2 / | f R | <0.05, where R 1 and R 2 are the radii of curvature of the front surface and the rear surface of the first lens, respectively, and D 2 is the first lens and the second lens.
The axial distance of the lens, f R, is the focal length of the entire rear conversion lens system.

【0006】[0006]

【作用】以下、上記構成を採用する理由と作用について
説明する。リアコンバージョンレンズ方式により得られ
る画角域を広画角化することにより、軸上収差と軸外収
差のバランス補正が困難となるのだが、そのバランスを
とる条件式が(1)、(2)式である。(1)式は、軸
上収差に対して軸外収差をバランス補正するための条件
で、特に非点収差の補正に有効である。前記第1レンズ
の形状を像側に凸面を向けたメニスカス形状にすること
により、前記第1レンズに対する軸外光線の入射角を小
さくすることができ、軸外収差に対して無理のない補正
をすることができる。
The function and operation of adopting the above configuration will be described below. By widening the angle of view obtained by the rear conversion lens system, it becomes difficult to correct the balance between the axial aberration and the off-axis aberration, but the conditional expressions for achieving this balance are (1) and (2). It is an expression. The expression (1) is a condition for balance correction of off-axis aberration with respect to on-axis aberration, and is particularly effective for correction of astigmatism. By making the shape of the first lens a meniscus shape with the convex surface facing the image side, the incident angle of the off-axis light ray on the first lens can be made small, and the off-axis aberration can be corrected without difficulty. can do.

【0007】(1)式の下限を超えると、前記第1レン
ズの物体側の面の屈折力が増し、軸上収差と軸外収差の
バランスが崩れ、特に非点収差に影響を及ぼす。また、
その上限を超えると、逆に、前記第1レンズの物体側の
面の屈折力が弱まり過ぎ、軸外収差、特にコマ収差が悪
化する。
When the value goes below the lower limit of the expression (1), the refracting power of the object side surface of the first lens increases, and the balance between the axial aberration and the off-axis aberration is disturbed, which particularly affects astigmatism. Also,
If the upper limit is exceeded, conversely, the refracting power of the object-side surface of the first lens becomes too weak, and off-axis aberrations, especially coma aberration, deteriorate.

【0008】(2)式は、軸上収差と軸外収差のバラン
スを保つための条件で、前記第1レンズと第2レンズ間
の空気レンズを有効に生かすための条件である。(2)
式の下限は軸上収差に関するもので、その下限を超える
と、球面収差が補正過剰となる。(2)式の上限は軸外
収差に関するもので、その上限を超えると、コマ収差が
悪化する。
The expression (2) is a condition for maintaining the balance between the axial aberration and the off-axis aberration, and is a condition for effectively utilizing the air lens between the first lens and the second lens. (2)
The lower limit of the equation relates to axial aberration, and if the lower limit is exceeded, spherical aberration will be overcorrected. The upper limit of the equation (2) relates to off-axis aberration, and if it exceeds the upper limit, coma becomes worse.

【0009】さらに、前記第1レンズと第2レンズの間
の空気レンズの屈折力をφ23とすると、 (3)fR ・φ23<0 とすることにより、前記第1レンズ、第2レンズの負担
を軽減し、軸上及び軸外光線に対し、無理なパワーを与
えずに補正することができる。
Further, assuming that the refracting power of the air lens between the first lens and the second lens is φ 23 , (3) f R · φ 23 <0, so that the first lens and the second lens It is possible to reduce the load of and to correct on-axis and off-axis rays without giving undue power.

【0010】第1レンズ、第2レンズの屈折力を小さく
すると、ペッツバール和が減少し、像面湾曲、非点収差
の補正が困難となるが、(1)式によって良好に補正が
行われる。また、像面湾曲の補正を容易にするため、前
記第1レンズ、第2レンズ、第3レンズの屈折率を
1 、N2 、N3 とすると、 (4)(N1 +N2 )/2<1.7 (5)N3 >1.8 を満たすようにすることが望ましい。条件式(4)、
(5)から外れると、ペッツバール和が減少し、像面湾
曲の補正が困難になる。
If the refracting powers of the first lens and the second lens are reduced, the Petzval sum is reduced and it becomes difficult to correct the field curvature and astigmatism, but the correction is satisfactorily performed by the equation (1). Further, in order to facilitate the correction of the field curvature, if the refractive indices of the first lens, the second lens, and the third lens are N 1 , N 2 , and N 3 , then (4) (N 1 + N 2 ) / It is desirable to satisfy 2 <1.7 (5) N 3 > 1.8. Conditional expression (4),
If it deviates from (5), the Petzval sum will decrease, making it difficult to correct the field curvature.

