JPH0534426A - Measuring method for magnetism - Google Patents

Measuring method for magnetism

Info

Publication number
JPH0534426A
JPH0534426A JP27604491A JP27604491A JPH0534426A JP H0534426 A JPH0534426 A JP H0534426A JP 27604491 A JP27604491 A JP 27604491A JP 27604491 A JP27604491 A JP 27604491A JP H0534426 A JPH0534426 A JP H0534426A
Authority
JP
Japan
Prior art keywords
coil
output
output voltage
magnetic flux
measurement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27604491A
Other languages
Japanese (ja)
Inventor
Yoshihiro Murakami
美廣 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27604491A priority Critical patent/JPH0534426A/en
Publication of JPH0534426A publication Critical patent/JPH0534426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To measure very small magnetic flux density with ease and high accuracy. CONSTITUTION:A coil S is wound on a core C of ferromagnetic material and an alternating current is supplied to the coil S from an oscillator 1 via impedance and a direct current is supplied to the coil S at the same time so as to magnetize the ferromagnetic core C and output voltage obtained at the coil S is applied to a comparator which holds its hysterisis characteristic, so that a pulse width modulated wave is formed. The output voltage is converted to DC voltage by a detector 5 and the density of magnetic flux intersecting the ferromagnetic core C is measured from the value of the output voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小な磁束密度に対して
線形出力で高出力電圧を得ることのできる磁気センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor capable of obtaining a high output voltage with a linear output for a minute magnetic flux density.

【0002】[0002]

【従来の技術】磁気を計測する方法とし一般に公知な方
法としては、ホール素子,マグネットダイオード,
磁気抵抗素子,可飽和型センサ等がある。
2. Description of the Related Art Generally known methods for measuring magnetism include Hall element, magnet diode,
There are magnetoresistive elements and saturable sensors.

【0003】第7図は可飽和型センサの動作原理を示す
ブロック図である。6は発振器、A,Bは強磁性体コ
ア、C,Cは強磁性体を磁化するための1対の1次
コイル、S,Sは1対のサーチコイル、7は差動増
幅器、8はオシロスコープ
FIG. 7 is a block diagram showing the operating principle of the saturable sensor. 6 is an oscillator, A and B are ferromagnetic cores, C 1 and C 2 are a pair of primary coils for magnetizing the ferromagnetic material, S 1 and S 2 are a pair of search coils, and 7 is differential. Amplifier, 8 is an oscilloscope

【0004】第8図は第7図において外部から共通磁束
が交差したときに得られるパルス磁束の説明例で以下図
7を用いて従来技術を簡単に説明する。
FIG. 8 shows an example of the pulse magnetic flux obtained when the common magnetic flux from the outside crosses in FIG. 7, and the prior art will be briefly described below with reference to FIG.

【0005】可飽和型磁気センサは、一定方向の定状磁
界中で強磁性体の履歴曲線が非対称になることを利用す
る技術である。
The saturable magnetic sensor is a technique which utilizes the fact that the hysteresis curve of a ferromagnetic material becomes asymmetric in a constant magnetic field in a fixed direction.

【0006】図に示すごとく、1対の強磁性体コアA,
Bに各々C,Cの磁化コイル(コイルの差方は相互
に逆方向)を設置、このコイルに発振器6から交流電流
を供給し、前記した強磁性体コアA,Bを飽和するまで
磁化する。
As shown in the figure, a pair of ferromagnetic cores A,
C 1 and C 2 magnetizing coils are installed in B (the coils differ from each other in opposite directions), and an alternating current is supplied to the coils from the oscillator 6 until the ferromagnetic cores A and B are saturated. Magnetize.

【0007】この条件下で外部から磁界Hが印加される
と、1対の強磁性体コアA,Bには合成磁界が発生し、
その差分に対応した出力電圧が、1対のサーチコイルS
,Sに誘起される。
When a magnetic field H is applied from the outside under these conditions, a synthetic magnetic field is generated in the pair of ferromagnetic cores A and B,
The output voltage corresponding to the difference is a pair of search coils S
1 and S 2 .

【0008】この1対の出力電圧を差動増幅器7に加え
て所期値に増幅すると差動増幅器の出力端子には、1対
の強磁性体コアに交差する外部磁界Hに対応したパルス
幅変調された出力電圧が得られる。
When this pair of output voltages is applied to the differential amplifier 7 and amplified to a desired value, the output terminal of the differential amplifier has a pulse width corresponding to the external magnetic field H intersecting the pair of ferromagnetic cores. A modulated output voltage is obtained.

