JP3137684B2 - Ground fault prediction method for high voltage cables - Google Patents

Ground fault prediction method for high voltage cables

Info

Publication number
JP3137684B2
JP3137684B2 JP03212661A JP21266191A JP3137684B2 JP 3137684 B2 JP3137684 B2 JP 3137684B2 JP 03212661 A JP03212661 A JP 03212661A JP 21266191 A JP21266191 A JP 21266191A JP 3137684 B2 JP3137684 B2 JP 3137684B2
Authority
JP
Japan
Prior art keywords
ground
current
line
ground fault
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03212661A
Other languages
Japanese (ja)
Other versions
JPH0534397A (en
Inventor
信夫 二ノ宮
孝雄 川島
昌克 荒金
達也 永田
孝 丸山
山本  憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP03212661A priority Critical patent/JP3137684B2/en
Publication of JPH0534397A publication Critical patent/JPH0534397A/en
Application granted granted Critical
Publication of JP3137684B2 publication Critical patent/JP3137684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高圧電力ケーブルの
地絡予知方法に関するもので、特に完全地絡を起こす前
に、その可能性のあるケーブル線路(多数あるケーブル
線路の内の一つ)を予知する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a ground fault of a high-voltage power cable, and more particularly to a cable line (one of a large number of cable lines) which may cause a complete ground fault. And a method for predicting

【0002】[0002]

【従来の技術】地絡事故が発生する前に、その前駆現象
として、ケーブル内で、単発的な地絡(図9のAのa)
やあるいは間欠的な地絡(図9のBのb)が発生するこ
とがある。そこで、前記単発地絡や間欠地絡(以下単発
性地絡等という)を検出し、それによって、地絡事故を
予知しようという下記の技術が発表されている(特開平
2−201274号公報、平成元年電気学会全国大会論
文集、1476参照)。
2. Description of the Related Art Before a ground fault accident occurs, a single ground fault (a in FIG. 9A) occurs in a cable as a precursor phenomenon thereof.
A slight or intermittent ground fault (b in FIG. 9) may occur. Therefore, the following technology has been disclosed that detects the single-shot ground fault or intermittent ground fault (hereinafter referred to as a single-shot ground fault or the like) and thereby predicts a ground fault accident (JP-A-2-201274, Proceedings of the IEEJ National Convention 1989, 1476).

【0003】図8のように、電力ケーブル12の接地線
14に流れる電流を、常時測定する。ケーブル内で単発
性地絡等が発生すると、健全相と逆極性のあるしきい値
以上の電流が接地線14に流れる。そのとき、地絡の危
険ありとして警報を出す。
As shown in FIG. 8, a current flowing through a ground wire 14 of a power cable 12 is constantly measured. When a single ground fault or the like occurs in the cable, a current that is equal to or greater than a threshold having a polarity opposite to that of the healthy phase flows to the ground line 14. At that time, an alarm is issued as a danger of ground fault.

【0004】[0004]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(1)同一系統に複数の電力ケーブル線路が近接してあ
る場合、一つのケーブル線路の接地線に大きな電流が流
れると、その電流が大地を通して他のケーブル線路の接
地線に流れ込む(このことは、後でより詳しく説明す
る)。そのために、どのケーブル線路が危険であるか
(単発性地絡がどのケーブル線路で起こったか)、分か
らないことがある。 (2)異常に大きい外部ノイズにより、接地線14電流
が、しきい値以上になる場合もある。そのような場合、
外部ノイズによるものか、あるいは単発性地絡等による
ものか、判然としないことがある。
(1) When a plurality of power cable lines are in close proximity to the same system, if a large current flows through the ground line of one cable line, the current flows into the ground line of another cable line through the ground (this means that Which will be explained in more detail later). For this reason, it may not be known which cable line is dangerous (in which cable line a single ground fault occurred). (2) The ground line 14 current may exceed the threshold value due to extraordinarily large external noise. In such a case,
It may not be clear whether the noise is due to external noise or a single ground fault.

