JPH0533969A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0533969A
JPH0533969A JP3193037A JP19303791A JPH0533969A JP H0533969 A JPH0533969 A JP H0533969A JP 3193037 A JP3193037 A JP 3193037A JP 19303791 A JP19303791 A JP 19303791A JP H0533969 A JPH0533969 A JP H0533969A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
expansion valve
temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3193037A
Other languages
Japanese (ja)
Other versions
JP2599518B2 (en
Inventor
Etsuo Shibata
悦雄 柴田
Kenji Yao
健治 八尾
Takeshi Nakakoshi
猛 中越
Akira Yoshida
陽 吉田
Masanori Kotani
正則 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3193037A priority Critical patent/JP2599518B2/en
Publication of JPH0533969A publication Critical patent/JPH0533969A/en
Application granted granted Critical
Publication of JP2599518B2 publication Critical patent/JP2599518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To use part of the refrigerant circulating in a refrigeration cycle for adding radiation to convection in air conditioning. CONSTITUTION:In cooling, part of the liquefied refrigerant coming from an outdoor heat exchanger 2 branches off, flows through a second expansion valve 5, and, as it passes through a manifold 23 at the top end of a radiant panel 4, vaporizes by absorption of heat from inside the room through the radiant panel and liquefies the refrigerant which is migrating inside the radiant panel toward the manifold at the top end; the liquefied refrigerant naturally falls through heat pipes 19 and collects at a manifold 24 at the lower end and then, by heat collected through the radiant panel, turns into vapor again in repeated cycles. By the vaporization and liquefaction in repeated cycles the radiant panel is cooled and radiant cooling of the room is effected. In heating, the refrigerant discharged from a compressor 1 releases heat to the room at an indoor heat exchanger 3 and, as it passes through the manifold at the lower end of the radiant panel, heats and vaporizes the refrigerant inside the radiant panel; the vaporized refrigerant condenses when it rises up the heat pipes 19, heats the radiant panel to effect radiant heating, and, after condensation, the refrigerant naturally falls and returns to the manifold at the lower end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,室内熱交換器による対
流空気調和に併せて,輻射パネルによる輻射空気調和を
行うことのできる空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of performing radiant air conditioning by a radiant panel in addition to convection air conditioning by an indoor heat exchanger.

【0002】[0002]

【従来の技術】近年,冷暖房装置に対し,以前にも増し
て快適性が求められており,快適性を高める一つの手段
として輻射パネルの使用が注目されている。輻射パネル
の効果として,送風による騒音や風による不快感がない
こと,直接的に身体に作用するため空調効果が高いこと
などの利点がある。従来の輻射による空気調和を用いた
空気調和機の例を図7に示す。同図に示されるように,
室内熱交換器による対流に,輻射パネルによる輻射を併
せた空気調和を行う空気調和機である。このような従来
の空気調和機の構成は,圧縮機31,室内熱交換器3
2,膨張弁34,冷媒・ブライン熱交換器35で構成さ
れる冷凍サイクル45と,メインブライン回路用循環ポ
ンプ36,輻射パネル40,膨張タンク41,輻射パネ
ル制御用三方混合弁42で構成されるブラインサイクル
46とからなっている。このように室内側にブラインサ
イクルを用いている理由は,冷房運転における輻射パネ
ル40の結露対策にある。輻射パネル40の表面温度が
室内空気の露点より低下すると,輻射パネル40の表面
に結露が発生し実用に耐えない。そこで,室内空気の露
点温度と輻射パネル40の表面温度を測定し,輻射パネ
ル40の温度が室内空気の露点温度より低下しないよう
調節する手法が必要となるが,輻射パネル40の熱媒体
にブラインを使用したブラインサイクルを用いると,容
易に輻射パネル40の温度を調節することが可能とな
る。以下に上記構成の動作を説明する。まず,冷房運転
においては,冷凍サイクル45における圧縮器31から
吐出された高温高圧の冷媒は,四方弁43から室外熱交
換器32に入り,室外ファン33によって外気と熱交換
して放熱し,凝縮液化したのち,膨張弁34で減圧さ
れ,低圧の気液二相状態となって冷媒・ブライン熱交換
器35に入り,ブラインサイクル46側のブラインから
吸熱して蒸発気化し,低温低圧の蒸気となって圧縮機3
1に吸入されるサイクルを繰り返す。
2. Description of the Related Art In recent years, more and more comfort has been required for air conditioners, and the use of a radiation panel has attracted attention as one means for improving comfort. The effect of the radiation panel is that there are no noises and unpleasant sensations due to the air flow, and that the air conditioning effect is high because it directly affects the body. FIG. 7 shows an example of a conventional air conditioner that uses air conditioning by radiation. As shown in the figure,
It is an air conditioner that combines the convection of the indoor heat exchanger with the radiation of the radiation panel. The configuration of such a conventional air conditioner includes a compressor 31, an indoor heat exchanger 3
2, a refrigeration cycle 45 including an expansion valve 34 and a refrigerant / brine heat exchanger 35, a main brine circuit circulation pump 36, a radiation panel 40, an expansion tank 41, and a radiation panel control three-way mixing valve 42. It consists of a brine cycle 46. The reason why the brine cycle is used on the indoor side in this way is to prevent dew condensation on the radiation panel 40 during the cooling operation. When the surface temperature of the radiant panel 40 falls below the dew point of the room air, dew condensation occurs on the surface of the radiant panel 40, which is not practical. Therefore, it is necessary to measure the dew point temperature of the indoor air and the surface temperature of the radiant panel 40 and adjust the temperature of the radiant panel 40 so as not to fall below the dew point temperature of the indoor air. When the brine cycle using is used, the temperature of the radiation panel 40 can be easily adjusted. The operation of the above configuration will be described below. First, in the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 31 in the refrigeration cycle 45 enters the outdoor heat exchanger 32 from the four-way valve 43, exchanges heat with the outdoor air by the outdoor fan 33, radiates heat, and condenses. After liquefying, it is decompressed by the expansion valve 34, enters a low-pressure gas-liquid two-phase state, enters the refrigerant / brine heat exchanger 35, absorbs heat from the brine on the brine cycle 46 side, evaporates to vapor, and becomes low-temperature low-pressure vapor. Become a compressor 3
The cycle of inhaling 1 is repeated.