【0009】この出力電圧を図示しないがL,P,F
(ローパスフィルター)で直流電圧に変換し、この出力
電圧を計測することにより間接的に外部磁界を計測する
ことができる。なお可飽和型磁気センサの動作原理の詳
細はセンサ実用便覧(S53,11,15日発行)発行
先フジテクノシステムを参照されたし。
Although not shown, the output voltage is L, P, F.
The external magnetic field can be indirectly measured by converting the DC voltage with a (low-pass filter) and measuring the output voltage. For details of the operating principle of the saturable magnetic sensor, refer to the Fuji Techno System issued by the sensor practical handbook (issued on S53, 11, 15th).

【0010】[0010]

【発明が解決しようとする課題】従来技術では下記に示
す問題点が存在し、改良技術が強く要望されている。
The prior art has the following problems, and an improved technique is strongly demanded.

【0011】可飽和型磁気センサは、他の方法(ホール
素子、マグネットダイオード、磁気抵抗素子)と比較し
て温度変化特性は良好である。しかし、微小磁束密度に
対する出力電圧の線形特性に欠点がある。図9は従来技
術(図7に示す)の構成で1対の強磁性体コアA,Bの
一方のみに外部磁界を印加し、このときの出力電圧特性
を記録した結果である。
The saturable magnetic sensor has better temperature change characteristics than other methods (Hall element, magnet diode, magnetoresistive element). However, there is a drawback in the linear characteristic of the output voltage with respect to the minute magnetic flux density. FIG. 9 is a result of recording an output voltage characteristic at this time by applying an external magnetic field to only one of the pair of ferromagnetic cores A and B in the configuration of the conventional technique (shown in FIG. 7).

【0012】図9に示す如く、0〜4Gaussまでは
磁束密度に対して出力電圧の変化が極端に小さく、磁束
密度に対する直線性がない。
As shown in FIG. 9, from 0 to 4 Gauss, the change in output voltage is extremely small with respect to the magnetic flux density, and there is no linearity with respect to the magnetic flux density.

【0013】従って、従来技術では0,Gauss近辺
に対する磁束密度の計測精度は極端に悪化する。
Therefore, in the prior art, the measurement accuracy of the magnetic flux density near 0 and Gauss is extremely deteriorated.

【0014】[0014]

【課題を解決するための手段】本願は、従来技術の欠点
を解決し微小磁束密度に対する検出感度特性を向上さ
せ、0,Gauss近辺の直線性を、飛躍的に改善する
ことを目的とした技術である。
The present application aims to solve the drawbacks of the prior art, improve the detection sensitivity characteristics for minute magnetic flux density, and dramatically improve the linearity in the vicinity of 0 and Gauss. Is.

【0015】[0015]

【作用】本願の基本原理構成を第1図に示す。図におい
て1は発振器、2は加算器、3は直流電源、Zは直列抵
抗、Cは強磁性体コア、Sはコイル、4はパルス幅変調
器、5はデテクタ、以下図1を用いて本願技術の基本動
作を説明する。
The operation of the basic principle of the present application is shown in FIG. In the figure, 1 is an oscillator, 2 is an adder, 3 is a DC power supply, Z is a series resistance, C is a ferromagnetic core, S is a coil, 4 is a pulse width modulator, 5 is a detector, and the present application will be described below with reference to FIG. The basic operation of the technology will be described.

【0016】図に示す如く、発振器1から交流電圧Vを
発振させ、加算器2に加える。他方加算器には直流電源
3から直流電圧VDCを加えて加算する。この加算器2
の出力電圧は直列抵抗Zを介してコイルSに印加され、
(1)式で表示される電流をコイルに供給する。 I=VDC+V/(R+R)+JX ・・・(1)
As shown in the figure, an AC voltage V is oscillated from an oscillator 1 and added to an adder 2. On the other hand, the DC voltage V DC from the DC power supply 3 is added to the adder and added. This adder 2
Is applied to the coil S through the series resistance Z,
The current represented by the equation (1) is supplied to the coil. I = V DC + V / (R + R O ) + JX (1)

【0017】(1)式において、VDCは加算器出力の
直流電圧、Vは加算器出力の交流電圧、Rは直列抵抗の
値、RはコイルSの直流抵抗JXはコイルSのリアク
タンス、IはI=IDC+i、IDCは直流電流、iは
交流電流、前記した強磁性体Cには、直流磁界と交流磁
束の合成磁界が交差することになる。このため強磁性体
の磁化特性は図2(b)に示す特性を示す。
In the equation (1), VDC is the DC voltage of the adder output, V is the AC voltage of the adder output, R is the value of the series resistance, R O is the DC resistance of the coil S, JX is the reactance of the coil S, I is I = I DC + i, I DC is a direct current, i is an alternating current, and the above-mentioned ferromagnetic material C intersects with a synthetic magnetic field of a direct current magnetic field and an alternating magnetic flux. Therefore, the magnetization characteristics of the ferromagnetic material show the characteristics shown in FIG.

