JPH05340961A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH05340961A
JPH05340961A JP4149287A JP14928792A JPH05340961A JP H05340961 A JPH05340961 A JP H05340961A JP 4149287 A JP4149287 A JP 4149287A JP 14928792 A JP14928792 A JP 14928792A JP H05340961 A JPH05340961 A JP H05340961A
Authority
JP
Japan
Prior art keywords
movable electrode
substrate
hole
electrode
groove portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4149287A
Other languages
Japanese (ja)
Inventor
Norio Ichikawa
範男 市川
Kiyomitsu Suzuki
清光 鈴木
Akira Koide
晃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP4149287A priority Critical patent/JPH05340961A/en
Publication of JPH05340961A publication Critical patent/JPH05340961A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enhance reliability and to increase yield by smoothly and perfectly filling a through hole for leading out a lead electrode made on the fixed electrode side of a capacitive acceleration sensor. CONSTITUTION:A silicon substrate 1 on the movable electrode 3 side is sandwiched by glass substrates 10, 20 on upper and lower fixed electrode. 11, 12 sides and a through hole 12 is made through at least one of the glass substrates 10, 20. The through hole 12 is filled with filler 16. A groove part 4 for receiving the filler 16 is formed at a position of the substrate 1 opposing to the through hole 12 and thereabout while ventilation groove parts 4a, 4b are formed continuously with the groove part 4 while communicating with a movable electrode space 17 and outer space. The groove part 4b is partially provided with a dam-like protrusion 5 which partially elevates the bottom of the ventilation groove thus preventing the filler from flowing into the movable electrode space 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車,航空機等の移動
体の運動加速度を検出する静電容量式の加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type acceleration sensor for detecting a motion acceleration of a moving body such as an automobile or an aircraft.

【0002】[0002]

【従来の技術】従来より、例えば、特開昭62−276
66号公報に開示されるように、可動電極と固定電極と
を微小空隙を介して対向配置し、可動電極が加速度に応
答して変位したときの可動電極・固定電極間の静電容量
の変化を基に加速度を検出する静電容量式の加速度セン
サが知られている。
2. Description of the Related Art Conventionally, for example, JP-A-62-276.
As disclosed in Japanese Patent Publication No. 66, the movable electrode and the fixed electrode are opposed to each other with a minute gap, and the change in the electrostatic capacitance between the movable electrode and the fixed electrode when the movable electrode is displaced in response to acceleration. There is known a capacitance type acceleration sensor that detects acceleration based on.

【0003】この種の静電容量式加速度センサは、シリ
コン基板をエッチング等で微細加工して可動電極及びこ
れを支持するカンチレバー等をシリコン基板と一体成形
し、一方、固定電極をガラス基板等に薄膜形成し、一般
には、この固定電極付きガラス基板を2枚用意して、可
動電極側のシリコン基板を挾む形でサンドイッチ構造に
積層接合する構造を採用している。また、固定電極の少
なくとも一方側の基板にはスルーホールが穿設されて、
このスルーホールを通して固定電極のリード電極が基板
の外面に引出してある。
In this type of capacitance type acceleration sensor, a silicon substrate is finely processed by etching or the like to integrally form a movable electrode and a cantilever supporting the movable electrode with the silicon substrate, while a fixed electrode is formed on a glass substrate or the like. A thin film is formed, and generally, two glass substrates with fixed electrodes are prepared, and a silicon substrate on the movable electrode side is sandwiched in a sandwich structure in a sandwiched manner. Further, a through hole is formed in the substrate on at least one side of the fixed electrode,
Through this through hole, the lead electrode of the fixed electrode is drawn out to the outer surface of the substrate.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のスル
ーホールには、水等の浸入を防ぐためシリコーンゴム等
を充填するが、スルーホールの内径がφ0.3〜φ0.
5mmと小さいために均一に充填することは困難で、特性
不良,信頼性低下を誘起する原因となっていた。
By the way, the above-mentioned through hole is filled with silicone rubber or the like in order to prevent water or the like from entering, but the inside diameter of the through hole is φ0.3 to φ0.
Since it is as small as 5 mm, it is difficult to fill it uniformly, which is a cause of inferior characteristics and reduced reliability.