【0003】一方,ブラインサイクル46では,メイン
ブライン回路用循環ポンプ36から吐出されたブライン
は,冷媒・ブライン熱交換器35で冷凍サイクル45側
の冷媒に放熱して冷却され,室内熱交換器37に入る一
方,分岐して輻射パネル温度制御用三方混合弁42を通
って輻射パネル40に入る。この輻射パネル温度制御用
三方混合弁42は,冷媒・ブライン熱交換器35からの
冷却されたブラインと,輻射パネル40を通り室内熱を
吸収し昇温したブラインとを混合し,輻射パネル40が
結露しないよう2つのブラインの混合量を調節して温度
調節を行っている。輻射パネル40には輻射パネル回路
用循環ポンプ39が並列に設けられており,輻射パネル
温度制御用三方混合弁42へ昇温したブラインを送給し
ている。室内熱交換器37及び輻射パネル40を出たブ
ラインはメインブライン回路用ポンプ36に吸入される
サイクルを繰り返すことにより,室内熱交換器37にお
いて室内ファン38により対流冷房が行われ,輻射パネ
ル40により輻射冷房が行われる。次に,暖房運転にお
いては,圧縮機31から吐出された高温高圧の冷媒は,
四方弁43からブライン熱交換器35に入り,ブライン
サイクル46側のブラインに放熱して凝縮液化し,膨張
弁34で減圧され低圧の気液二相状態となって室外熱交
換器32に入り,室外ファン33により外気と熱交換し
て蒸発気化し,低温低圧の蒸気となって圧縮機31に吸
入されるサイクルを繰り返す。一方,ブラインサイクル
46では,メインブライン回路用循環ポンプ36から吐
出されたブラインは,冷媒・ブライン熱交換器35で冷
凍サイクル45側の冷媒から吸熱して室内熱交換器37
に入り,室内ファン38により室内を対流暖房すると共
に,輻射パネル温度制御用三方混合弁42から輻射パネ
ル40に入り,輻射パネル40により室内を輻射暖房す
る。輻射パネル40の温度調節は,前記冷房運転時と同
様に輻射パネル回路用循環ポンプ39によって戻される
ブラインと冷媒・ブライン熱交換器35からのブライン
とを,輻射パネル温度制御用三方混合弁42で混合して
行っている。
On the other hand, in the brine cycle 46, the brine discharged from the main brine circuit circulation pump 36 radiates heat to the refrigerant on the refrigeration cycle 45 side in the refrigerant / brine heat exchanger 35 to be cooled, and the indoor heat exchanger 37. While entering, it branches and enters the radiation panel 40 through the radiation panel temperature controlling three-way mixing valve 42. The radiant panel temperature control three-way mixing valve 42 mixes the cooled brine from the refrigerant / brine heat exchanger 35 with the brine that has passed through the radiant panel 40 and has absorbed the indoor heat and has risen in temperature. The temperature is controlled by adjusting the mixing amount of the two brines to prevent dew condensation. The radiation panel 40 is provided with a radiation panel circuit circulation pump 39 in parallel, and feeds the heated brine to the radiation panel temperature control three-way mixing valve 42. By repeating the cycle in which the brine discharged from the indoor heat exchanger 37 and the radiation panel 40 is sucked into the main brine circuit pump 36, convection cooling is performed by the indoor fan 38 in the indoor heat exchanger 37, and the radiation panel 40 is used. Radiant cooling is performed. Next, in the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 31 is
The four-way valve 43 enters the brine heat exchanger 35, radiates heat to the brine on the brine cycle 46 side to be condensed and liquefied, and is decompressed by the expansion valve 34 into a low-pressure gas-liquid two-phase state and enters the outdoor heat exchanger 32, The outdoor fan 33 exchanges heat with the outside air to evaporate and vaporize to become low-temperature and low-pressure vapor, which is sucked into the compressor 31 repeatedly. On the other hand, in the brine cycle 46, the brine discharged from the main brine circuit circulation pump 36 absorbs heat from the refrigerant on the refrigeration cycle 45 side in the refrigerant / brine heat exchanger 35, and the indoor heat exchanger 37.
The indoor fan 38 heats the room convectively, and the radiant panel temperature controlling three-way mixing valve 42 enters the radiant panel 40 to radiantly heat the room. The temperature of the radiant panel 40 is controlled by the three-way mixing valve 42 for controlling the radiant panel temperature by controlling the brine returned by the radiant panel circuit circulation pump 39 and the brine from the refrigerant / brine heat exchanger 35 in the same manner as during the cooling operation. It's mixed.

【0004】[0004]

【発明が解決しようとする課題】上記従来例において
は,冷媒・ブライン熱交換器を介して冷媒とブラインと
の熱交換を行っているため,空気と冷媒との温度差が大
きくなり,冷凍サイクルの蒸発圧力が低下しCOPが小
さくなる。また,ブラインサイクル側に2台の循環ポン
プを必要とするため,その電力消費分のCOPが小さく
なる。このように従来例空気調和機においては,輻射を
利用した空気調和の特徴であるはずの省エネルギー性
(COP)が実現できず,強制対流式のみの空気調和機
のCOPよりも劣るものであった。本発明,上記従来例
の課題を解決するため,ブラインサイクルを用いず,冷
凍サイクルのみで輻射と強制対流とを併用した空気調和
機を提供することを目的とする。
In the above conventional example, since the heat exchange between the refrigerant and the brine is performed via the refrigerant / brine heat exchanger, the temperature difference between the air and the refrigerant becomes large, and the refrigeration cycle is increased. The vaporization pressure of is reduced and COP is reduced. Moreover, since two circulation pumps are required on the side of the brine cycle, the COP of the power consumption is reduced. As described above, in the conventional air conditioner, the energy saving (COP) that should be the characteristic of the air conditioner using radiation could not be realized, and it was inferior to the COP of only the forced convection air conditioner. .. In order to solve the problems of the present invention and the conventional example described above, it is an object of the present invention to provide an air conditioner that uses both radiation and forced convection only in a refrigeration cycle without using a brine cycle.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する手段は,圧縮機,室外熱交換器,
第1の膨張弁,室内熱交換器を順次連結した冷凍サイク
ルにおける前記室内熱交換器による対流空気調和と,前
記冷凍サイクルを流れる冷媒の一部を用いる輻射パネル
による輻射空気調和とを行う空気調和機において,上記
輻射パネルに垂直方向の複数のヒートパイプを配設し,
該ヒートパイプの上端及び下端を連結管で接続すると共
に,所定量の冷媒を充填し,前記下端の連結管に加熱用
冷媒管を貫通させて前記第1の膨張弁と前記室内熱交換
器との間に配管し,前記上端の連結管に冷却用冷媒管を
貫通させて,該冷却用冷媒管の一方を第2の膨張弁を介
して前記室外熱交換器に接続し,該冷却用冷媒管の他方
を第3の膨張弁を介して前記圧縮機に接続してなること
を特徴とする空気調和機として構成される。
In order to achieve the above object, the means adopted by the present invention are a compressor, an outdoor heat exchanger,
Air conditioning that performs convective air conditioning by the indoor heat exchanger in a refrigeration cycle in which a first expansion valve and an indoor heat exchanger are sequentially connected and radiant air conditioning by a radiant panel that uses a part of the refrigerant flowing in the refrigeration cycle In the machine, a plurality of vertical heat pipes are arranged on the radiation panel,
The upper end and the lower end of the heat pipe are connected by a connecting pipe, a predetermined amount of refrigerant is filled, and the connecting refrigerant pipe at the lower end is penetrated by a heating refrigerant pipe to connect the first expansion valve and the indoor heat exchanger. The cooling refrigerant pipe through the connecting pipe at the upper end, and one of the cooling refrigerant pipes is connected to the outdoor heat exchanger through a second expansion valve to provide the cooling refrigerant. The other of the pipes is connected to the compressor via a third expansion valve, and the air conditioner is configured.