【0018】この条件下で外部磁界が強磁性体コアCに
交差すると図2の(b)の磁化特性から外部磁界の強度
に対応して変化することになる。このバイアス磁界(直
流電流をコイルSに流すことによって発生する磁界)を
加えることにより微小磁束密度に対する検出感度を格段
に向上することができる。
Under this condition, when the external magnetic field crosses the ferromagnetic core C, the magnetization characteristics shown in FIG. 2B change depending on the intensity of the external magnetic field. By adding this bias magnetic field (the magnetic field generated by causing a direct current to flow through the coil S), the detection sensitivity for a minute magnetic flux density can be significantly improved.

【0019】[0019]

【発明の実施例】本願の1実施例を図面を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0020】図3において、ICは発振器で品名(N
E555)、Trはトランジスタでエミッタフロアで
動作、Rはエミッタフロア抵抗、Sはセンサのコイ
ル、ICはパルス幅変調器(ヒステリシス型コンパレ
ータ)、R,Rはヒステリシス特性を決定する帰還
抵抗、R,Dは抵抗RとコンデンサDとによるロー
パスフィルター。
In FIG. 3, IC 1 is an oscillator and has a product name (N
E555), Tr 1 is a transistor and operates at an emitter floor, R 1 is an emitter floor resistance, S is a coil of a sensor, IC 2 is a pulse width modulator (hysteresis type comparator), and R 2 and R 3 determine hysteresis characteristics. The feedback resistors R 4 and D are low-pass filters formed by the resistor R 4 and the capacitor D.

【0021】図4は図3の構成による各部の出力電圧波
形である。
FIG. 4 is an output voltage waveform of each part having the configuration of FIG.

【0022】発振器IC(NE555等)で三角波と
直流電圧とが合成された出力電圧、図4(C)を得る。
この合成した出力電圧をエミッタフロア(Tr)のベ
ースに結線し、エミッタに抵抗Rと磁気センサのコイ
ルS’を結線し、コイルの1端を電源のアースに結線す
る。次に、コイルに得られる出力電圧、図4(d)をヒ
ステリシス型コンパレータ(IC:LM311等)の
反転入力端子に結線する。コンパレータ(IC)の出
力から1対の抵抗R,Rとで正帰還回路を構成す
る。
An output voltage obtained by synthesizing the triangular wave and the DC voltage by the oscillator IC 1 (NE555 or the like), FIG. 4C is obtained.
The synthesized output voltage is connected to the base of the emitter floor (Tr 1 ), the resistor R 1 and the coil S ′ of the magnetic sensor are connected to the emitter, and one end of the coil is connected to the ground of the power supply. Next, the output voltage obtained in the coil, FIG. 4D, is connected to the inverting input terminal of the hysteresis type comparator (IC 2 : LM311 or the like). The output of the comparator (IC 2 ) and the pair of resistors R 3 and R 2 form a positive feedback circuit.

【0023】この正帰還回路でコンパレータ(IC
の出力電圧Voを正帰還率{R/(R+R)}に
より非反転入力端子に帰還する。この正帰還回路の動作
によって、コンパレータ(IC)の出力端子には図4
(e)に示すごとく、パルス幅変調された一定振幅の短
形波出力が得られる。
With this positive feedback circuit, a comparator (IC 2 )
The output voltage Vo is fed back to the non-inverting input terminal at a positive feedback rate {R 2 / (R 2 + R 3 )}. By the operation of this positive feedback circuit, the output terminal of the comparator (IC 2 ) is
As shown in (e), a pulse width modulated rectangular wave output having a constant amplitude is obtained.