【0011】本発明におけるフォーカシングとしては、
主レンズ系を物体側へ繰り出す方式が考えられる。この
方式は、リアコンバージョンレンズの有無に関わらず、
繰り出し量が一定であるという利点がある。また、リア
コンバージョンレンズを含めた全系を繰り出すようにし
てもよい。この方式だと、繰り出しに対して周辺光量の
減りが少なく、そのため、繰り出し量を多くとることが
でき、至近撮影には好適な方式である。
Focusing in the present invention includes:
A method of extending the main lens system to the object side is possible. This method, whether or not there is a rear conversion lens,
There is an advantage that the amount of feeding is constant. Alternatively, the entire system including the rear conversion lens may be extended. With this method, the amount of peripheral light is less reduced with respect to the extension, and therefore, the extension amount can be increased, which is suitable for close-up photography.

【0012】[0012]

【実施例】以下、図面を参照にして本発明のリアコンバ
ージョンレンズの実施例1〜4について説明する。ま
ず、このリアコンバージョンレンズを装着する主レンズ
系MLの例として、図1に断面を示すようなトリプレッ
トレンズを用いるものとする。このレンズMLのレンズ
データは後記する。
EXAMPLES Examples 1 to 4 of the rear conversion lens of the present invention will be described below with reference to the drawings. First, as an example of the main lens system ML to which this rear conversion lens is attached, a triplet lens whose cross section is shown in FIG. 1 is used. The lens data of this lens ML will be described later.

【0013】このような主レンズ系MLの像側に、図2
に示すように、本発明によるリアコンバージョンレンズ
RCLを装着する。図2のリアコンバージョンレンズR
CLは実施例1のものであるが、何れの実施例において
も、像側に凸面を向けた正メニスカスレンズ、像側に凸
面を向けた正メニスカスレンズ、像側に凸面を向けた負
メニスカスレンズからなるので、実施例2〜4のレンズ
の図示は省略する。
On the image side of such a main lens system ML, FIG.
As shown in, the rear conversion lens RCL according to the present invention is mounted. Rear conversion lens R in Figure 2
CL is that of the first embodiment, but in any of the embodiments, a positive meniscus lens having a convex surface facing the image side, a positive meniscus lens having a convex surface facing the image side, and a negative meniscus lens having a convex surface facing the image side are used. Therefore, the illustration of the lenses of Examples 2 to 4 is omitted.

【0014】以下に、主レンズ系と各実施例のリアコン
バージョンレンズのレンズデータを示すが、記号は、上
記の外、Fは主レンズ系の焦点距離又はリアコンバージ
ョンレンズを主レンズ系に装着したときの全系の焦点距
離、FNOは主レンズ系のFナンバー又は主レンズ系にリ
アコンバージョンレンズを装着したときの全系のFナン
バー、ωは主レンズ系の半画角又はリアコンバージョン
レンズを主レンズ系に装着したときの全系の画角、
1 、r2 …は各レンズ面の曲率半径、d1 、d2…は
各レンズ面間の間隔、nd1、nd2…は各レンズのd線の
屈折率、νd1、νd2…は各レンズのアッベ数である。ま
た、d0 は主レンズ系の絞り位置からリアコンバージョ
ンレンズ第1面の間の間隔である。なお、主レンズ系の
各レンズ面の曲率半径、各レンズ面間の間隔、各レンズ
のd線の屈折率、アッベ数については、それぞれ
i ' 、di ' 、ndi ' 、νdi ' と表記してある。
The lens data of the main lens system and the rear conversion lens of each embodiment are shown below. The symbols are the above, and F is the focal length of the main lens system or the rear conversion lens is attached to the main lens system. Is the focal length of the whole system, F NO is the F number of the main lens system or the F number of the whole system when a rear conversion lens is attached to the main lens system, and ω is the half angle of view of the main lens system or the rear conversion lens. Angle of view of the entire system when attached to the main lens system,
r 1 , r 2 ... Radius of curvature of each lens surface, d 1 , d 2 ... Spacing between lens surfaces, n d1 , n d2 ..., Refractive index of d-line of each lens, v d1 , v d2 . Is the Abbe number of each lens. Further, d 0 is the distance between the diaphragm position of the main lens system and the first surface of the rear conversion lens. The radius of curvature of each lens surface of the main lens system, the distance between the lens surfaces, the d-line refractive index of each lens, and the Abbe number are r i , d i , n di , and ν di ′, respectively. Is written.

