JPH0534397A - Method of forecasting ground fault for high voltage cable - Google Patents

Method of forecasting ground fault for high voltage cable

Info

Publication number
JPH0534397A
JPH0534397A JP3212661A JP21266191A JPH0534397A JP H0534397 A JPH0534397 A JP H0534397A JP 3212661 A JP3212661 A JP 3212661A JP 21266191 A JP21266191 A JP 21266191A JP H0534397 A JPH0534397 A JP H0534397A
Authority
JP
Japan
Prior art keywords
ground fault
ground
cable
current
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3212661A
Other languages
Japanese (ja)
Other versions
JP3137684B2 (en
Inventor
Nobuo Ninomiya
信夫 二ノ宮
Takao Kawashima
孝雄 川島
Masakatsu Arakane
昌克 荒金
Tatsuya Nagata
達也 永田
Takashi Maruyama
孝 丸山
Ken Yamamoto
山本  憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP03212661A priority Critical patent/JP3137684B2/en
Publication of JPH0534397A publication Critical patent/JPH0534397A/en
Application granted granted Critical
Publication of JP3137684B2 publication Critical patent/JP3137684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To enable the forecasting of a ground fault by a method wherein currents flowing through ground wires are always measured to catch a ground fault generated before developing a complete ground fault and the polarity and size are compared between the currents to specify a circuit at which an accidental ground fault or the like occurs. CONSTITUTION:When an accidental ground fault or the like occurs in a cable line, a ground fault current flows through a ground wire 24 of the cable line. The current flows into ground wires 24 and 27 of other cables passing through the ground, but the direction thereof is opposite to that of the ground fault current. CTs 30 and 31 are mounted on the ground wires 24 and 27 and connected to a forecasting device 32. In the device 32, data from the CTs 30 and 31 are always brought into a memory and when the inputs thereof are larger than a threshold, the data in a fixed period are held into the memory to compare the polarity and size of the currents of the ground wires between individual cable lines. If a large current value is found in opposite polarity, an intermittent ground fault or the like is determined to occur in the lines and waveforms. the date of occurrence are recorded and displayed to give a warning. When the polarities of the currents are all the same, it is judged that no intermittent ground fault or the like occurs but an external noise exists.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高圧電力ケーブルの
地絡予知方法に関するもので、特に完全地絡を起こす前
に、その可能性のあるケーブル線路(多数あるケーブル
線路の内の一つ)を予知する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of predicting a ground fault of a high-voltage power cable, and in particular, a cable line (one of many cable lines) which has a possibility of causing a complete ground fault. It is about the method of predicting.

【0002】[0002]

【従来の技術】地絡事故が発生する前に、その前駆現象
として、ケーブル内で、単発的な地絡(図9のAのa)
やあるいは間欠的な地絡(図9のBのb)が発生するこ
とがある。そこで、前記単発地絡や間欠地絡(以下単発
性地絡等という)を検出し、それによって、地絡事故を
予知しようという下記の技術が発表されている(特開平
2−201274号公報、平成元年電気学会全国大会論
文集、1476参照)。
2. Description of the Related Art Before a ground fault occurs, as a precursor to the ground fault, a single ground fault (a in FIG. 9A) occurs in the cable.
Somewhat intermittent ground faults (b in FIG. 9B) may occur. Therefore, the following technology has been announced to detect the single-shot ground fault or the intermittent ground fault (hereinafter referred to as a single-shot ground fault, etc.) and thereby predict a ground fault accident (JP-A-2-201274, 1989 Annual Conference of the Institute of Electrical Engineers of Japan, 1476).

【0003】図8のように、電力ケーブル12の接地線
14に流れる電流を、常時測定する。ケーブル内で単発
性地絡等が発生すると、健全相と逆極性のあるしきい値
以上の電流が接地線14に流れる。そのとき、地絡の危
険ありとして警報を出す。
As shown in FIG. 8, the current flowing through the ground wire 14 of the power cable 12 is constantly measured. When a single ground fault or the like occurs in the cable, a current having a polarity equal to or higher than a threshold value and having a polarity opposite to the normal phase flows in the ground wire 14. At that time, an alarm is issued as there is a risk of a ground fault.