【0024】この出力電圧を、ローパスフィルター
{(以下L.P.Fと記す)抵抗RとコンデンサDと
で構成する}に加えて直流成分を抽出する。L.P.F
に得られる出力電圧を測定することにより磁気センサを
構成する強磁性体コアに交差する外部磁界を間接的に計
測することが出来る。
This output voltage is added to a low pass filter (which is composed of a resistor R 4 and a capacitor D (hereinafter referred to as LPF)) to extract a DC component. L. P. F
The external magnetic field intersecting the ferromagnetic core that constitutes the magnetic sensor can be indirectly measured by measuring the output voltage obtained in the above.

【0025】図5は、本願技術コアにアモルファスを用
いた磁気センサによる磁束密度に対する出力電圧特性を
示す。図6は、コアにパーマロイを用いた磁気センサに
よる磁束密度に対する出力電圧特性を示す。
FIG. 5 shows the output voltage characteristics with respect to the magnetic flux density by the magnetic sensor using the amorphous core of the present technology. FIG. 6 shows output voltage characteristics with respect to magnetic flux density by a magnetic sensor using permalloy as a core.

【0026】[0026]

【発明の効果】以上説明したように、本発明の磁気計測
法によれば図5に示す如く微小磁束密度に対して検出感
度が高く、かつ、磁束密度対して線形特性が得られる。
また、センサコイルに、直流電流を流す事でコアの磁化
効率を高めることができ、電子回路の小型化、ハイブリ
ット化が容易である。よって構成が極めて簡単で、温度
変化特性の良好な磁気センサが得られる。
As described above, according to the magnetic measurement method of the present invention, as shown in FIG. 5, the detection sensitivity is high with respect to the minute magnetic flux density, and the linear characteristic with respect to the magnetic flux density is obtained.
In addition, the magnetizing efficiency of the core can be increased by applying a direct current to the sensor coil, and the electronic circuit can be easily downsized and hybridized. Therefore, it is possible to obtain a magnetic sensor having a very simple structure and a good temperature change characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本願の基本構成図。FIG. 1 is a basic configuration diagram of the present application.

【図2】 強磁性体コアの磁化特性図。FIG. 2 is a magnetization characteristic diagram of a ferromagnetic core.

【図3】 本願技術の1実施例。FIG. 3 is an example of the present technology.

【図4】 本願図3における各回路の出力波形。FIG. 4 is an output waveform of each circuit in FIG. 3 of the present application.

【図5】 本願技術による微小磁束密度に対する出力電
圧特性。
FIG. 5 is an output voltage characteristic with respect to a minute magnetic flux density according to the technique of the present application.

【図6】 本願技術による微小磁束密度に対する出力電
圧特性。
FIG. 6 is an output voltage characteristic with respect to a minute magnetic flux density according to the technique of the present application.

【図7】 従来技術の説明図。FIG. 7 is an explanatory diagram of a conventional technique.

【図8】 図7で得られるパルスの説明図。8 is an explanatory diagram of pulses obtained in FIG. 7. FIG.

【図9】 従来技術による磁束密度に対する出力電圧特
性。
FIG. 9 shows output voltage characteristics with respect to magnetic flux density according to the related art.

【符号の説明】[Explanation of symbols]