【0006】[0006]

【作用】本発明によれば,冷凍サイクルにおける室内熱
交換器の強制対流による空気調和を行う一方で,該冷凍
サイクルを流れる冷媒の一部を用いて輻射パネル内のヒ
ートパイプを作動させ,輻射による空気調和を行ってい
る。まず,冷房運転時においては,第2膨張弁による膨
張率が第1膨張弁による膨張率より低く設定されてお
り,室外熱交換器で凝縮液化した冷媒の一部が分岐し
て,第2の膨張分を通って前記輻射パネルの上端の連結
管内を通過するとき,輻射パネルが室内の熱を奪うこと
により蒸発し,上端の連結管側に移動している輻射パネ
ルのヒートポンプ内の冷媒を凝縮液化させる。液化した
該冷媒はヒートパイプ内を自然落下して下端の連結管側
に溜まり,輻射パネルの集熱で再び蒸発するサイクルを
繰り返す。この蒸発,液化のサイクルにより輻射パネル
は冷却され,室内を輻射冷房する。また,室外熱交換器
で凝縮液化した冷媒は第1の膨張弁側にも流れ,輻射パ
ネルの下端の連結管内を通過して室内熱交換器に入り,
室内ファンの強制対流による冷房を行う。冷媒が前記下
端の連結管内を通過するときには,輻射パネル内冷媒は
下端の連結管内では液化状態にあり,両冷媒間での熱交
換は殆ど行われない。輻射パネルの上端の連結管を通過
する間に熱交換して蒸発した冷媒と,室内熱交換器で室
内空気と熱交換して蒸発した冷媒とは圧縮機に吸入さ
れ,上記の冷凍サイクルを繰り返して対流冷房と輻射冷
房とが行われる。一方,暖房運転時においては,圧縮機
から吐出された高温高圧の冷媒は室内熱交換器で室内に
放熱すると共に,輻射パネルの下端の連結管内を通る間
に輻射パネルのヒートパイプ内の冷媒を加熱して蒸発さ
せる。蒸発した冷媒はヒートパイプを上昇する間に凝縮
し,輻射パネルを暖め輻射暖房が行われ,凝縮した冷媒
は自然落下して下端の連結管に戻り,再び蒸発するサイ
クルを繰り返す。輻射パネルで凝縮した冷媒は,第1の
膨張弁で気液二相状態になって室外熱交換器に至り,外
気と熱交換して蒸発気化し低温低圧の蒸気となって圧縮
機に吸入され,上記サイクルを繰り返して対流暖房と輻
射暖房とが行われる。
According to the present invention, while performing air conditioning by forced convection of the indoor heat exchanger in the refrigeration cycle, a heat pipe in the radiation panel is operated by using a part of the refrigerant flowing in the refrigeration cycle to radiate the heat. Air conditioning is performed by. First, during the cooling operation, the expansion coefficient by the second expansion valve is set lower than the expansion coefficient by the first expansion valve, and a part of the refrigerant condensed and liquefied by the outdoor heat exchanger is branched to generate the second expansion valve. When passing through the expanded portion into the connecting pipe at the upper end of the radiant panel, the radiant panel absorbs heat in the room to evaporate and condense the refrigerant in the heat pump of the radiant panel moving to the upper connect pipe side. Liquefy. The liquefied refrigerant naturally falls in the heat pipe, accumulates at the lower end of the connecting pipe, and repeats the cycle of being evaporated again by the heat collection of the radiation panel. The radiation panel is cooled by this cycle of evaporation and liquefaction, and the room is radiantly cooled. The refrigerant condensed and liquefied in the outdoor heat exchanger also flows to the first expansion valve side, passes through the inside of the connecting pipe at the lower end of the radiation panel, and enters the indoor heat exchanger.
Cooling is performed by forced convection of the indoor fan. When the refrigerant passes through the connecting pipe at the lower end, the refrigerant in the radiation panel is in a liquefied state in the connecting pipe at the lower end, and heat exchange between the two refrigerants is hardly performed. The refrigerant that has undergone heat exchange and vaporization while passing through the connecting pipe at the upper end of the radiation panel and the refrigerant that has undergone heat exchange with indoor air in the indoor heat exchanger are sucked into the compressor, and the above refrigeration cycle is repeated. And convection cooling and radiation cooling are performed. On the other hand, during the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor radiates heat to the room by the indoor heat exchanger, and at the same time, the refrigerant in the heat pipe of the radiation panel is discharged while passing through the connecting pipe at the lower end of the radiation panel. Heat to evaporate. The evaporated refrigerant condenses while rising the heat pipe, warms the radiant panel and performs radiant heating, and the condensed refrigerant spontaneously falls back to the lower connecting pipe and repeats the cycle of evaporating again. The refrigerant condensed in the radiation panel enters the outdoor heat exchanger in a gas-liquid two-phase state by the first expansion valve, exchanges heat with the outside air to evaporate into low-temperature low-pressure vapor, and is sucked into the compressor. By repeating the above cycle, convection heating and radiant heating are performed.