【0004】[0004]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1)同一系統に複数の電力ケーブル線路が近接してあ
る場合、一つのケーブル線路の接地線に大きな電流が流
れると、その電流が大地を通して他のケーブル線路の接
地線に流れ込む(このことは、後でより詳しく説明す
る)。そのために、どのケーブル線路が危険であるか
(単発性地絡がどのケーブル線路で起こったか)、分か
らないことがある。 (2)異常に大きい外部ノイズにより、接地線14電流
が、しきい値以上になる場合もある。そのような場合、
外部ノイズによるものか、あるいは単発性地絡等による
ものか、判然としないことがある。
(1) When a plurality of power cable lines are close to the same system and a large current flows through the ground line of one cable line, the current flows through the ground into the ground line of another cable line (this is , More on that later). As a result, it may not be known which cable line is dangerous (on which cable line the single ground fault occurred). (2) The ground line 14 current may exceed the threshold value due to abnormally large external noise. In such cases,
It may be unclear whether it is due to external noise or due to a single-shot ground fault.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)複数の電力ケーブル線路について、各電力ケーブ
ル線路ごとに、接地線に流れる電流を、常時、測定し、
かつ接地線電流のしきい値を予め設定しておくこと(こ
のことは上記の場合と同じ)、 (2)ケーブルのある部分において単発性地絡が発生
し、接地線電流が、しきい値を越えたとき、前記電流の
極性を、ケーブル線路間で比較すること、を、特徴とす
る。
(1) For a plurality of power cable lines, the current flowing through the ground line is constantly measured for each power cable line,
In addition, the threshold value of the ground wire current must be set in advance (this is the same as the above case). (2) A single ground fault occurs at a certain part of the cable, and the ground wire current becomes the threshold value. When the voltage exceeds, the polarities of the currents are compared between the cable lines.

【0006】[0006]

【作 用】接地線電流の極性を比較することにより、間
欠地絡等を起こしたケーブル線路を特定することができ
る。また、しきい値を越えた接地線電流が、間欠地絡等
によるものかあるいは外来ノイズによるものかの判別が
できる(その理由は以下に述べる)。
[Operation] By comparing the polarities of the ground line currents, it is possible to identify the cable line that has caused an intermittent ground fault. Further, it is possible to determine whether the ground line current that exceeds the threshold value is due to an intermittent ground fault or the like or due to external noise (the reason is described below).

【0007】[0007]

【原理】図6は、ケーブル地絡時の地絡電流経路であ
る。ここで、201,202,203,−−−−はこの
系統の電力ケーブル線路(単線結線で示す)、22はケ
ーブル導体、24は接地線、26は接地用変圧器、C
2,C3,−−−−は、それぞれのケーブルの静電容量、
Cgは母線28あるいは他のケーブルと大地間の静電容
量を示す。この系統において、ケーブル線路201のP
点に単発性地絡が生じた場合、ケーブル線路201の接
地線24に地絡電流I1が流れる。また、その電流(の
一部)は、大地を通って健全ケーブルの接地線24およ
び接地用変圧器の接地線27に流入する。また健全ケー
ブルに流入した電流はケーブル静電容量を通じて母線2
8へ帰る。それらの電流I2,I3,−−−−およびIg
の方向は、地絡電流I1と逆である(極性が反転す
る)。
[Principle] FIG. 6 shows a ground fault current path at the time of a cable ground fault. Here, 201, 202, 203, ---- are power cable lines (shown by single wire connection) of this system, 22 is a cable conductor, 24 is a ground wire, 26 is a grounding transformer, C
2, C3, ----- is the capacitance of each cable,
Cg represents the capacitance between the bus 28 or another cable and the ground. In this system, P of the cable line 201
When a single ground fault occurs at a point, a ground fault current I1 flows through the ground wire 24 of the cable line 201. Further, (a part of) the current flows into the ground wire 24 of the sound cable and the ground wire 27 of the grounding transformer through the ground. In addition, the current that flows into the healthy cable is not
Return to 8. Their currents I2, I3, ---- and Ig
Is opposite to the ground fault current I1 (the polarity is reversed).