【0015】また、何れの実施例においても、2番目の
正メニスカスレンズの前面(r3 )に非球面を用いてお
り、その非球面形状は、光軸方向をx、光軸に直交する
方向をyとしたとき、次の式で表される。 x=(y2/r)/[1+{1-P( y2/r2)}1/2 ]+A44 +A66 +A88 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6、A8
は非球面係数である。
Further, in any of the embodiments, an aspherical surface is used for the front surface (r 3 ) of the second positive meniscus lens, and the aspherical shape is a direction orthogonal to the optical axis x and the optical axis. Is represented by the following equation. x = (y 2 / r) / [1+ {1-P (y 2 / r 2)} 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 where, r is a paraxial radius of curvature, P Is the conic coefficient, A 4 , A 6 , A 8
Is an aspherical coefficient.

【0016】 主レンズ系 F =33.9 FNO=3.6 ω =32.1° r1 ' = 10.6000 d1 ' = 4.610 nd1 ' =1.73400 νd1 ' =51.49 r2 ' = 27.7050 d2 ' = 0.590 r3 ' = -35.2920 d3 ' = 0.800 nd2 ' =1.68893 νd2 ' =31.08 r4 ' = 11.2770 d4 ' = 1.540 r5 ' = 41.7410 d5 ' = 1.300 nd3 ' =1.79952 νd3 ' =42.24 r6 ' = -21.7810 d6 ' = 1.090 r7 ' = ∞ (絞り) 。Main lens system F = 33.9 F NO = 3.6 ω = 32.1 ° r 1 ' = 10.6000 d 1 ' = 4.610 n d1 ' = 1.73400 ν d1 ' = 51.49 r 2 ' = 27.7050 d 2 ' = 0.590 r 3 ' = -35.2920 d 3 '= 0.800 n d2' = 1.68893 ν d2 '= 31.08 r 4' = 11.2770 d 4 '= 1.540 r 5' = 41.7410 d 5 '= 1.300 n d3' = 1.79952 ν d3 '= 42.24 r 6 ' = -21.7810 d 6 ' = 1.090 r 7 ' = ∞ (aperture).

【0017】実施例1 F =53.1 FNO=5.7 ω =21.7° d0 = 2.000 r1 = -28.2188 d1 = 0.970 nd1 =1.69500 νd1 =42.16 r2 = -16.1582 d2 = 2.216 r3 = -15.0580(非球面)d3 = 1.805 nd2 =1.58362 νd2 =30.37 r4 = -8.5524 d4 = 0.050 r5 = -8.5454 d5 = 1.810 nd3 =1.83481 νd3 =42.72 r6 = -28.4019 非球面係数 第3面 P= 1 A4= 0.10533×10-4 A6= 0.19734×10-5 A8=-0.37808×10-7 (R2 +R1 )/(R2 −R1 )=-3.68 D2 /|fR | = 0.038 fR ・φ23<0 =-0.247 (N1 +N2 )/2 = 1.63931
Example 1 F = 53.1 F NO = 5.7 ω = 21.7 ° d 0 = 2.000 r 1 = -28.2188 d 1 = 0.970 n d1 = 1.69500 ν d1 = 42.16 r 2 = -16.1582 d 2 = 2.216 r 3 = -15.0580 (aspherical surface) d 3 = 1.805 n d2 = 1.58362 ν d2 = 30.37 r 4 = -8.5524 d 4 = 0.050 r 5 = -8.5454 d 5 = 1.810 n d3 = 1.83481 ν d3 = 42.72 r 6 = -28.4019 non Spherical coefficient 3rd surface P = 1 A 4 = 0.10533 × 10 -4 A 6 = 0.19734 × 10 -5 A 8 = -0.37808 × 10 -7 (R 2 + R 1 ) / (R 2 -R 1 ) =-3.68 D 2 / | f R | = 0.038 f R · φ 23 <0 = -0.247 (N 1 + N 2 ) / 2 = 1.63931
..