【0005】本発明は以上の点に鑑みてなされ、その目
的は、スルーホールへ充填材をスムーズに完全充填する
ことを可能にしてこの種加速度センサの信頼性を高める
ことにある。
The present invention has been made in view of the above points, and it is an object of the present invention to smoothly and completely fill a through-hole with a filling material to enhance the reliability of this kind of acceleration sensor.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために次のような課題解決手段を提案する。
The present invention proposes the following means for solving the problems in order to achieve the above object.

【0007】一つは、前述した如き可動電極側の基板と
固定電極側の基板を積層接合し、固定電極側の基板にス
ルーホールが穿設されてこのスルーホールを介して前記
固定電極のリード電極が前記基板の外面に引出してあ
り、該スルーホールには充填材が充填してある加速度セ
ンサにおいて、前記可動電極側の基板のうち前記スルー
ホールと対向する位置及びその近辺にかけて前記充填材
を受け入れる溝部が形成され、且つこの溝部と連なって
可動電極側の空間と外部空間とに通じる空気抜き用の溝
部が形成してあるものを提案する(これを第1の課題解
決手段とする)。
First, the movable electrode side substrate and the fixed electrode side substrate are laminated and joined as described above, and a through hole is formed in the fixed electrode side substrate, and the fixed electrode lead is provided through this through hole. In an acceleration sensor in which an electrode is drawn out to the outer surface of the substrate and a filling material is filled in the through hole, the filling material is applied to a position on the movable electrode side substrate facing the through hole and the vicinity thereof. It is proposed that a groove portion for receiving is formed, and a groove portion for venting air, which is continuous with the groove portion and communicates with the space on the movable electrode side and the external space, is formed (this is referred to as a first problem solving means).

【0008】もう一つは、第1の課題解決手段を前提と
して、前記空気抜き用の溝部のうち少なくとも可動電極
空間側に設けた溝部の一部が堤状の凸部となって、この
凸部により空気抜き溝部を一部底上げして、前記充填材
の前記可動電極空間への流れ込みを防止する構造を提案
する。
On the other hand, on the premise of the first problem solving means, at least a part of the groove portion provided on the movable electrode space side of the air vent groove portion becomes a bank-shaped convex portion, and this convex portion is formed. Therefore, a structure is proposed in which the air vent groove part is partially raised to prevent the filling material from flowing into the movable electrode space.

【0009】[0009]

【作用】第1の課題解決手段によれば、空気抜き用溝部
を可動電極空間と外部空間との双方に通じるように設け
たので、スルーホールにシリコーンゴム等の充填材をス
ルーホール内に均一に且つスムーズに押し込むことが可
能となり、スルーホールの完全充填ひいては気密性を高
める。
According to the first means for solving the problems, since the air vent groove is provided so as to communicate with both the movable electrode space and the external space, a filler such as silicone rubber is evenly distributed in the through hole. In addition, it can be pushed in smoothly, which enhances the complete filling of the through holes and thus the airtightness.

【0010】第2の課題解決手段によれば、可動電極空
間側に設けた空気抜き用溝部が凸部により底上げされる
ため、この凸部と固定電極側の隙間が極めて微小とな
り、この隙間が粘性を有する充填材に対して大きな抵抗
となって充填材の通過を阻止する。すなわち、前記凸部
が充填材の可動電極空間への流れ込みをせき止める機能
をなす。
According to the second means for solving the problem, since the air vent groove portion provided on the movable electrode space side is raised by the convex portion, the gap between the convex portion and the fixed electrode side becomes extremely small, and this gap is viscous. It becomes a great resistance to the filler having the above, and prevents the passage of the filler. That is, the convex portion functions to prevent the filling material from flowing into the movable electrode space.

【0011】なお、充填されたシリコーンゴム等が充填
材が可動電極空間まで流れ込むと、充填材が可動電極に
接触して可動電極の動きを妨害し、特性不良の原因とな
るが、本課題解決手段では、このような不具合の発生を
完全になくすことができる。
When the filled silicone rubber or the like flows into the space of the movable electrode, the filler comes into contact with the movable electrode and interferes with the movement of the movable electrode, causing a characteristic failure. By the means, it is possible to completely eliminate the occurrence of such a defect.