【0005】[0005]

【課題を解決するための手段】かかる課題は、以下の2
つの方法によって解決される。第1の方法は、複数の電
力ケーブル線路の接地線に流れる接地電流を個々に常時
測定し、そのデータをメモリ装置に記録し、これら接地
線のいずれか1本の接地線に流れる接地電流が予め定め
られたしきい値を越えた際に、すべての接地線に流れた
電流のデータの一定期間分をメモリ装置から読み出し、
すべての接地線に流れた接地電流について、読み出した
データの第1波の電流の極性と大きさを相互に比較し、
電流の極性が1つだけ異なり、かつ電流の大きさが最大
であるものの電力ケーブル線路が地絡の危険性があるも
のと判定するものである。また、第2の方法は、複数の
電力ケーブル線路の接地線とこれらケーブル線路の母線
に接続された接地用変圧器の接地線とに流れる接地電流
を個々に常時測定し、そのデータをメモリ装置に記録
し、接地用変圧器の接地線に流れる接地電流が予め定め
られたしきい値を越えた際に、電力ケーブル線路の接地
線に流れた電流のデータの一定期間分をメモリ装置から
読み出し、電力ケーブル線路の接地線に流れた接地電流
について、読み出したデータの第1波の電流の極性と大
きさを相互に比較し、電流の極性が1つだけ異なり、か
つ電流の大きさが最大であるものの電力ケーブル線路が
地絡の危険性があるものと判定するものである。
Means for Solving the Problems Such problems are as follows.
Is solved in two ways. The first method is to use multiple
Ground current flowing through the ground line of the power cable line
Measurement, record the data in the memory device,
The ground current flowing through any one of the ground lines is predetermined.
All ground wires have flowed when the specified threshold is exceeded
Reading a certain period of the current data from the memory device,
The ground current flowing through all ground lines was read
Compare the polarity and magnitude of the current of the first wave of data with each other,
Only one polarity of current is different and the magnitude of current is maximum
Although the power cable line is at risk of ground fault
Is determined. In addition, the second method uses a plurality of
Ground lines of power cable lines and busbars of these cable lines
Current flowing to and from the grounding wire of the grounding transformer connected to
At all times and record the data in the memory device
The ground current flowing through the grounding wire of the grounding transformer is determined in advance.
Grounding of power cable lines when the specified threshold is exceeded
A certain period of data of the current flowing through the wire
Read, ground current flowing to the ground line of the power cable line
The polarity and magnitude of the current of the first wave of the read data
The magnitudes of the currents are compared with each other, and only one polarity of the current is different.
Although the magnitude of the current is the largest, the power cable line
It is determined that there is a risk of ground fault.

【0006】[0006]

【作 用】接地線電流の極性を比較することにより、間
欠地絡等を起こしたケーブル線路を特定することができ
る。なお、読み出したデータの第1波について比較する
ので、間欠地絡等を起こしたケーブルを、正確に特定で
きる。また、しきい値を越えた接地線電流が、間欠地絡
等によるものかあるいは外来ノイズによるものかの判別
ができる(その理由は以下に述べる)。
[Operation] By comparing the polarities of the ground line currents, it is possible to identify a cable line in which an intermittent ground fault or the like has occurred. Note that the first data of the read data is compared.
Therefore, cables that have caused intermittent ground faults, etc.
Wear. Further, it is possible to determine whether the ground line current exceeding the threshold value is due to an intermittent ground fault or the like or external noise (the reason will be described below).

【0007】[0007]

【原理】図6は、ケーブル地絡時の地絡電流経路であ
る。ここで、201,202,203,−−−−はこの
系統の電力ケーブル線路(単線結線で示す)、22はケ
ーブル導体、24は接地線、26は接地用変圧器、C
2,C3,−−−−は、それぞれのケーブルの静電容量、
Cgは母線28あるいは他のケーブルと大地間の静電容
量を示す。この系統において、ケーブル線路201のP
点に単発性地絡が生じた場合、ケーブル線路201の接
地線24に地絡電流I1が流れる。また、その電流(の
一部)は、大地を通って健全ケーブルの接地線24およ
び接地用変圧器の接地線27に流入する。また健全ケー
ブルに流入した電流はケーブル静電容量を通じて母線2
8へ帰る。それらの電流I2,I3,−−−−およびIg
の方向は、地絡電流I1と逆である(極性が反転す
る)。
[Principle] FIG. 6 shows a ground fault current path at the time of a cable ground fault. Here, 201, 202, 203,... Are power cable lines of this system (indicated by a single line connection), 22 is a cable conductor, 24 is a ground wire, 26 is a grounding transformer, C
2, C3, --- is the capacitance of each cable,
Cg indicates the capacitance between the bus 28 or another cable and the ground. In this system, P
When a single ground fault occurs at a point, a ground fault current I1 flows through the ground line 24 of the cable line 201. The current (part of the current) flows through the ground to the ground wire 24 of the sound cable and the ground wire 27 of the grounding transformer. The current flowing into the healthy cable is transmitted through the bus 2 through the cable capacitance.
Return to 8. Their currents I2, I3, --- and Ig
Is opposite to the ground fault current I1 (the polarity is reversed).