【0007】[0007]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。まず,本発明の
第1実施例について説明する。ここに,図1は本発明の
第1実施例空気調和機の概略構成図,図2は輻射パネル
の構成を示す斜視図,図3は制御手順を示すフローチャ
ートである。図1において,圧縮機1,四方弁10,室
外熱交換器2,第1の膨張弁7,室内熱交換器3が接続
されて冷凍サイクルが構成されている。この冷凍サイク
ルの前記第1の膨張弁7と室内熱交換器3との間に,輻
射パネル4の下ヘッダー管22内を貫通する加熱用冷媒
管24が配されている。さらに,前記室外熱交換器2と
第1の膨張弁7との間から分岐した配管が,第2の膨張
弁5,輻射パネル4の上ヘッダー管21内を貫通する冷
却用冷媒管23,第3の膨張弁6を経て,四方弁10か
ら圧縮機1に接続されている。同図において,実線矢印
は冷房運転時の冷媒の流れを示し,点線矢印は暖房運転
時の冷媒の流れを示しており,この流れ方向は四方弁1
0の切替えによりなされる。上記冷凍サイクルにおける
要所に温度センサが配され,それぞれ制御器11に入力
される。27は室外熱交換器冷媒入口温度センサ,26
は室外熱交換器冷媒出口温度センサ,16は室内熱交換
器冷媒入口温度センサ,17は室内熱交換器冷媒出口温
度センサ,14は輻射パネル入口温度センサ,15は輻
射パネル出口温度センサ,13は室内露点温度センサ,
12は輻射パネル表面温度センサである。また,8は室
外ファン,9は室内ファンである。図2は前記輻射パネ
ル4の構造を示し,輻射パネル4を裏面から見た斜視図
である。同図に示されるように,表面パネル18の裏部
に複数のヒートパイプ19が垂直方向に接合板20によ
り取り付けられており,各ヒートパイプ19の上端には
上ヘッダー管21,下端には下ヘッダー管22が接続さ
れ,各ヒートパイプ19が上端,下端で連結される。さ
らに,上ヘッダー管21には冷却用冷媒管23,下ヘッ
ダー管22には加熱用冷媒管24が貫通装着され,各ヒ
ートパイプ19及び上ヘッダー管21,下ヘッダー管2
2は気密接合され,フロン等のヒートパイプ冷媒25が
封入される。冷却用冷媒管23及び加熱用冷媒管24は
前記の如く冷凍サイクルの所定位置に接続され,冷媒が
流通する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. First, a first embodiment of the present invention will be described. 1 is a schematic configuration diagram of the air conditioner of the first embodiment of the present invention, FIG. 2 is a perspective view showing the configuration of a radiation panel, and FIG. 3 is a flowchart showing a control procedure. In FIG. 1, a compressor 1, a four-way valve 10, an outdoor heat exchanger 2, a first expansion valve 7, and an indoor heat exchanger 3 are connected to form a refrigeration cycle. Between the first expansion valve 7 and the indoor heat exchanger 3 of this refrigeration cycle, a heating refrigerant pipe 24 penetrating the lower header pipe 22 of the radiation panel 4 is arranged. Further, a pipe branched from between the outdoor heat exchanger 2 and the first expansion valve 7 passes through the second expansion valve 5, the upper header pipe 21 of the radiation panel 4, and the cooling refrigerant pipe 23, The four-way valve 10 is connected to the compressor 1 via the expansion valve 6 of No. 3. In the figure, solid arrows indicate the flow of the refrigerant during the cooling operation, and dotted arrows indicate the flow of the refrigerant during the heating operation.
It is done by switching 0. Temperature sensors are arranged at important points in the refrigeration cycle and are input to the controller 11, respectively. 27 is an outdoor heat exchanger refrigerant inlet temperature sensor, 26
Is an outdoor heat exchanger refrigerant outlet temperature sensor, 16 is an indoor heat exchanger refrigerant inlet temperature sensor, 17 is an indoor heat exchanger refrigerant outlet temperature sensor, 14 is a radiant panel inlet temperature sensor, 15 is a radiant panel outlet temperature sensor, and 13 is Indoor dew point temperature sensor,
Reference numeral 12 is a radiation panel surface temperature sensor. Further, 8 is an outdoor fan, and 9 is an indoor fan. FIG. 2 shows the structure of the radiation panel 4, and is a perspective view of the radiation panel 4 seen from the back side. As shown in the figure, a plurality of heat pipes 19 are vertically attached to the back portion of the front panel 18 by a joining plate 20, and each heat pipe 19 has an upper header pipe 21 at the upper end and a lower end at the lower end. The header pipe 22 is connected, and each heat pipe 19 is connected at the upper end and the lower end. Further, a cooling refrigerant pipe 23 is penetratingly mounted on the upper header pipe 21, and a heating refrigerant pipe 24 is penetratingly mounted on the lower header pipe 22, and each heat pipe 19 and the upper header pipe 21 and the lower header pipe 2 are attached.
2 is airtightly joined, and a heat pipe refrigerant 25 such as CFC is enclosed. The cooling refrigerant pipe 23 and the heating refrigerant pipe 24 are connected to the predetermined positions of the refrigeration cycle as described above, and the refrigerant flows therein.

【0008】上記構成になる空気調和機の動作を以下に
説明する。まず,室内熱交換器3による冷房・除湿と,
輻射パネル4による冷房を同時に行う対流・輻射冷房時
について説明する。このとき第2膨張弁7の膨張率が第
1膨張弁5の膨張率より低くなるように制御されてい
る。圧縮機1から吐出された高温高圧の冷媒は,四方弁
10から室外熱交換器2に入り,室外ファン8によって
駆動された外気と熱交換して放熱し凝縮液化する。室外
熱交換器2を出た冷媒は,第1の膨張弁7と第2の膨張
弁5とに分岐して輻射パネル4内に流入するが,それぞ
れの流入量は後述する各膨張弁5,6,7の制御によっ
て決定される。第2の膨張弁5に流入した冷媒は,減圧
されて気液二相状態となって輻射パネル4の冷却用冷媒
管23を通過する。輻射パネル4においては,表面パネ
ル18の輻射及び自然対流により室内から集熱して,ヒ
ートパイプ19内のヒートパイプ冷媒25が蒸発し,上
ヘッダー管21側に移動しているので,上ヘッダー管2
1内の冷却用冷媒管23を通過する冷媒により蒸発した
ヒートパイプ冷媒25は凝縮され,自然落下して下ヘッ
ダー管22側に溜まり,再び表面パネル18の集熱によ
って蒸発するサイクルを繰り返す。この蒸発,凝縮のサ
イクルにより輻射パネル4は冷却され,輻射冷房を行
う。冷却用冷媒管23で蒸発した冷媒は,第3の膨張弁
6で減圧され四方弁10を通って圧縮機1に吸入され
る。
The operation of the air conditioner having the above structure will be described below. First, cooling and dehumidification by the indoor heat exchanger 3,
A convection / radiant cooling operation in which cooling is performed by the radiation panel 4 at the same time will be described. At this time, the expansion rate of the second expansion valve 7 is controlled to be lower than the expansion rate of the first expansion valve 5. The high-temperature and high-pressure refrigerant discharged from the compressor 1 enters the outdoor heat exchanger 2 through the four-way valve 10, exchanges heat with the outside air driven by the outdoor fan 8, radiates heat, and is condensed and liquefied. The refrigerant discharged from the outdoor heat exchanger 2 branches into the first expansion valve 7 and the second expansion valve 5 and flows into the radiant panel 4. It is determined by the control of 6, 7. The refrigerant that has flowed into the second expansion valve 5 is decompressed into a gas-liquid two-phase state and passes through the cooling refrigerant pipe 23 of the radiation panel 4. In the radiation panel 4, heat is collected from the room by radiation from the front panel 18 and natural convection, and the heat pipe refrigerant 25 in the heat pipe 19 is evaporated and moved to the upper header pipe 21 side.
The heat pipe refrigerant 25 evaporated by the refrigerant passing through the cooling refrigerant pipe 23 in 1 is condensed, spontaneously falls and collects on the lower header pipe 22 side, and the cycle of evaporating again by the heat collection of the surface panel 18 is repeated. The radiation panel 4 is cooled by this cycle of evaporation and condensation to perform radiation cooling. The refrigerant evaporated in the cooling refrigerant pipe 23 is decompressed by the third expansion valve 6 and is sucked into the compressor 1 through the four-way valve 10.