【0012】[0012]

【実施例】本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0013】図1は本発明の一実施例に係る静電容量式
加速度センサのゲージ部を示す断面図、図2の(A),
(B),(C)は、その可動電極付き基板と固定電極付
き基板の分解状態、同図の(D)はその積層接合状態を
示す斜視図である。なお、図2(D)のS−S´線は図
2(A)のS1−S1´線の位置と一致する箇所である。
FIG. 1 is a sectional view showing a gauge portion of a capacitance type acceleration sensor according to an embodiment of the present invention, FIG.
(B) and (C) are exploded views of the substrate with movable electrode and the substrate with fixed electrode, and (D) of the same figure is a perspective view showing the laminated and joined state. Incidentally, S-S'line shown in FIG. 2 (D) is a point that coincides with the position of S 1 -S 1 'line in FIG. 2 (A).

【0014】加速度検出素子30はシリコン基板1を上
ガラス基板10,下ガラス基板20でサンドイッチに積
層接合した構造で、上ガラス基板10には固定電極11
が形成され、また、スルーホール12が穿設されて、固
定電極11のリード電極13がスルーホール12を介し
て上ガラス基板10の外面に引出されている。リード電
極13のうち上ガラス基板10の内面側に形成された部
分を符号13aで、スルーホール12の壁面に形成され
た部分を符号13bで、上ガラス基板10の外面側に形
成された部分を符号13bで示す。
The acceleration detecting element 30 has a structure in which the silicon substrate 1 is laminated and bonded to the upper glass substrate 10 and the lower glass substrate 20 in a sandwich.
And the through hole 12 is formed, and the lead electrode 13 of the fixed electrode 11 is drawn out to the outer surface of the upper glass substrate 10 through the through hole 12. A portion of the lead electrode 13 formed on the inner surface side of the upper glass substrate 10 is denoted by reference numeral 13a, a portion formed on the wall surface of the through hole 12 is denoted by reference numeral 13b, and a portion formed on the outer surface side of the upper glass substrate 10 is denoted by reference numeral 13b. It is indicated by reference numeral 13b.

【0015】一方、下ガラス基板20には、固定電極2
1が形成され、また、そのリード電極22が同一面上に
形成してある。
On the other hand, the fixed electrode 2 is provided on the lower glass substrate 20.
1 and the lead electrode 22 is formed on the same surface.

【0016】固定電極11,21はAl等の材料をスパ
ッタリング等で薄膜形成され、厚さが約0.5μm程度
に制御されて形成され、リード電極のうち13bが固定
電極11と、リード電極22が固定電極21と同時に形
成されるが、リード電極13のうちスルーホール12の
壁面に形成される要素13bと基板10外面に形成され
る要素13cは別にスパッタ,蒸着で形成される。
The fixed electrodes 11 and 21 are formed by forming a thin film of a material such as Al by sputtering or the like, and the thickness thereof is controlled to about 0.5 μm, and 13b of the lead electrodes are fixed electrodes 11 and 22. The element 13b formed on the wall surface of the through hole 12 and the element 13c formed on the outer surface of the substrate 10 of the lead electrode 13 are separately formed by sputtering or vapor deposition.

【0017】シリコン基板1は、KOH溶液の異方性エ
ッチングによりマイクロマシニング技術を応用して、カ
ンチレバー2a、2b、可動電極3を形成し、シリコン
基板1がカンチレバー2a,2bを介して可動電極3を
支持しつつ可動電極3の周囲に位置する。
The silicon substrate 1 is applied with a micromachining technique by anisotropic etching of a KOH solution to form the cantilevers 2a, 2b and the movable electrode 3, and the silicon substrate 1 is moved through the cantilevers 2a, 2b. It is located around the movable electrode 3 while supporting.

【0018】検出素子30は、3mm×5mm程度の寸法サ
イズであり、上・下ガラス基板10,20とシリコン基
板1とはφ76〜φ102mm程度のウエハ状で陽極接合
される。その後、チップ状にダイサーで切断分割される
が、スルーホール12から切断時の冷却水がセンサ内部
に浸入するのを防ぐ必要があるため、図1に示すように
スルーホール12にはシリコーンゴム等の充填材16を
気密に充填する必要がある。この充填構造については、
次の加速度センサの動作原理の後説明する。
The detection element 30 has a size of about 3 mm × 5 mm, and the upper and lower glass substrates 10 and 20 and the silicon substrate 1 are anodically bonded in a wafer shape of about φ76 to φ102 mm. After that, it is cut and divided by a dicer into chips, but since it is necessary to prevent cooling water at the time of cutting from entering into the sensor from the through holes 12, as shown in FIG. It is necessary to hermetically fill the filling material 16 of. For this filling structure,
The operation principle of the acceleration sensor will be described later.