【0008】図7に、EMTPによる模擬系統のシミュ
レーション結果を示す。(A)は健全ケーブル、(B)
は地絡ケーブルの電流波形であり、(C)は地絡ケーブ
ルの時間軸を100倍に拡大したものである。図7から、
地絡ケーブルと健全ケーブルとで、接地線に流れる電流
の極性が反転しており、かつ電流は数μsecで立ち上が
っていることが分かる。
FIG. 7 shows the simulation result of the simulated system by EMTP. (A) is a healthy cable, (B)
Is the current waveform of the ground fault cable, and (C) is the time axis of the ground fault cable magnified 100 times. From FIG.
It can be seen that the polarity of the current flowing through the ground wire is reversed between the ground fault cable and the sound cable, and the current rises in several μsec.

【0009】[0009]

【実施例】【Example】

[構成]図1に、単線結線で一例を示す。各ケーブルの
接地線24にCT30を、また接地用変圧器26の接地
線27にもCT31を取り付ける(CT30とCT31
は、同じ構造のものであるが、説明の都合上、別の符号
を付けた)。ケーブルの場合は、図2のように、各ケー
ブルA,B,Cの共通の接地線24にCT30を取り付
ける。CT30,31に貫通型のものを用いれば、既設
の設備を改良することなく、取り付けられる。32は予
知装置で、その部分のブロックダイアグラムを図3に示
した。バンドパスフィルタ34には、帯域が100HZ〜50k
Hz程度のものを用いる。100Hz以下は商用周波のノイズ
をカットするため、50kHz以上は放送波ノイズをカット
するためである。
[Structure] FIG. 1 shows an example of single wire connection. Attach CT30 to the ground wire 24 of each cable and CT31 to the ground wire 27 of the grounding transformer 26 (CT30 and CT31).
Are of the same structure, but for convenience of explanation, they are given different symbols). In the case of a cable, the CT 30 is attached to the common ground wire 24 of each cable A, B, C as shown in FIG. If CT30s and 31s of the through type are used, they can be attached without improving existing equipment. Reference numeral 32 is a prediction device, and a block diagram of the part is shown in FIG. The band pass filter 34 has a band of 100 Hz to 50 k.
Use the one of about Hz. 100 Hz or less is for cutting commercial frequency noise, and 50 kHz or more is for cutting broadcast wave noise.

【0010】図4に、ケーブル線路10回線の場合の基本
構成を示す。A/Dは、図3のバンドパスフィルタ3
4,増幅回路36,A/D変換38,比較回路付A/D
変換39を含むユニットで、数字はケーブル線路の番号
である。最上段の比較回路付A/Dは、接地用変圧器2
6に取り付けたCT31の出力電流を、しきい値と比較
するためのもの。またCPUは、図3のメモリ装置4
0,判定回路44,波形記録装置46を含む。ウオッチ
ユニットは、記録に日時を与える。
FIG. 4 shows a basic configuration in the case of 10 cable lines. A / D is the bandpass filter 3 of FIG.
4, amplifier circuit 36, A / D conversion 38, A / D with comparison circuit
In the unit including the conversion 39, the numbers are the numbers of the cable lines. The A / D with comparison circuit at the top is the grounding transformer 2
For comparing the output current of CT31 attached to 6 with a threshold value. Further, the CPU is the memory device 4 of FIG.
0, determination circuit 44, and waveform recording device 46. The watch unit gives the date and time to the record.