【0009】一方,第1の膨張弁7に流入した冷媒は,
減圧されて気液二相状態となって輻射パネル4の加熱用
冷媒管24を通過する。加熱用冷媒管24が貫通する下
ヘッダー管22においては,ヒートパイプ冷媒25が液
状態で溜まっているため,この間での熱交換は殆ど行わ
れず,冷媒は室内熱交換器3にそのまま流入し,室内フ
ァン9によって駆動された室内空気と熱交換して蒸発気
化し,低温低圧の蒸気となって四方弁10を通り圧縮機
1に吸入される。このとき,室内空気は強制対流により
冷却され冷房・除湿が行われる。上記冷房運転時におけ
る各膨張弁5,6,7の制御手順を,図3に示すフロー
チャートを用いて説明する。同図におけるS1〜S19
は制御手順を示すステップである。各膨張弁5,6,7
の駆動はステッピングモータで行われ,制御器11によ
り制御される。最初に各膨張弁5,6,7は初期化のた
め全閉にした後(S1),各膨張弁5,6,7を冷房運
転に適した初期弁開度にする(S2)。次に膨張弁制御
に必要な要所の温度データを測定する(S3)。測定デ
ータは,室内熱交換器冷媒入口温度Thexi,室内熱交換
器冷媒出口温度Thexo,輻射パネル冷媒入口温度Tpi,
輻射パネル冷媒出口温度Tpo,輻射パネル表面温度Tp
s,室内空気露点温度Tadの6点である。次に輻射パネ
ル4による輻射冷房の可否を判断する。結露を防ぐため
には,輻射パネル表面温度Tpsが室内空気露点温度Tad
より高いことが必要であるが,室内の温湿度分布,測定
精度を考慮して,S4において輻射パネル表面温度Tps
と室内空気露点温度Tadの温度差が2℃より高い場合
は,輻射パネル4による輻射冷房を行い,温度差が2℃
以下の場合は,S6に示すように第2の膨張弁5及び第
3の膨張弁6を全閉とし,室内熱交換器3によって除湿
運転が進み,前記S4の条件が満たされるので輻射冷房
は行われない。輻射冷房を開始する場合には,第2の膨
張弁5及び第3の膨張弁6の状態を調べた後(S5),
第2の膨張弁5,第3の膨張弁6を初期開度とする(S
8)。
On the other hand, the refrigerant flowing into the first expansion valve 7 is
It is decompressed to become a gas-liquid two-phase state and passes through the heating refrigerant pipe 24 of the radiation panel 4. In the lower header pipe 22 through which the heating refrigerant pipe 24 penetrates, since the heat pipe refrigerant 25 is accumulated in a liquid state, heat exchange is hardly performed during this time, and the refrigerant flows into the indoor heat exchanger 3 as it is. The heat is exchanged with the indoor air driven by the indoor fan 9 to evaporate and vaporize into low-temperature low-pressure vapor, which is sucked into the compressor 1 through the four-way valve 10. At this time, the indoor air is cooled by forced convection to cool and dehumidify. The control procedure of the expansion valves 5, 6, 7 during the cooling operation will be described with reference to the flowchart shown in FIG. S1 to S19 in FIG.
Is a step showing a control procedure. Expansion valves 5, 6, 7
Is driven by a stepping motor and controlled by the controller 11. First, each expansion valve 5, 6, 7 is fully closed for initialization (S1), and then each expansion valve 5, 6, 7 is set to an initial valve opening degree suitable for cooling operation (S2). Next, temperature data of the essential points required for expansion valve control are measured (S3). The measured data are the indoor heat exchanger refrigerant inlet temperature Thexi, the indoor heat exchanger refrigerant outlet temperature Thexo, the radiation panel refrigerant inlet temperature Tpi,
Radiant panel refrigerant outlet temperature Tpo, Radiant panel surface temperature Tp
s and room air dew point temperature Tad are 6 points. Next, it is determined whether or not the radiation cooling by the radiation panel 4 is possible. In order to prevent dew condensation, the radiation panel surface temperature Tps is set to the indoor air dew point temperature Tad.
Although it needs to be higher, the radiation panel surface temperature Tps in S4 in consideration of the temperature and humidity distribution in the room and the measurement accuracy.
If the temperature difference between the indoor air dew point temperature Tad and the room air dew point temperature is higher than 2 ° C, the radiation panel 4 is used to perform radiant cooling, and
In the following cases, as shown in S6, the second expansion valve 5 and the third expansion valve 6 are fully closed, the dehumidifying operation proceeds by the indoor heat exchanger 3, and the condition of S4 is satisfied, so that the radiation cooling is performed. Not done When the radiation cooling is started, after checking the states of the second expansion valve 5 and the third expansion valve 6 (S5),
The second expansion valve 5 and the third expansion valve 6 are set to the initial opening (S
8).

【0010】次に,輻射パネル冷媒出口温度Tpo,輻射
パネル冷媒入口温度Tpiの温度差が5℃より大きい場合
(S7),第2の膨張弁5の弁開度を大きくし(S
9),輻射パネル冷媒出口温度Tpo,輻射パネル冷媒入
口温度Tpiの温度差が2℃より小さい場合(S10),
第2の膨張弁5の弁開度を小さくする(S11)。次
に,第3の膨張弁6の制御を行う。結露を防ぐために第
3の膨張弁6は,輻射パネル表面温度Tps,室内空気露
点温度Tadによって制御される。制御条件は,室内の温
湿度分布,測定精度を考慮し,輻射パネル表面温度Tps
と室内空気露点温度Tadの温度差が5℃より高いとき
(S12),第3の膨張弁6の弁開度を大きくし(S1
3),温度差が3℃より低いときには(S14),第3
の膨張弁6の弁開度を小さくする(S15)。次いで,
第1の膨張弁7の制御を行う。室内熱交換器冷媒出口温
度Thexoと室内熱交換器冷媒入口温度Thexiの温度差が
5℃より高いときは(S16),第1の膨張弁7の弁開
度を大きくし(S18),温度差が3℃より低くなると
(S17),第1の膨張弁7の弁開度を小さくする(S
19)。以上のように,第1の膨張弁7は室内熱交換器
3の過熱度(室内熱交換器冷媒出口温度−室内熱交換器
冷媒入口温度)によって制御するが,第2の膨張弁5は
輻射パネル4の冷媒出口の過熱度によって,輻射パネル
4の冷却用冷媒管23を流れる冷媒の流量を制御してい
る。また,第3の膨張弁6は輻射パネル4の冷却用冷媒
管23を流れる冷媒の温度を制御している。
Next, when the temperature difference between the radiant panel refrigerant outlet temperature Tpo and the radiant panel refrigerant inlet temperature Tpi is larger than 5 ° C. (S7), the opening degree of the second expansion valve 5 is increased (S).
9), if the temperature difference between the radiation panel refrigerant outlet temperature Tpo and the radiation panel refrigerant inlet temperature Tpi is less than 2 ° C. (S10),
The valve opening degree of the second expansion valve 5 is reduced (S11). Next, the third expansion valve 6 is controlled. In order to prevent dew condensation, the third expansion valve 6 is controlled by the radiation panel surface temperature Tps and the room air dew point temperature Tad. The control conditions are the radiation panel surface temperature Tps considering the temperature and humidity distribution in the room and the measurement accuracy.
And the indoor air dew point temperature Tad is higher than 5 ° C. (S12), the valve opening degree of the third expansion valve 6 is increased (S1).
3), when the temperature difference is lower than 3 ° C (S14), the third
The valve opening degree of the expansion valve 6 is reduced (S15). Then,
The first expansion valve 7 is controlled. When the temperature difference between the indoor heat exchanger refrigerant outlet temperature Thexo and the indoor heat exchanger refrigerant inlet temperature Thexi is higher than 5 ° C (S16), the valve opening degree of the first expansion valve 7 is increased (S18), and the temperature difference is increased. Is lower than 3 ° C. (S17), the valve opening degree of the first expansion valve 7 is reduced (S17).
19). As described above, the first expansion valve 7 is controlled by the degree of superheat of the indoor heat exchanger 3 (indoor heat exchanger refrigerant outlet temperature-indoor heat exchanger refrigerant inlet temperature), while the second expansion valve 5 radiates. The superheat degree of the refrigerant outlet of the panel 4 controls the flow rate of the refrigerant flowing through the cooling refrigerant pipe 23 of the radiation panel 4. Further, the third expansion valve 6 controls the temperature of the refrigerant flowing through the cooling refrigerant pipe 23 of the radiation panel 4.