【0019】検出素子30に図1に示すような加速度G
が印加されると、カンチレバー2(2a、2b)に支持
された可動電極3が変位し、可動電極3と固定電極11
とのギャップL1、可動電極3と固定電極21とのギャ
ップL2がそれぞれ変化する。
The acceleration G as shown in FIG.
Is applied, the movable electrode 3 supported by the cantilever 2 (2a, 2b) is displaced, and the movable electrode 3 and the fixed electrode 11 are moved.
Gap L 2 between the gap L 1, the movable electrode 3 and the fixed electrode 21 with the changes respectively.

【0020】この変化量は印加される加速度により異な
るため、ギャップの相対変化量△L=L1−L2の値から
加速度を検出することができる。実際には、この検出素
子と図示されていない駆動回路とを結合してギャップ△
Lの変化に相当する静電容量変化△Cを電気的に取出
し、加速度Gの大きさを検出するものである。
Since this change amount varies depending on the applied acceleration, the acceleration can be detected from the value of the relative change amount ΔL = L 1 -L 2 of the gap. In practice, this detection element and a drive circuit (not shown) are combined to form a gap Δ.
The capacitance ΔC corresponding to the change in L is electrically taken out to detect the magnitude of the acceleration G.

【0021】このような検出素子30において、充填材
16を気密にしかも適度に充填することが、検出素子の
特性及び信頼性の上で極めて重要である。
In such a detection element 30, it is extremely important to hermetically and appropriately fill the filling material 16 with respect to the characteristics and reliability of the detection element.

【0022】この課題に応えるに、本実施例では次のよ
うな構造を採用する。
In order to meet this problem, this embodiment adopts the following structure.

【0023】すなわち、シリコーン基板1のうち固定電
極の側基板10のスルーホール12の対向する位置及び
その近辺にかけて図2(A)に示すようにスルーホール
12よりも大きい溝部4を形成し、この溝部4により充
填材16を受け入れ、さらに、空気抜きのための溝部と
して、可動電極空間17側に通じる溝部4bと外部空間
(大気側)に通じる溝部4aとを溝部4と連なって形成
した。溝の深さは20μm〜120μm程度が適当であ
り、溝4、4a、4bは、カンチレバー2、可動電極3
を形成するのと同様KOH溶液のエッチングにより形成
される。溝の深さが5μm以下と浅いと充填が困難とな
り均一な充填が得ずらい。
That is, as shown in FIG. 2A, a groove portion 4 larger than the through hole 12 is formed in the silicone substrate 1 at a position facing the through hole 12 of the fixed electrode side substrate 10 and in the vicinity thereof. The filling material 16 is received by the groove portion 4, and further, as a groove portion for venting air, a groove portion 4b communicating with the movable electrode space 17 side and a groove portion 4a communicating with the external space (atmosphere side) are formed in series with the groove portion 4. The depth of the groove is preferably about 20 μm to 120 μm, and the grooves 4, 4a and 4b are the cantilever 2 and the movable electrode 3.
It is formed by etching a KOH solution in the same manner as that for forming. If the depth of the groove is as shallow as 5 μm or less, filling becomes difficult and uniform filling is difficult to obtain.

【0024】マスク印刷方式で充填された充填材16
は、溝4を埋め、左右に続く溝4a、4bへ流れ、4
a、4bの一部又は全部を埋めつくす。この際、可動電
極空間17まで流れ込むと特性及び信頼性上、不具合が
生じるため、本実施例では堤状の凸部5を溝4bの一部
に設け、この凸部5により溝4bの一部を底上げして空
間17への流れ込みを完全に防ぐ構造としている。
Filler 16 filled by mask printing
Fills the groove 4 and flows to the grooves 4a and 4b continuing to the left and right,
Fill a part or all of a and b. At this time, if it flows into the movable electrode space 17, a problem occurs in characteristics and reliability. Therefore, in this embodiment, a bank-shaped convex portion 5 is provided in a part of the groove 4b, and the convex portion 5 causes a part of the groove 4b. Is raised to completely prevent the flow into the space 17.