【0008】図7に、電磁過渡解析プログラム(EMT
P)による模擬系統のシミュレーション結果を示す。
(A)は健全ケーブル、(B)は地絡ケーブルの電流波
形であり、(C)地絡ケーブルの時間軸を100倍に拡
大したものである。図7から、地絡ケーブルと健全ケー
ブルとで、接地線に流れる電流の極性が反転しており、
かつ電流は数μsecで立ち上がっていることがわか
る。このように、 図6および図7に示した現象から、
各電力ケーブル線路の地絡電流の極性を相互に比較すれ
ば、単発性地絡が発生した電力ケーブル線路を特定でき
ることがわかる。すなわち、図6に示したように、4系
統の電力ケーブル線路のうち、接地電流の極性が1つだ
け、他の3つと異なっていれば、その線路に単発性地絡
が生じていると特定できるのである。
FIG. 7 shows an electromagnetic transient analysis program (EMT)
Shows the simulation results of the simulated system due to P).
(A) is the current waveform of the ground fault cable, (B) is the current waveform of the ground fault cable, and (C) is a time axis of the ground fault cable enlarged by 100 times. From FIG. 7, the polarity of the current flowing through the ground wire is inverted between the ground fault cable and the sound cable,
Further, it can be seen that the current rises in several μsec. Thus, from the phenomena shown in FIGS. 6 and 7,
Compare the polarity of the ground fault current of each power cable line with each other.
Can identify the power cable line in which the single ground fault occurred.
You can see that That is, as shown in FIG.
Power cable lines have one polarity of ground current
If it is different from the other three, a single ground fault
Can be identified as having occurred.

【0009】[0009]

【実施例】【Example】

[構成]図1に、単線結線で一例を示す。各ケーブルの
接地線24にCT30を、また接地用変圧器26の接地
線27にもCT31を取り付ける(CT30とCT31
は、同じ構造のものであるが、説明の都合上、別の符号
を付けた)。ケーブルの場合は、図2のように、各ケー
ブルA,B,Cの共通の接地線24にCT30を取り付
ける。CT30,31に貫通型のものを用いれば、既設
の設備を改良することなく、取り付けられる。32は予
知装置で、その部分のブロックダイアグラムを図3に示
した。バンドパスフィルタ34には、帯域が100HZ〜50k
Hz程度のものを用いる。100Hz以下は商用周波のノイズ
をカットするため、50kHz以上は放送波ノイズをカット
するためである。
[Configuration] FIG. 1 shows an example of a single-wire connection. CT30 is attached to the ground wire 24 of each cable, and CT31 is also attached to the ground wire 27 of the grounding transformer 26 (CT30 and CT31).
Have the same structure, but are given different reference numerals for convenience of explanation). In the case of a cable, the CT 30 is attached to the common ground wire 24 of each of the cables A, B, and C as shown in FIG. If a penetration type is used for the CTs 30 and 31, it can be installed without improving existing facilities. Numeral 32 denotes a prediction device, and its block diagram is shown in FIG. The bandpass filter 34 has a band of 100 Hz to 50 k.
Use a frequency of about Hz. A frequency of 100 Hz or less is for cutting commercial frequency noise, and a frequency of 50 kHz or more is for cutting broadcast wave noise.

【0010】図4に、ケーブル線路10回線の場合の基本
構成を示す。A/Dは、図3のバンドパスフィルタ3
4,増幅回路36,A/D変換38,比較回路付A/D
変換39を含むユニットで、数字はケーブル線路の番号
である。最上段の比較回路付A/Dは、接地用変圧器2
6に取り付けたCT31の出力電流を、しきい値と比較
するためのもの。またCPUは、図3のメモリ装置4
0,判定回路44,波形記録装置46を含む。ウオッチ
ユニットは、記録に日時を与える。
FIG. 4 shows a basic configuration in the case of ten cable lines. A / D is the bandpass filter 3 of FIG.
4, amplifying circuit 36, A / D converter 38, A / D with comparison circuit
In the unit including the conversion 39, the numbers are the numbers of the cable lines. The A / D with a comparison circuit at the top is a grounding transformer 2
For comparing the output current of CT31 attached to 6 with a threshold value. Further, the CPU is a memory device 4 shown in FIG.
0, a determination circuit 44, and a waveform recording device 46. The watch unit gives the date and time to the record.