【0011】次に,暖房運転時の動作について説明す
る。暖房運転時に冷媒の流れは,図1に点線の矢印で示
される。圧縮機1から吐出された高温高圧の冷媒は,四
方弁10から室内熱交換器3に入り,室内ファン9によ
って駆動された室内空気と熱交換して放熱し,対流暖房
が行われる。室内熱交換器3を出た冷媒は,輻射パネル
4の加熱用冷媒管24を通過するときに,下ヘッダー管
22に溜まっているヒートパイプ冷媒25を加熱し蒸発
させる。蒸発したヒートパイプ冷媒25は,ヒートパイ
プ19内を上昇する間に表面パネル18から放熱して凝
縮し,下ヘッダー管22に自然落下して戻り,再び蒸発
することを繰り返す。このとき表面パネル18からの放
熱により輻射暖房が行われる。室内熱交換器3及び輻射
パネル4で凝縮した冷媒は,第1の膨張弁7で低圧の気
液二相状態となって室外熱交換器2に入り,室外ファン
8によって駆動された外気と熱交換して蒸発気化し,低
温低圧の蒸気となって四方弁10を通って圧縮機1に吸
入される。暖房運転時の冷凍サイクルの制御は,室外熱
交換器冷媒出口温度センサ26により室外熱交換器2の
冷媒蒸発温度を検知し,室外熱交換器冷媒入口温度セン
サ27により冷媒出口温度を検知して冷媒過熱度を求
め,第1の膨張弁7を制御して室外熱交換器2から流出
する冷媒の過熱度を調節する。次いで,本発明の第2実
施例について説明する。ここに,図4は実施例空気調和
機の概略構成図,図5は運転状態を示す圧力−エンタル
ピ線図,図6は制御手順を示すフローチャートである。
図4において,圧縮機51,室外熱交換器52,開閉弁
67,第1の膨張弁57,室内熱交換器53が順次連結
された冷凍サイクルを構成すると共に,前記開閉弁67
を迂回して第2の膨張弁56,輻射パネル54,気液分
離器55が接続され,気液分離器55の気層部55a
第3の膨張弁を介して圧縮機51に接続されている。気
液分離器55には液面センサ62が配され,その検出値
は制御器61に入力される。
Next, the operation during the heating operation will be described. The flow of the refrigerant during the heating operation is shown by a dotted arrow in FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 1 enters the indoor heat exchanger 3 through the four-way valve 10, exchanges heat with the indoor air driven by the indoor fan 9 to radiate heat, and convection heating is performed. When the refrigerant exiting the indoor heat exchanger 3 passes through the heating refrigerant pipe 24 of the radiant panel 4, it heats and evaporates the heat pipe refrigerant 25 accumulated in the lower header pipe 22. The evaporated heat pipe refrigerant 25 radiates heat from the front panel 18 and condenses while rising in the heat pipe 19, spontaneously falls back to the lower header pipe 22, returns, and evaporates again. At this time, radiant heating is performed by heat radiation from the front panel 18. The refrigerant condensed in the indoor heat exchanger 3 and the radiant panel 4 enters the outdoor heat exchanger 2 in a low-pressure gas-liquid two-phase state by the first expansion valve 7 and is heated by the outdoor fan 8 and the outside air. It is exchanged and vaporized to become low-temperature and low-pressure vapor, which is sucked into the compressor 1 through the four-way valve 10. In the control of the refrigeration cycle during the heating operation, the outdoor heat exchanger refrigerant outlet temperature sensor 26 detects the refrigerant evaporation temperature of the outdoor heat exchanger 2, and the outdoor heat exchanger refrigerant inlet temperature sensor 27 detects the refrigerant outlet temperature. The degree of superheat of the refrigerant is obtained, and the first expansion valve 7 is controlled to adjust the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger 2. Next, a second embodiment of the present invention will be described. Here, FIG. 4 is a schematic configuration diagram of the air conditioner of the embodiment, FIG. 5 is a pressure-enthalpy diagram showing an operating state, and FIG. 6 is a flowchart showing a control procedure.
In FIG. 4, a compressor 51, an outdoor heat exchanger 52, an opening / closing valve 67, a first expansion valve 57, and an indoor heat exchanger 53 constitute a refrigeration cycle, and the opening / closing valve 67 is formed.
The second expansion valve 56, the radiant panel 54, and the gas-liquid separator 55 are connected to bypass the air-conditioner, and the gas layer 55 a of the gas-liquid separator 55 is connected to the compressor 51 via the third expansion valve. ing. A liquid level sensor 62 is arranged in the gas-liquid separator 55, and the detected value is input to the controller 61.