【0025】この流れ込みを完全に防ぐには、スルーホ
ール径、充填材の粘度、充填圧力によって、凸部5とリ
ード電極13付きの上ガラス基板10とのギャップを適
正に設定することが重要である。
In order to completely prevent this inflow, it is important to properly set the gap between the convex portion 5 and the upper glass substrate 10 with the lead electrode 13 by the through hole diameter, the viscosity of the filling material, and the filling pressure. is there.

【0026】本実施例では、スルーホール径φ0.3〜
0.5mm,シリコーンゴム充填材の粘度10000〜1
3000ポイズ、充填圧力2〜2.5kg/cm2の場
合、凸部とその上に構成されるガラス基板10とのギャ
ップを5μmとすれば、流れ込みを完全に防ぐことが可
能である。
In this embodiment, the through hole diameter φ0.3 to
0.5mm, viscosity of silicone rubber filler 10,000 to 1
In the case of 3000 poise and the filling pressure of 2 to 2.5 kg / cm 2 , it is possible to completely prevent the inflow by setting the gap between the convex portion and the glass substrate 10 formed thereon to be 5 μm.

【0027】なお、図1では凸部5は1ヶ所であるが、
複数カ所設けてもよく、さらに大気側に通じる溝4b側
い設けてもよい。
Although there is only one convex portion 5 in FIG. 1,
It may be provided at a plurality of locations, or may be provided on the side of the groove 4b communicating with the atmosphere side.

【0028】[0028]

【発明の効果】加速度を検出する素子の信頼性向上と、
特性不良の効果大である。また、本発明の構造を採用す
ることで、印刷充填方式によるするホールへのシリコー
ンゴム等の充填作業がより容易になり、しかも完全充填
を得、歩留り向上を図ることができる。
As described above, the reliability of the element for detecting acceleration is improved,
The effect of the characteristic failure is great. Further, by adopting the structure of the present invention, the filling work of the silicone rubber or the like into the holes by the printing filling method becomes easier, moreover, complete filling can be obtained and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る加速度センサの断面図FIG. 1 is a sectional view of an acceleration sensor according to an embodiment of the present invention.

【図2】上記実施例の分解斜視図及びその積層接合状態
を示す斜視図
FIG. 2 is an exploded perspective view of the above embodiment and a perspective view showing a laminated and joined state thereof.

【符号の説明】[Explanation of symbols]