【0018】実施例2 F =53.1 FNO=5.7 ω =21.8° d0 = 2.000 r1 = -24.2680 d1 = 0.900 nd1 =1.69500 νd1 =42.16 r2 = -15.4433 d2 = 2.237 r3 = -16.7986(非球面)d3 = 1.796 nd2 =1.58362 νd2 =30.37 r4 = -8.6922 d4 = 0.100 r5 = -8.3137 d5 = 1.799 nd3 =1.83481 νd3 =42.72 r6 = -26.7498 非球面係数 第3面 P= 1 A4= 0.31916×10-4 A6= 0.19846×10-5 A8=-0.15786×10-7 (R2 +R1 )/(R2 −R1 )=-4.5 D2 /|fR | = 0.038 fR ・φ23<0 =-0.600 (N1 +N2 )/2 = 1.63931
Example 2 F = 53.1 F NO = 5.7 ω = 21.8 ° d 0 = 2.000 r 1 = -24.2680 d 1 = 0.900 n d1 = 1.69500 ν d1 = 42.16 r 2 = -15.4433 d 2 = 2.237 r 3 = -16.7986 (aspherical surface) d 3 = 1.796 n d2 = 1.58362 ν d2 = 30.37 r 4 = -8.6922 d 4 = 0.100 r 5 = -8.3137 d 5 = 1.799 n d3 = 1.83481 ν d3 = 42.72 r 6 = -26.7498 non Spherical coefficient 3rd surface P = 1 A 4 = 0.31916 × 10 -4 A 6 = 0.19846 × 10 -5 A 8 = -0.15786 × 10 -7 (R 2 + R 1 ) / (R 2 -R 1 ) =-4.5 D 2 / | f R | = 0.038 f R · φ 23 <0 = -0.600 (N 1 + N 2 ) / 2 = 1.63931
..

【0019】実施例3 F =53.1 FNO=5.7 ω =21.8° d0 = 2.000 r1 = -20.6935 d1 = 0.900 nd1 =1.69700 νd1 =48.51 r2 = -14.3263 d2 = 2.295 r3 = -20.4951(非球面)d3 = 1.795 nd2 =1.58362 νd2 =30.37 r4 = -8.8557 d4 = 0.100 r5 = -8.0503 d5 = 1.786 nd3 =1.83481 νd3 =42.72 r6 = -27.0670 非球面係数 第3面 P= 1 A4= 0.62294×10-4 A6= 0.22996×10-5 A8=-0.81203×10-8 (R2 +R1 )/(R2 −R1 )=-5.5 D2 /|fR | = 0.04 fR ・φ23<0 =-1.169 (N1 +N2 )/2 = 1.64031
Example 3 F = 53.1 F NO = 5.7 ω = 21.8 ° d 0 = 2.000 r 1 = -20.6935 d 1 = 0.900 n d1 = 1.69700 ν d1 = 48.51 r 2 = -14.3263 d 2 = 2.295 r 3 = -20.4951 (aspherical surface) d 3 = 1.795 n d2 = 1.58362 ν d2 = 30.37 r 4 = -8.8557 d 4 = 0.100 r 5 = -8.0503 d 5 = 1.786 n d3 = 1.83481 ν d3 = 42.72 r 6 = -27.0670 non surface coefficients third surface P = 1 A 4 = 0.62294 × 10 -4 A 6 = 0.22996 × 10 -5 A 8 = -0.81203 × 10 -8 (R 2 + R 1) / (R 2 -R 1) = - 5.5 D 2 / | f R | = 0.04 f R · φ 23 <0 = -1.169 (N 1 + N 2 ) / 2 = 1.64031
..