1,6,ICは発振器、2は加算器、3は直流電源、
A,B,Cは強磁性体コア、Zは直列抵抗、S,S’は
コイル、4はパルス幅変調器、5はデテクタ、7は差動
増幅器、8はオシロスコープ、C,Cは強磁性体を
磁化するための、一対の一次コイル、S,Sは一対
のサーチコイル、Trはエミッタフロア、ICはヒ
システリシス特性型コンパレータ、R,Rは正帰還
用抵抗、R,DはL・P・F用抵抗とコンデンサ、
(a)はIDC=0mA時、(b)はIDC=0mA
時、(c)は発振器の出力波形、(d)はセンサコイル
Sの出力波形、(e)はコンパレーターの出力波形、
1, 6, IC 1 is an oscillator, 2 is an adder, 3 is a DC power supply,
A, B and C are ferromagnetic cores, Z is a series resistance, S and S'are coils, 4 is a pulse width modulator, 5 is a detector, 7 is a differential amplifier, 8 is an oscilloscope, and C 1 and C 2 are A pair of primary coils for magnetizing the ferromagnetic material, S 1 and S 2 are a pair of search coils, Tr 1 is an emitter floor, IC 2 is a hysteresis system type comparator, and R 2 and R 3 are resistors for positive feedback. , R 4 and D are resistors and capacitors for L / P / F,
(A) is at I DC = 0 mA, (b) is at I DC = 0 mA
Where (c) is the output waveform of the oscillator, (d) is the output waveform of the sensor coil S, (e) is the output waveform of the comparator,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体に巻いたコイルに、発振器から
交流電流を流し、コイルに得られる電圧をコンパレータ
−に加えてパルス変調波を作り、この出力をデテクター
に加えて直流に変換し、その出力から前記した強磁性体
に交差する磁束を、計測する磁気計測法において、前記
コイルに直流電流を同時に流し微小な磁束に対する検出
感度を向上したことを特長とする磁気計測法。
1. An alternating current is made to flow from an oscillator to a coil wound around a ferromagnetic material, a voltage obtained at the coil is applied to a comparator to create a pulse-modulated wave, and this output is applied to a detector to be converted to direct current, In the magnetic measurement method for measuring the magnetic flux intersecting the above-mentioned ferromagnetic substance from the output, a magnetic measurement method characterized in that a direct current is simultaneously applied to the coil to improve the detection sensitivity to a minute magnetic flux.
【請求項2】 請求項1の磁気計測法において、発振器
の出力をエミッタ・フロアの入力に加え、エミッタ抵抗
に直列に前記したコイルを結線した事を特長とする磁気
測定法。
2. The magnetic measurement method according to claim 1, wherein the output of the oscillator is applied to the input of the emitter floor, and the coil is connected in series with the emitter resistance.
【請求項3】 前記した磁気測定法においてコイルに得
られる出力をヒステリシス特性を保持したコンパレータ
ーに加えて、前記したコイルの出力をパルス変調波を作
り、この出力をデテクターに加える事を特徴とする磁気
測定法。
3. The output obtained from the coil in the above-mentioned magnetic measurement method is added to a comparator having a hysteresis characteristic, the output of the coil is made into a pulse-modulated wave, and this output is added to a detector. Magnetic measurement method.
JP27604491A 1991-07-29 1991-07-29 Measuring method for magnetism Pending JPH0534426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27604491A JPH0534426A (en) 1991-07-29 1991-07-29 Measuring method for magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27604491A JPH0534426A (en) 1991-07-29 1991-07-29 Measuring method for magnetism

Publications (1)

Publication Number Publication Date
JPH0534426A true JPH0534426A (en) 1993-02-09

Family

ID=17564010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27604491A Pending JPH0534426A (en) 1991-07-29 1991-07-29 Measuring method for magnetism

Country Status (1)

Country Link
JP (1) JPH0534426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133742A (en) * 1995-11-09 1997-05-20 Kagaku Gijutsu Shinko Jigyodan Magnetic field sensor
US6044790A (en) * 1997-01-31 2000-04-04 Fujikiko Kabushiki Kaisha Manual operating apparatus for an automatic transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133742A (en) * 1995-11-09 1997-05-20 Kagaku Gijutsu Shinko Jigyodan Magnetic field sensor
US6044790A (en) * 1997-01-31 2000-04-04 Fujikiko Kabushiki Kaisha Manual operating apparatus for an automatic transmission

Similar Documents

Publication Publication Date Title
US4851775A (en) Digital compass and magnetometer having a sensor coil wound on a high permeability isotropic core
JP2923307B2 (en) Current sensor
US7218092B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US6229307B1 (en) Magnetic sensor
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
EP0380562B1 (en) Magnetometer employing a saturable core inductor
US5537038A (en) Magnetic flux measuring method and apparatus for detecting high frequency components of magnetic flux with high speed orientation
EP0157470A2 (en) Magnetic field sensor
US5132608A (en) Current measuring method and apparatus therefor
US5287059A (en) Saturable core magnetometer with a parallel resonant circuit in which the W3 DC level changes with a change in an external magnetic field
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
US6084406A (en) Half-cycle saturable-core magnetometer circuit
JP2816175B2 (en) DC current measuring device
JP4716030B2 (en) Current sensor
JP2000055998A (en) Magnetic sensor device and current sensor device
JPH0534426A (en) Measuring method for magnetism
JP3651268B2 (en) Magnetic measurement method and apparatus
JPH06347489A (en) Electric current sensor
JP3341036B2 (en) Magnetic sensor
Wang et al. Synchronous detector for GMI magnetic sensor based on lock-in amplifier
JP4233161B2 (en) Magnetic sensor
US5831424A (en) Isolated current sensor
SU832502A1 (en) Method of device measuring magnetic field
JPH0424574A (en) Detecting device of magnetism