【0011】[動作] (1)各CT30およびCT31からの電流波形データ
をA/D変換ユニット(比較回路付きを含む)を介し
て、常時CPUのメモリ装置40に取り込む(図3,
4)。図5にフローチャートを示した。 (2)比較回路の入力が、しきい値より大きいと、トリ
ガがかかってある一定期間のデータを、CPU内のメモ
リ装置40にホールドする。 (3)そのデータをCPUで読み出し、判定回路44
で、接地線電流の極性および大きさを、各ケーブル線路
間で比較する。そして、上記のように、逆極性のもので
一番大きな電流値のものがあれば、その線路で、間欠地
絡等が発生したことが分かる。そこで、各波形、発生の
日時を記録し、データを表示し、警報を出す
[Operation] (1) The current waveform data from each CT 30 and CT 31 is constantly taken into the memory device 40 of the CPU via the A / D conversion unit (including the one with the comparison circuit) (FIG. 3, FIG.
4). A flowchart is shown in FIG. (2) When the input of the comparison circuit is larger than the threshold value, the data for a certain period in which the trigger is applied is held in the memory device 40 in the CPU. (3) The CPU reads the data, and the determination circuit 44
Then, the polarity and magnitude of the ground wire current are compared between the cable lines. Then, as described above, if there is a reverse polarity one having the largest current value, it is understood that an intermittent ground fault or the like has occurred in the line. Therefore, record each waveform and the date and time of occurrence, display the data, and issue an alarm.

【0012】なお電流極性の比較は、各接地線電流の第
1波について行う。間欠地絡等が起きると、地絡電流
は、CTの設置してある側に流れると同時に反対側にも
流れる。その電流が、終端で反射して、第2波以降にオ
ーバーラップする形で、CTで検出される場合がある。
そうなると、波形がたいへん複雑になり、正確な比較が
できなくなる。そこで、第1波を比較するようにする。
また、各CTの接地電流を検出する時間にズレがあると
各接地線電流の第一波が正確に測定できないので、デー
タのサンプリングにあたっては、時間を揃えて(同期さ
せて)その結果を比較する。
The current polarities are compared for the first wave of each ground line current. When an intermittent ground fault or the like occurs, the ground fault current flows to the side where the CT is installed and simultaneously to the opposite side. The current may be detected by CT in the form of being reflected at the end and overlapping after the second wave.
In that case, the waveform becomes very complicated and an accurate comparison cannot be performed. Therefore, the first wave is compared.
Also, if there is a gap in the detection time of the ground current of each CT, the first wave of each ground line current cannot be measured accurately, so when sampling the data, align the times (synchronize) and compare the results. To do.

【0013】(4)上記の(3)において、接地線電流
の極性を比較したとき、全部同じであれば、間欠地絡等
でなかった、と判断する(異常に大きい外部ノイズが侵
入したとき起きる現象)。そこで、判定不能を表示し、
上記の(1)に戻る(図5)。
(4) In (3) above, when the polarities of the ground wire currents are compared, if they are all the same, it is judged that there is no intermittent ground fault (when an abnormally large external noise enters. Phenomenon that occurs). Therefore, display the judgment impossible,
Return to (1) above (FIG. 5).

【0014】(5)接地用変圧器26のない系統では、
任意の1つのケーブル線路の接地線電流からトリトガを
とるようにする。そうすれば、上記同様にして、地絡予
知ができる。 (6)上記の間欠地絡等の情報を公衆回線利用で1箇所
に集中させれば、広範囲のケーブル劣化状態のモニタが
できる。
(5) In a system without the grounding transformer 26,
Tritga is taken from the ground wire current of any one cable line. Then, the ground fault can be predicted in the same manner as above. (6) If the information such as the intermittent ground fault is concentrated in one place by using the public line, it is possible to monitor the deterioration state of the cable in a wide range.

【0015】[0015]