【0011】[動作] (1)各CT30およびCT31からの電流波形データ
をA/D変換ユニット(比較回路付きを含む)を介し
て、常時CPUのメモリ装置40に取り込む(図3,
4)。図5にフローチャートを示した。 (2)比較回路の入力が、しきい値より大きいと、トリ
ガがかかってある一定期間のデータを、CPU内のメモ
リ装置40にホールドする。 (3)そのデータをCPUで読み出し、判定回路44
で、接地線電流の極性および大きさを、各ケーブル線路
間で比較する。そして、上記のように、逆極性のもので
一番大きな電流値のものがあれば、その線路で、間欠地
絡等が発生したことが分かる。そこで、各波形、発生の
日時を記録し、データを表示し、警報を出す
[Operation] (1) The current waveform data from each of the CT 30 and CT 31 is always taken into the memory device 40 of the CPU via the A / D conversion unit (including the one with the comparison circuit) (FIG. 3).
4). FIG. 5 shows a flowchart. (2) If the input of the comparison circuit is larger than the threshold value, the triggering data for a certain period is held in the memory device 40 in the CPU. (3) The data is read by the CPU, and the judgment circuit 44
Then, the polarity and magnitude of the ground line current are compared between the cable lines. As described above, if there is one having the reverse polarity and the largest current value, it can be understood that an intermittent ground fault or the like has occurred in the line. Therefore, record each waveform, the date and time of occurrence, display the data, and issue an alarm

【0012】なお電流極性の比較は、各接地線電流の第
1波について行う。間欠地絡等が起きると、地絡電流
は、CTの設置してある側に流れると同時に反対側にも
流れる。その電流が、終端で反射して、第2波以降にオ
ーバーラップする形で、CTで検出される場合がある。
そうなると、波形がたいへん複雑になり、正確な比較が
できなくなる。そこで、第1波を比較するようにする。
また、各CTの接地電流を検出する時間にズレがあると
各接地線電流の第一波が正確に測定できないので、デー
タのサンプリングにあたっては、時間を揃えて(同期さ
せて)その結果を比較する。
The comparison of the current polarities is performed for the first wave of each ground line current. When an intermittent ground fault or the like occurs, the ground fault current flows to the side where the CT is installed and also to the opposite side. The current may be detected by CT in such a manner that the current is reflected at the end and overlaps with the second and subsequent waves.
In that case, the waveform becomes very complicated, and accurate comparison cannot be performed. Therefore, the first wave is compared.
Also, if there is a time lag in the detection of the ground current of each CT, the first wave of each ground line current cannot be measured accurately. I do.

【0013】(4)上記の(3)において、接地線電流
の極性を比較したとき、全部同じであれば、間欠地絡等
でなかった、と判断する(異常に大きい外部ノイズが侵
入したとき起きる現象)。そこで、判定不能を表示し、
上記の(1)に戻る(図5)。
(4) In the above (3), when the polarities of the ground line currents are compared with each other, if they are all the same, it is determined that there is no intermittent ground fault or the like (when abnormally large external noise has entered). Phenomenon that occurs). Therefore, it displays the judgment impossible,
It returns to said (1) (FIG. 5).

【0014】(5)接地用変圧器26のない系統では、
任意の1つのケーブル線路の接地線電流からトリトガを
とるようにする。そうすれば、上記同様にして、地絡予
知ができる。 (6)上記の間欠地絡等の情報を公衆回線利用で1箇所
に集中させれば、広範囲のケーブル劣化状態のモニタが
できる。
(5) In a system without the grounding transformer 26,
Trig is taken from the ground line current of any one cable line. Then, ground fault prediction can be performed in the same manner as described above. (6) If information such as the above-mentioned intermittent ground fault is concentrated in one place by using a public line, it is possible to monitor a wide range of cable deterioration.