【0012】また,各要所には温度センサが配置され,
それぞれの検出温度は制御器61に入力される。63は
輻射パネル表面温度センサ,64は室内露点温度セン
サ,65は室内熱交換器冷媒入口温度センサ,66は室
内熱交換器冷媒出口温度センサである。上記構成におけ
る室内熱交換器53による対流冷房・除湿及び輻射パネ
ル54による輻射冷房を同時に行う場合について説明す
る。まず,開閉弁67は閉じた状態にする。圧縮機51
から吐出された高温高圧の冷媒は室外熱交換器52に入
り,室外ファン59によって駆動される外気と熱交換し
て放熱し,凝縮液化したのち第2の膨張弁56に入る。
第2の膨張弁56で減圧され気液二相状態となった冷媒
は,輻射パネル54に流入し,輻射パネル54の表面で
輻射及び自然対流により室内から集熱し,冷媒の乾き度
(冷媒蒸気の質量/蒸気と液を合計した冷媒質量)が増
加する。輻射パネル54から出た気液二相状態の冷媒は
気液分離器55に流入し,冷媒は気層部55a と液層部
55b とに分離される。気液分離器55の液層部55b
から流出する冷媒液は,第1の膨張弁57で減圧され,
気液二層状態となって室内熱交換器53に入り,室内フ
ァン60によって駆動される室内空気と熱交換して蒸発
気化し,低温低圧の蒸気となって圧縮機51に吸入され
る。一方,気液分離器55の気層部55a から流出する
冷媒蒸気は第3の膨張弁58により減圧され,圧縮機5
1に吸入される。
A temperature sensor is arranged at each important point,
Each detected temperature is input to the controller 61. 63 is a radiation panel surface temperature sensor, 64 is an indoor dew point temperature sensor, 65 is an indoor heat exchanger refrigerant inlet temperature sensor, and 66 is an indoor heat exchanger refrigerant outlet temperature sensor. A case where convection cooling / dehumidification by the indoor heat exchanger 53 and radiant cooling by the radiant panel 54 are simultaneously performed in the above configuration will be described. First, the on-off valve 67 is closed. Compressor 51
The high-temperature and high-pressure refrigerant discharged from the outside enters the outdoor heat exchanger 52, exchanges heat with the outside air driven by the outdoor fan 59 to radiate heat, and is condensed and liquefied, and then enters the second expansion valve 56.
The refrigerant that has been decompressed by the second expansion valve 56 and has become a gas-liquid two-phase state flows into the radiation panel 54 and collects heat from the room by radiation and natural convection on the surface of the radiation panel 54, and the dryness of the refrigerant (refrigerant vapor). Mass / refrigerant mass that is the sum of vapor and liquid) increases. Gas-liquid two-phase refrigerant exiting the radiant panel 54 flows into the gas-liquid separator 55, the refrigerant is separated into a Kiso portion 55 a and the liquid layer portion 55 b. Liquid layer portion 55 b of the gas-liquid separator 55
The refrigerant liquid flowing out from the first expansion valve 57 is decompressed,
The gas-liquid two-layer state enters the indoor heat exchanger 53, heat-exchanges with the indoor air driven by the indoor fan 60 to evaporate, and becomes low-temperature and low-pressure vapor, which is sucked into the compressor 51. On the other hand, the refrigerant vapor flowing out from the gas layer 55 a of the gas-liquid separator 55 is decompressed by the third expansion valve 58, and the compressor 5
Inhaled to 1.

【0013】上記冷凍サイクルにより,輻射パネル54
で輻射冷房がなされ,室内熱交換器53で対流冷房及び
除湿が行われる。このときの運転状態を圧力−エンタル
ピ線図に示すと,図5のようになる。行程A−Bは圧縮
機51の圧縮過程,行程B−Cは室外熱交換器52の凝
縮過程,行程C−Dは第2の膨張弁56の減圧過程,行
程D−Eは輻射パネル54の蒸発過程,行程E−Fは気
液分離器55での液への分離,行程E−Gは気液分離器
55での気体への分離,行程F−Hは第1の膨張弁57
の減圧過程,行程H−Iは室内熱交換器53の蒸発過
程,行程G−Jは第3の膨張弁58の減圧過程である。
輻射パネル54の表面温度が室内露点温度より低くなる
恐れがある場合,室内熱交換器53のみで冷房・除湿を
行う。このときには,開閉弁67を開き,第2の膨張弁
56及び第3の膨張弁58は全閉とする。従って,室外
熱交換器52から出た冷媒は,開閉弁67から第1の膨
張弁57に入り,減圧されて低温になった後,室内熱交
換器53で蒸発し,対流冷房が行われる。次に制御手順
を図6のフローチャートを用いて説明する。同図におけ
るS1〜S19は制御手順を示すステップである。ま
ず,最初に各膨張弁56,57,58を初期化するため
全閉にし,開閉弁67を閉じる(S1)。次に各膨張弁
56,57,58を各々に適した初期弁開度にし(S
2),膨張弁制御に必要な各センサのデータを測定する
(S3)。測定データは,室内熱交換器冷媒入口温度T
hexi,室内熱交換器冷媒出口温度Thexo,輻射パネル表
面温度Tps,室内空気露点温度Tad,気液分離器液面高
さHslの5点である。
By the above refrigeration cycle, the radiation panel 54
The radiant cooling is carried out, and the indoor heat exchanger 53 performs convective cooling and dehumidification. The operating state at this time is shown in the pressure-enthalpy diagram as shown in FIG. Steps A-B are the compression process of the compressor 51, steps B-C are the condensation process of the outdoor heat exchanger 52, steps C-D are the decompression process of the second expansion valve 56, and steps D-E are the radiation panel 54. Evaporation process, stroke E-F is separated into liquid in the gas-liquid separator 55, stroke E-G is separated into gas in the vapor-liquid separator 55, stroke F-H is the first expansion valve 57.
The decompression process, process H-I, is the evaporation process of the indoor heat exchanger 53, and process G-J is the decompression process of the third expansion valve 58.
When the surface temperature of the radiation panel 54 may be lower than the indoor dew point temperature, the indoor heat exchanger 53 alone is used for cooling and dehumidifying. At this time, the opening / closing valve 67 is opened, and the second expansion valve 56 and the third expansion valve 58 are fully closed. Therefore, the refrigerant discharged from the outdoor heat exchanger 52 enters the first expansion valve 57 from the opening / closing valve 67, is decompressed to a low temperature, and then is evaporated in the indoor heat exchanger 53 to perform convection cooling. Next, the control procedure will be described with reference to the flowchart of FIG. S1 to S19 in the figure are steps showing a control procedure. First, the expansion valves 56, 57 and 58 are fully closed to initialize them, and the on-off valve 67 is closed (S1). Next, each expansion valve 56, 57, 58 is set to an initial valve opening suitable for each (S
2) The data of each sensor required for expansion valve control is measured (S3). The measurement data is the indoor heat exchanger refrigerant inlet temperature T
hexi, indoor heat exchanger refrigerant outlet temperature Thexo, radiation panel surface temperature Tps, indoor air dew point temperature Tad, and gas-liquid separator liquid level height Hsl.