【発明の効果】複数の電力ケーブル線路について、前記
各電力ケーブル線路ごとに、接地線に流れる電流を、常
時測定し、ケーブルに単発性地絡が生じたとき、前記電
流の極性およびその大きさを前記ケーブル線路間で比較
するので、 (1)地絡予知が可能であり、かつ地絡の恐れのあるケ
ーブル線路を、多くの中から特定できる。 (2)たまたま、異常に大きい外来ノイズにより、しき
い値より大きい接地線電流が流れても、間欠地絡等によ
るものと区別できる。 (3)電力ケーブルの接地線にCTを取り付けるだけで
済み、既設設備を改造する必要がない。 (4)接地用変圧器のない系統においても適用可能であ
る。 (5)常時監視であるから、電力ケーブル故障予知の可
能性が上がる。
With respect to a plurality of power cable lines, the current flowing through the ground line is constantly measured for each of the power cable lines, and when a single ground fault occurs in the cable, the polarity of the current and its magnitude. Since the cable lines are compared with each other, (1) it is possible to identify from among many cable lines that are capable of ground fault prediction and that are at risk of ground fault. (2) Even if a ground line current larger than the threshold value happens to flow due to an abnormally large external noise, it can be distinguished from an intermittent ground fault or the like. (3) It is only necessary to attach the CT to the ground wire of the power cable, and there is no need to modify the existing equipment. (4) It can be applied to a system without a grounding transformer. (5) Since it is always monitored, the possibility of power cable failure prediction increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を単線結線で示した説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention with a single wire connection.

【図2】本発明における三相ケーブルにおけるCTの取
付け方の説明図。
FIG. 2 is an explanatory diagram of how to attach a CT in the three-phase cable according to the present invention.

【図3】本発明における予知装置のブロックダイアグラ
ム。
FIG. 3 is a block diagram of a prediction device according to the present invention.

【図4】本発明を10回線に適用した例の基本構成図。FIG. 4 is a basic configuration diagram of an example in which the present invention is applied to 10 lines.

【図5】本発明の動作のフローチャート。FIG. 5 is a flowchart of the operation of the present invention.

【図6】地絡が起きたときの、接地線電流の方向を示す
説明図。
FIG. 6 is an explanatory diagram showing a direction of a ground line current when a ground fault occurs.

【図7】模擬系統の地絡シミュレーション結果の電流波
形図。
FIG. 7 is a current waveform diagram of a ground fault simulation result of the simulated system.

【図8】従来技術の説明図。FIG. 8 is an explanatory diagram of a conventional technique.

【図9】単発地絡および間欠地絡の波形図。FIG. 9 is a waveform diagram of a single-shot ground fault and an intermittent ground fault.

【符号の説明】[Explanation of symbols]

12 電力ケーブル 14 接地線 201,202等 電力ケーブル線路 22 ケーブル導体 24 接地線 26 接地用変圧器 27 接地線 28 母線 30 CT 31 CT 32 予知装置 34 バンドパスフィルタ 38 A/D変換 40 メモリ装置 44 判定回路 12 power cable 14 ground wire 201, 202 etc. power cable line 22 cable conductor 24 ground wire 26 grounding transformer 27 ground wire 28 busbar 30 CT 31 CT 32 predictor 34 bandpass filter 38 A / D conversion 40 memory device 44 judgment circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒金 昌克 三重県桑名市野田二丁目7番15号 (72)発明者 永田 達也 愛知県名古屋市東区砂田橋三丁目2番大幸 東団地101−1205 (72)発明者 丸山 孝 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 山本 憲 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakatsu Arakane 2-7-15 Noda, Kuwana-shi, Mie (72) Inventor Tatsuya Nagata 3-2, Sunadabashi, Higashi-ku, Nagoya, Aichi 101-1205 (72) ) Inventor Takashi Maruyama 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Line Co., Ltd. (72) Inventor Ken Yamamoto 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Line Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】複数回線の電力ケーブル線路について、前
記各電力ケーブル線路ごとに、接地線に流れる電流を、
常時測定し、ケーブルが完全地絡に至る以前に生じるパ
ルス状地絡電流を捕え、前記電流の極性およびその大き
さを前記ケーブル線路間で比較する、高圧ケーブルの地
絡予知方法。
Claim: What is claimed is: 1. With respect to a power cable line having a plurality of lines, a current flowing through a ground line is calculated for each of the power cable lines.
A method for predicting a ground fault of a high-voltage cable, which is constantly measured, and a pulsed ground fault current generated before the cable reaches a complete ground fault is captured, and the polarity and magnitude of the current are compared between the cable lines.
JP03212661A 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables Expired - Lifetime JP3137684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03212661A JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03212661A JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Publications (2)