【0015】[0015]

【発明の効果】(1)地絡予知が可能であり、かつ地絡
の恐れのあるケーブル線路を、多くの中から特定でき
る。 (2)読み出したデータの第1波について比較するの
で、間欠地絡等を起こしたケーブルを、正確に特定でき
る。 (3) たまたま、異常に大きい外来ノイズにより、しき
い値より大きい接地線電流が流れても、間欠地絡等によ
るものと区別できる。(4) 電力ケーブルの接地線にCTを取り付けるだけで
済み、既設設備を改造する必要がない。(5) 接地用変圧器のない系統においても適用可能であ
る。(6) 常時監視であるから、電力ケーブル故障予知の可
能性が上がる。
According to the present invention, (1) a ground fault can be predicted, and a cable line which may cause a ground fault can be specified from many types. (2) To compare the first wave of read data
Cable that has caused intermittent ground faults, etc.
You. (3) Even if a ground line current larger than the threshold value accidentally flows due to extraordinarily large external noise, it can be distinguished from an intermittent ground fault or the like. (4) It is only necessary to attach the CT to the ground wire of the power cable, and there is no need to modify existing facilities. (5) The present invention can be applied to a system without a grounding transformer. (6) Since the monitoring is always performed, the possibility of predicting the failure of the power cable is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を単線結線で示した説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention by a single line connection.

【図2】本発明における三相ケーブルにおけるCTの取
付け方の説明図。
FIG. 2 is an explanatory diagram of how to attach a CT to a three-phase cable according to the present invention.

【図3】本発明における予知装置のブロックダイアグラ
ム。
FIG. 3 is a block diagram of a prediction device according to the present invention.

【図4】本発明を10回線に適用した例の基本構成図。FIG. 4 is a basic configuration diagram of an example in which the present invention is applied to 10 lines.

【図5】本発明の動作のフローチャート。FIG. 5 is a flowchart of the operation of the present invention.

【図6】地絡が起きたときの、接地線電流の方向を示す
説明図。
FIG. 6 is an explanatory diagram showing a direction of a ground line current when a ground fault occurs.

【図7】模擬系統の地絡シミュレーション結果の電流波
形図。
FIG. 7 is a current waveform diagram of a ground fault simulation result of the simulated system.

【図8】従来技術の説明図。FIG. 8 is an explanatory diagram of a conventional technique.

【図9】単発地絡および間欠地絡の波形図。FIG. 9 is a waveform diagram of a single-shot ground fault and an intermittent ground fault.

【符号の説明】[Explanation of symbols]

12 電力ケーブル 14 接地線 201,202等 電力ケーブル線路 22 ケーブル導体 24 接地線 26 接地用変圧器 27 接地線 28 母線 30 CT 31 CT 32 予知装置 34 バンドパスフィルタ 38 A/D変換 40 メモリ装置 44 判定回路 Reference Signs List 12 power cable 14 ground line 201, 202, etc. power cable line 22 cable conductor 24 ground line 26 grounding transformer 27 ground line 28 bus 30 CT 31 CT 32 prediction device 34 band pass filter 38 A / D conversion 40 memory device 44 judgment circuit

フロントページの続き (72)発明者 荒金 昌克 三重県桑名市野田二丁目7番15号 (72)発明者 永田 達也 愛知県名古屋市東区砂田橋三丁目2番大 幸東団地101−1205 (72)発明者 丸山 孝 東京都江東区木場一丁目5番1号 藤倉 電線株式会社内 (72)発明者 山本 憲 東京都江東区木場一丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 平2−201274(JP,A) 特開 昭63−209412(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/02 Continued on the front page (72) Inventor Masakatsu Arakane 2-7-15-1 Noda, Kuwana-shi, Mie (72) Inventor Tatsuya Nagata 3-2-1 Sunadabashi, Higashi-ku, Nagoya-shi, Aichi 102-1205 Koto Danchi (72) Invention Person Takashi Maruyama 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Ken Yamamoto 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (56) References 2-201274 (JP, A) JP-A-63-209412 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 31/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の電力ケーブル線路の接地線に流れる
接地電流を個々に常時測定し、そのデータをメモリ装置
に記録し、 これら接地線のいずれか1本の接地線に流れる接地電流
が予め定められたしきい値を越えた際に、すべての接地
線に流れた電流のデータの一定期間分をメモリ装置から
読み出し、 すべての接地線に流れた接地電流について、読み出した
データの第1波の電流の極性と大きさを相互に比較し、 電流の極性が1つだけ異なり、かつ電流の大きさが最大
であるものの電力ケーブル線路が地絡の危険性があるも
のと判定することを特 徴とする高圧ケーブルの地絡予知
方法。
1. Flow through a ground line of a plurality of power cable lines
Always measure the ground current individually and store the data in a memory device
Recorded on a ground current flowing in either one ground line of the ground line
When the ground exceeds a predetermined threshold, all ground
A certain period of data of the current flowing through the wire
Read out, and read out the ground currents flowing through all ground lines.
Comparing the polarity and magnitude of the current of the first wave of data with each other, the polarity of the current differs by one and the magnitude of the current is the maximum
Although the power cable line is at risk of ground fault
Earth絡予knowledge method of high-voltage cable to feature determining that the.
【請求項2】複数の電力ケーブル線路の接地線とこれら2. A ground wire for a plurality of power cable lines, and
ケーブル線路の母線に接続された接地用変圧器の接地線Grounding wire of the grounding transformer connected to the bus of the cable line
とに流れる接地電流を個々に常時測定し、そのデータをAlways measure the ground current flowing through the
メモリ装置に記録し、Record in the memory device, 接地用変圧器の接地線に流れる接地電流が予め定められThe grounding current flowing through the grounding conductor of the grounding transformer is predetermined.
たしきい値を越えた際に、電力ケーブル線路の接地線にExceeds the threshold value,
流れた電流のデータの一定期間分をメモリ装置から読みA certain period of data of the flowing current is read from the memory device.
出し、broth, 電力ケーブル線路の接地線に流れた接地電流について、Regarding the ground current flowing through the ground line of the power cable line,
読み出したデータの第1波の電流の極性と大きさを相互The polarity and magnitude of the current of the first wave of the read data
に比較し、Compared to 電流の極性が1つだけ異なり、かつ電流の大きさが最大Only one polarity of current is different and the magnitude of current is maximum
であるものの電力ケーブル線路が地絡の危険性があるもAlthough the power cable line is at risk of ground fault
のと判定することを特徴とする高圧ケーブルの地絡予知Ground fault prediction of high-voltage cables characterized by judgment
方法。Method.
JP03212661A 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables Expired - Lifetime JP3137684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03212661A JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03212661A JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Publications (2)