1…シリコン基板(可動電極側の基板)、2a,2b…
カンチレバー(弾性支持体)3…可動電極、4…充填材
受け止め用溝部、4a,4b…空気抜き用溝部、5…凸
部、10…上ガラス基板(固定電極側の基板)、12…
スルーホール、16…充填材、20…下がラス基板(固
定電極側の基板)、11,21…固定電極、30…加速
度検出素子。
1 ... Silicon substrate (substrate on movable electrode side), 2a, 2b ...
Cantilever (elastic support) 3 ... Movable electrode, 4 ... Filler receiving groove, 4a, 4b ... Air venting groove, 5 ... Projection, 10 ... Upper glass substrate (fixed electrode side substrate), 12 ...
Through holes, 16 ... Filling material, 20 ... Lower substrate (substrate on fixed electrode side), 11, 21 ... Fixed electrode, 30 ... Acceleration detecting element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 清光 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 小出 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyomitsu Suzuki 4026, Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可動電極を弾性支持しつつ該可動電極の
周囲に配置される基板と、一面に固定電極が形成してあ
る基板とを備え、前記可動電極及び固定電極が空隙を保
って対向するよう前記基板同士が積層接合してあり、前
記固定電極側の基板にスルーホールが穿設されてこのス
ルーホールを介して前記固定電極のリード電極が前記基
板の外面に引出してあり、該スルーホールには充填材が
充填してある加速度センサにおいて、 前記可動電極側の基板のうち前記スルーホールと対向す
る位置及びその近辺にかけて前記充填材を受け入れる溝
部が形成され、且つこの溝部と連なって可動電極側の空
間と外部空間とに通じる空気抜き用の溝部が形成してあ
ることを特徴とする加速度センサ。
1. A substrate, which is arranged around the movable electrode while elastically supporting the movable electrode, and a substrate having a fixed electrode formed on one surface thereof. The movable electrode and the fixed electrode are opposed to each other with a space therebetween. As described above, the substrates are laminated and joined, a through hole is formed in the fixed electrode side substrate, and the lead electrode of the fixed electrode is drawn out to the outer surface of the substrate through the through hole. In the acceleration sensor in which the filling material is filled in the holes, a groove portion for receiving the filling material is formed at a position facing the through hole on the substrate on the movable electrode side and in the vicinity thereof, and movable in connection with the groove portion. An acceleration sensor characterized in that a groove portion for venting air is formed which communicates with a space on the electrode side and an external space.
【請求項2】 請求項1において、前記空気抜き用の溝
部のうち少なくとも可動電極空間側に設けた溝部の一部
が堤状の凸部となって、この凸部により前記空気抜き用
の溝部を一部底上げして、前記充填材の前記可動電極空
間への流れ込みを防止する構造となっていることを特徴
とする加速度センサ。
2. The air vent groove portion according to claim 1, wherein at least a part of the groove portion provided on the movable electrode space side of the air vent groove portion is a bank-shaped convex portion, and the convex portion serves to form the air vent groove portion. An acceleration sensor having a structure in which a bottom is raised to prevent the filling material from flowing into the movable electrode space.
JP4149287A 1992-06-09 1992-06-09 Acceleration sensor Pending JPH05340961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149287A JPH05340961A (en) 1992-06-09 1992-06-09 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149287A JPH05340961A (en) 1992-06-09 1992-06-09 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05340961A true JPH05340961A (en) 1993-12-24

Family

ID=15471893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149287A Pending JPH05340961A (en) 1992-06-09 1992-06-09 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05340961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530234A (en) * 2000-04-07 2003-10-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical structure element and corresponding manufacturing method
US6924537B2 (en) 2003-07-16 2005-08-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a potential drawing portion formed at a corner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530234A (en) * 2000-04-07 2003-10-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical structure element and corresponding manufacturing method
US6924537B2 (en) 2003-07-16 2005-08-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a potential drawing portion formed at a corner
CN1296715C (en) * 2003-07-16 2007-01-24 三菱电机株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
EP1780525B1 (en) Capacitive pressure sensor
US4930043A (en) Closed-loop capacitive accelerometer with spring constraint
US6935175B2 (en) Capacitive pick-off and electrostatic rebalance accelerometer having equalized gas damping
JP3126467B2 (en) Pressure or acceleration sensor
US6460234B1 (en) Method of forming micromachined sealed capacitive pressure sensors
US6263735B1 (en) Acceleration sensor
EP1305586B1 (en) Micro-machined absolute pressure sensor
EP0386463A2 (en) Capacitive accelerometer with mid-plane proof mass
EP0386465A2 (en) Capacitive accelerometer with hinges on top and bottom surface
JPH0342791B2 (en)
JPH08129026A (en) Electrostatic capacity type acceleration sensor and production thereof
EP2346083B1 (en) Mems sensor
FI81915B (en) KAPACITIV ACCELERATIONSGIVARE OCH FOERFARANDE FOER FRAMSTAELLNING DAERAV.
JP2002500961A (en) Micromechanical structural elements
US7535096B2 (en) Glass substrate and capacitance-type pressure sensor using the same
US7487678B2 (en) Z offset MEMS devices and methods
JP2007064919A (en) Electrostatic capacity type mechanical quantity sensor
JPH05340961A (en) Acceleration sensor
JP2728237B2 (en) Capacitive acceleration sensor
JP3355916B2 (en) Micro G switch
EP1788372B1 (en) Capacitive pressure sensor
US7302857B2 (en) Method for reducing the temperature dependence of a capacitive sensor and a capacitive sensor construction
JP2010054210A (en) Method of manufacturing capacitance type semiconductor physical quantity sensor and capacitance-type semiconductor physical quantity sensor
KR100506073B1 (en) A vacuum packaged microgyroscope and a fabricating method thereof
JPH10104265A (en) Acceleration sensor