【0020】実施例4 F =53.1 FNO=5.7 ω =21.6° d0 = 2.000 r1 = -47.1785 d1 = 0.970 nd1 =1.69500 νd1 =42.16 r2 = -15.7262 d2 = 1.244 r3 = -14.2491(非球面)d3 = 1.815 nd2 =1.58362 νd2 =30.37 r4 = -8.3467 d4 = 0.050 r5 = -8.3853 d5 = 1.824 nd3 =1.83481 νd3 =42.72 r6 = -39.6366 非球面係数 第3面 P= 1 A4=-0.20828×10-4 A6= 0.75071×10-5 A8=-0.26923×10-6 (R2 +R1 )/(R2 −R1 )=-2.0 D2 /|fR | = 0.022 fR ・φ23<0 =-0.187 (N1 +N2 )/2 = 1.63931
Example 4 F = 53.1 F NO = 5.7 ω = 21.6 ° d 0 = 2.000 r 1 = -47.1785 d 1 = 0.970 n d1 = 1.69500 ν d1 = 42.16 r 2 = -15.7262 d 2 = 1.244 r 3 = -14.2491 (aspherical surface) d 3 = 1.815 n d2 = 1.58362 ν d2 = 30.37 r 4 = -8.3467 d 4 = 0.050 r 5 = -8.3853 d 5 = 1.824 n d3 = 1.83481 ν d3 = 42.72 r 6 = -39.6366 non third surface P = 1 A 4 = -0.20828 × surface coefficient 10 -4 A 6 = 0.75071 × 10 -5 A 8 = -0.26923 × 10 -6 (R 2 + R 1) / (R 2 -R 1) = - 2.0 D 2 / | f R | = 0.022 f R · φ 23 <0 = -0.187 (N 1 + N 2 ) / 2 = 1.63931
..

【0021】上記主レンズ系及びこれに実施例1〜4の
リアコンバージョンレンズを装着した状態での無限遠物
体に合焦した時の球面収差、非点収差、歪曲収差を表す
収差図をそれぞれ図3〜図7に示す。
Aberration diagrams showing spherical aberration, astigmatism, and distortion when focusing on an object at infinity with the main lens system and the rear conversion lenses of Examples 1 to 4 attached thereto are respectively shown. 3 to 7.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
のリアコンバージョンレンズは、画角域の広画角化に対
応したものであり、変倍比約1.6程度で、良好な光学
性能を有しながら、構成枚数を3枚としたことにより、
小型化を損なわないものとなっている。
As is apparent from the above description, the rear conversion lens of the present invention is compatible with widening of the angle of view in the field of view, and has a variable power ratio of about 1.6 and excellent optical characteristics. By having three components while maintaining performance,
It does not impair miniaturization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリアコンバージョンレンズを装着する
主レンズ系の1例の断面図である。
FIG. 1 is a sectional view of an example of a main lens system to which a rear conversion lens of the present invention is attached.

【図2】本発明の実施例1のリアコンバージョンレンズ
を図1の主レンズ系に装着した状態での断面図である。
FIG. 2 is a cross-sectional view of the rear conversion lens of Example 1 of the present invention mounted on the main lens system of FIG.

【図3】図1の主レンズ系の球面収差、非点収差、歪曲
収差を表す収差図である。
FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the main lens system of FIG.

【図4】実施例1のリアコンバージョンレンズを図1の
主レンズ系に装着した状態での図3と同様な収差図であ
る。
FIG. 4 is an aberration diagram similar to that of FIG. 3 when the rear conversion lens of Example 1 is mounted on the main lens system of FIG.

【図5】実施例2についての図4と同様な収差図であ
る。
FIG. 5 is an aberration diagram similar to FIG. 4 for Example 2.

【図6】実施例3についての図4と同様な収差図であ
る。
FIG. 6 is an aberration diagram similar to FIG. 4 for Example 3.

【図7】実施例4についての図4と同様な収差図であ
る。
FIG. 7 is an aberration diagram similar to FIG. 4 for Example 4.