Publication Number Publication Date
JPH0534397A true JPH0534397A (en) 1993-02-09
JP3137684B2 JP3137684B2 (en) 2001-02-26

Family

ID=16626313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03212661A Expired - Lifetime JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Country Status (1)

Country Link
JP (1) JP3137684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009786A (en) * 1998-06-19 2000-01-14 Miwa Electric Co Ltd Ground fault detection method for secondary power cable of main transformer
JP2020148579A (en) * 2019-03-13 2020-09-17 日油技研工業株式会社 Single-shot earth fault detector
JP2021081400A (en) * 2019-11-23 2021-05-27 清華大学Tsinghua University Line selection method of one-phase ground fault of distribution line and storage medium capable of performing computer-reading
CN113933748A (en) * 2021-10-15 2022-01-14 劲逐软件技术(深圳)有限公司 Grounding monitoring method and device, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209412A (en) * 1987-02-26 1988-08-31 株式会社東芝 Preventive maintenance system of gas insulated switchgear
JPH01297566A (en) * 1988-05-26 1989-11-30 Sumitomo Electric Ind Ltd Discriminating method for light ground-fault generation cable
JPH02201274A (en) * 1989-01-31 1990-08-09 Chubu Electric Power Co Inc Method of foreseeing ground fault of power cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209412A (en) * 1987-02-26 1988-08-31 株式会社東芝 Preventive maintenance system of gas insulated switchgear
JPH01297566A (en) * 1988-05-26 1989-11-30 Sumitomo Electric Ind Ltd Discriminating method for light ground-fault generation cable
JPH02201274A (en) * 1989-01-31 1990-08-09 Chubu Electric Power Co Inc Method of foreseeing ground fault of power cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009786A (en) * 1998-06-19 2000-01-14 Miwa Electric Co Ltd Ground fault detection method for secondary power cable of main transformer
JP2020148579A (en) * 2019-03-13 2020-09-17 日油技研工業株式会社 Single-shot earth fault detector
JP2021081400A (en) * 2019-11-23 2021-05-27 清華大学Tsinghua University Line selection method of one-phase ground fault of distribution line and storage medium capable of performing computer-reading
US11543462B2 (en) 2019-11-23 2023-01-03 Tsinghua University Single-phase-to-ground fault line selection method for distribution lines and computer readable storage medium
CN113933748A (en) * 2021-10-15 2022-01-14 劲逐软件技术(深圳)有限公司 Grounding monitoring method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP3137684B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US7973536B2 (en) Traveling wave based relay protection
US5602709A (en) High impedance fault detector
JP2019507344A (en) Apparatus and associated method for determining a ground fault
US11953534B2 (en) Detection of lightning and related control strategies in electric power systems
JPH0534397A (en) Method of forecasting ground fault for high voltage cable
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
US10509067B2 (en) Method for AC arc fault detection using multidimensional energy points
JP4353840B2 (en) Method for detecting partial discharge of electric circuit
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JPH02201274A (en) Method of foreseeing ground fault of power cable
JPH08160098A (en) Method for detecting partial discharge signal
JPH0670445A (en) Lifetime-forecasting method of section switch
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
RU2739373C1 (en) Uninterrupted power supply method for consumers
JP3419924B2 (en) Partial discharge measurement method
JP3440368B2 (en) Ground fault direction determining method and ground fault direction determining device in high voltage distribution system
JPH05256893A (en) Method and instrument for measuring partial discharge of power cable
EP4346039A1 (en) Arc-fault detection apparatus and method and electrical installation
JPH06284551A (en) Testing circuit of overcurrent protection device
JPH05249175A (en) Partial discharge measuring instrument
CN116298672B (en) Intermittent fault simulation test method based on square wave control
JPH1174571A (en) Abnormality detecting device
JPH0894698A (en) Method and system for standardizing intermittent arc ground fault section in high voltage power distribution system with non-grounded neutral point
JP7310156B2 (en) Circuit breaker status diagnostic device, circuit breaker status diagnostic system, circuit breaker status diagnostic method, and program
JP4033801B2 (en) Insulation deterioration detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11