Publication Number Publication Date
JPH0534397A JPH0534397A (en) 1993-02-09
JP3137684B2 true JP3137684B2 (en) 2001-02-26

Family

ID=16626313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03212661A Expired - Lifetime JP3137684B2 (en) 1991-07-30 1991-07-30 Ground fault prediction method for high voltage cables

Country Status (1)

Country Link
JP (1) JP3137684B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009786A (en) * 1998-06-19 2000-01-14 Miwa Electric Co Ltd Ground fault detection method for secondary power cable of main transformer
JP2020148579A (en) * 2019-03-13 2020-09-17 日油技研工業株式会社 Single-shot earth fault detector
CN111007427B (en) * 2019-11-23 2021-05-04 清华大学 Distribution line single-phase earth fault line selection method and computer readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209412A (en) * 1987-02-26 1988-08-31 株式会社東芝 Preventive maintenance system of gas insulated switchgear
JP2607623B2 (en) * 1988-05-26 1997-05-07 住友電気工業株式会社 Light ground fault occurrence cable identification method
JPH0670662B2 (en) * 1989-01-31 1994-09-07 中部電力株式会社 Power cable ground fault prediction method

Also Published As

Publication number Publication date
JPH0534397A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5602709A (en) High impedance fault detector
US4975800A (en) Contact abnormality detecting system
EP2352038B1 (en) Method for detecting single phase grounding fault based on harmonic component of residual current
James et al. Development of computer-based measurements and their application to PD pattern analysis
US8350573B2 (en) Method and apparatus for generalized AC and DC arc fault detection and protection
JP3137684B2 (en) Ground fault prediction method for high voltage cables
US11953534B2 (en) Detection of lightning and related control strategies in electric power systems
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
US5586043A (en) Method and apparatus for monitoring differentials between signals
Emery et al. Turbine-generator on-line diagnostics using RF monitoring
JP4353840B2 (en) Method for detecting partial discharge of electric circuit
JP3260982B2 (en) Harmonic measurement analysis system
JPH02201274A (en) Method of foreseeing ground fault of power cable
JP3321252B2 (en) Transmission line fault section detection device
JP2728422B2 (en) Abnormal location system for gas insulation equipment
JP3440368B2 (en) Ground fault direction determining method and ground fault direction determining device in high voltage distribution system
JP3419924B2 (en) Partial discharge measurement method
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JP3226554B2 (en) Locating the accident section of the transmission line
JP7341070B2 (en) Ground fault location system and method
JPH0677044B2 (en) Distribution line ground fault detector
EP4346039A1 (en) Arc-fault detection apparatus and method and electrical installation
JPS63228082A (en) Method for diagnosing deterioration of zinc oxide type lightning arrester
JPH10206486A (en) Method for judging fault point of underground transmission line
JP2023142679A (en) system or method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11