【符号の説明】[Explanation of symbols]

ML …主レンズ系 RCL…リアコンバーターレンズ ML ... Main lens system RCL ... Rear converter lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主レンズ系の像面側に挿脱可能に配置さ
れ、その挿脱に伴って全系の焦点距離を変化させる負の
屈折力のリアコンバージョンレンズにおいて、主レンズ
側から順に、像側に凸面を向けた正メニスカスレンズの
第1レンズと、正レンズの第2レンズと、負レンズの第
3レンズとからなると共に、以下の条件(1)、(2)
を満足することを特徴とするリアコンバージョンレン
ズ: (1)−6.0<(R2 +R1 )/(R2 −R1 )<−2.0 (2)0.02<D2 /|fR <0.05 ただし、ここで、R1 、R2 はそれぞれ前記第1レンズ
の前面、後面の曲率半径、D2 は前記第1レンズと第2
レンズの軸上間隔、fR は前記リアコンバージョンレン
ズ全系の焦点距離である。
1. A rear conversion lens having a negative refractive power, which is removably disposed on the image plane side of a main lens system and changes the focal length of the entire system with the insertion / removal, in order from the main lens side. The first lens is a positive meniscus lens having a convex surface facing the image side, the second lens is a positive lens, and the third lens is a negative lens, and the following conditions (1) and (2) are satisfied.
And satisfying the rear conversion lens: (1) -6.0 <(R 2 + R 1) / (R 2 -R 1) <- 2.0 (2) 0.02 <D 2 / | f R <0.05, where R 1 and R 2 are the radii of curvature of the front surface and the rear surface of the first lens, respectively, and D 2 is the first lens and the second lens.
The axial distance of the lens, f R, is the focal length of the entire rear conversion lens system.
JP4154787A 1992-06-15 1992-06-15 Rear conversion lens Withdrawn JPH05346541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154787A JPH05346541A (en) 1992-06-15 1992-06-15 Rear conversion lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154787A JPH05346541A (en) 1992-06-15 1992-06-15 Rear conversion lens

Publications (1)

Publication Number Publication Date
JPH05346541A true JPH05346541A (en) 1993-12-27

Family

ID=15591894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154787A Withdrawn JPH05346541A (en) 1992-06-15 1992-06-15 Rear conversion lens

Country Status (1)

Country Link
JP (1) JPH05346541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235217A (en) * 2012-05-11 2013-11-21 Olympus Imaging Corp Teleconverter and image capturing system equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235217A (en) * 2012-05-11 2013-11-21 Olympus Imaging Corp Teleconverter and image capturing system equipped with the same
US9075291B2 (en) 2012-05-11 2015-07-07 Olympus Imaging Corp. Teleconverter, and imaging system comprising the same
US9563106B2 (en) 2012-05-11 2017-02-07 Olympus Corporation Teleconverter mounted on a master lens apparatus to obtain a lens system having a focal length longer than that of the master lens apparatus, and imaging system comprising the same
US9904030B2 (en) 2012-05-11 2018-02-27 Olympus Corporation Teleconverter, and imaging system comprising the same

Similar Documents

Publication Publication Date Title
JP3304518B2 (en) Zoom lens
JP2682053B2 (en) Small zoom lens
US5592334A (en) Zoom lens system
JPH05142473A (en) Rear conversion lens
JP3204703B2 (en) Zoom lens
JPH08313802A (en) Wide angle lens
JPH0617938B2 (en) Zoom lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JP3735909B2 (en) Retro focus lens
JP3821330B2 (en) Zoom lens
JPH07120678A (en) Focusing method of three-group zoom lens
JP2005107261A (en) Rear converter lens
JPS627525B2 (en)
US5619379A (en) Aspherical surface ocular lens
US5615051A (en) Bright triplet
JP3518886B2 (en) High-performance wide-angle lens
JPH05127082A (en) Small-sized zoom lens
US5589986A (en) Zoom lens
JPH07318798A (en) Photographic lens
JP3447424B2 (en) High zoom lens
JPH0772388A (en) Small-sized zoom lens
JP3231404B2 (en) Shooting lens
JPH0820593B2 (en) Wide-angle lens with long back focus
JP3429584B2 (en) Zoom lens
JP4747600B2 (en) Eyepiece attachment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831