【0014】次に,輻射パネル54による冷房運転の可
否を判断する。結露を防ぐためには,輻射パネル表面温
度Tpsが室内空気露点温度Tadより高いことが必要であ
るが,室内の温湿度分布,測定精度を考慮し,S4に示
すように輻射パネル表面温度Tpsと室内空気露点温度T
adとの温度差が2℃より高い場合は,輻射パネル54に
よる輻射冷房を実施し,前記温度差が2℃以下の場合
は,S6に示すように第2の膨張弁56,第3の膨張弁
58を全閉とし,開閉弁67を開として,室内熱交換器
53によって除湿運転が進み,前記S4の条件が満たさ
れるまで輻射冷房は行わない。輻射冷房を開始する場合
は,S5に示すように第2の膨張弁56,第3の膨張弁
58,開閉弁67の状態を調べた後,S8に示すように
第2の膨張弁56及び第3の膨張弁58を初期開度,開
閉弁67を閉とする。次に,S7に示すように気液分離
器液面高さHslが下限値より小さい場合,S9のように
第2の膨張弁56の弁開度を大きくし,S10に示すよ
うに気液分離器液面高さHslが上限より大きい場合,S
11のように第2の膨張弁56の弁開度を小さくする。
次に,第3の膨張弁58の制御を行う。結露を防ぐため
に第3の膨張弁58は,輻射パネル表面温度Tps,室内
空気露点温度Tadによって制御される。制御条件は室内
の温湿度分布,測定精度を考慮し,S12に示すように
輻射パネル表面温度Tpsと室内空気露点温度Tadとの温
度差が5℃より高いとき,第3の膨張弁58の弁開度を
大きくし,S14に示すように前記温度差が3℃より低
いときは,S15のように第3の膨張弁58の弁開度を
小さくする。次に,第1の膨張弁57の制御を行う。S
16に示すように室内熱交換器冷媒出口温度Thexoと室
内熱交換器冷媒入口温度Thexiとの温度差が5℃より高
いときは,S17のように第1の膨張弁57の弁開度を
大きくし,S18に示すように前記温度差が3℃より低
くなると,第1の膨張弁57の弁開度を小さくする。以
上のように,第1の膨張弁57は室内熱交換器53の過
熱度(室内熱交換器冷媒出口温度−室内熱交換器冷媒入
口温度)によって制御するが,第2の膨張弁56は気液
分離器液面高さHslによって,輻射パネル54から流出
する冷媒の液相・気相の流量を制御している。また,第
3の膨張弁58は輻射パネル54の冷媒温度を制御して
いる。
Next, it is determined whether or not the cooling operation by the radiation panel 54 is possible. In order to prevent dew condensation, the radiation panel surface temperature Tps needs to be higher than the indoor air dew point temperature Tad, but considering the temperature and humidity distribution in the room and the measurement accuracy, the radiation panel surface temperature Tps and the indoor temperature are measured as shown in S4. Air dew point temperature T
When the temperature difference with ad is higher than 2 ° C, the radiation cooling is performed by the radiation panel 54, and when the temperature difference is 2 ° C or lower, the second expansion valve 56 and the third expansion valve 56 are expanded as shown in S6. The valve 58 is fully closed, the open / close valve 67 is opened, the dehumidifying operation is advanced by the indoor heat exchanger 53, and the radiant cooling is not performed until the condition of S4 is satisfied. When starting the radiation cooling, after checking the states of the second expansion valve 56, the third expansion valve 58, and the opening / closing valve 67 as shown in S5, as shown in S8, the second expansion valve 56 and the The expansion valve 58 of No. 3 is set to the initial opening and the opening / closing valve 67 is closed. Next, as shown in S7, when the liquid level height Hsl of the gas-liquid separator is smaller than the lower limit value, the valve opening of the second expansion valve 56 is increased as in S9, and the gas-liquid separation is performed as shown in S10. When the liquid level height Hsl is larger than the upper limit, S
As indicated by 11, the valve opening degree of the second expansion valve 56 is reduced.
Next, the third expansion valve 58 is controlled. In order to prevent dew condensation, the third expansion valve 58 is controlled by the radiation panel surface temperature Tps and the room air dew point temperature Tad. As for the control condition, when the temperature difference between the radiation panel surface temperature Tps and the room air dew point temperature Tad is higher than 5 ° C., as shown in S12, the temperature of the humidity distribution in the room and the measurement accuracy are taken into consideration. When the opening is increased and the temperature difference is lower than 3 ° C. as shown in S14, the valve opening of the third expansion valve 58 is decreased as in S15. Next, the control of the first expansion valve 57 is performed. S
As shown in 16, when the temperature difference between the indoor heat exchanger refrigerant outlet temperature Thexo and the indoor heat exchanger refrigerant inlet temperature Thexi is higher than 5 ° C, the valve opening degree of the first expansion valve 57 is increased as in S17. However, when the temperature difference becomes lower than 3 ° C. as shown in S18, the valve opening degree of the first expansion valve 57 is reduced. As described above, the first expansion valve 57 is controlled by the degree of superheat of the indoor heat exchanger 53 (indoor heat exchanger refrigerant outlet temperature-indoor heat exchanger refrigerant inlet temperature), but the second expansion valve 56 is The liquid separator liquid level height Hsl controls the flow rates of the liquid phase and the gas phase of the refrigerant flowing out from the radiation panel 54. The third expansion valve 58 controls the refrigerant temperature of the radiation panel 54.

【0015】[0015]

【発明の効果】以上の説明のように本発明によれば,冷
凍サイクルにおける輻射パネルを流れる冷媒の温度を変
化させ,室内空気の露点に応じた輻射パネルの表面温度
を得ることができ,従来例に示したブラインサイクルに
よる空気調和の課題であった省エネルギー性を大幅に改
善できる効果を奏する。また,本発明になるヒートパイ
プ式の輻射パネルによれば,輻射パネルを通過させる冷
媒管の長さを短くできるので,輻射パネルの面積を大き
くしても冷媒の封入量は少なく,さらに輻射パネルをユ
ニット化し,複数のユニットを接続することも可能とな
り,輻射による空気調和の効果を生かすことができる。
As described above, according to the present invention, the temperature of the refrigerant flowing through the radiation panel in the refrigeration cycle can be changed to obtain the surface temperature of the radiation panel according to the dew point of the room air. It is possible to significantly improve the energy saving, which was a problem of air conditioning by the brine cycle shown in the example. Further, according to the heat pipe type radiation panel of the present invention, since the length of the refrigerant pipe that passes through the radiation panel can be shortened, even if the area of the radiation panel is increased, the amount of refrigerant enclosed is small, and the radiation panel is further reduced. It becomes possible to connect multiple units by connecting the unit to the air conditioning effect due to radiation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る空気調和機の概略
構成図。
FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】 第1実施例に係る輻射パネルの構造を示す斜
視図。
FIG. 2 is a perspective view showing the structure of a radiation panel according to the first embodiment.

【図3】 第1実施例空気調和機の制御手順を示すフロ
ーチャート。
FIG. 3 is a flowchart showing a control procedure of the air conditioner of the first embodiment.

【図4】 本発明の第2実施例に係る空気調和機の概略
構成図。
FIG. 4 is a schematic configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図5】 第2実施例空気調和機の動作状態を示す圧力
−エンタルピ線図。
FIG. 5 is a pressure-enthalpy diagram showing the operating state of the air conditioner of the second embodiment.

【図6】 第2実施例空気調和機の制御手順を示すフロ
ーチャート。
FIG. 6 is a flowchart showing a control procedure of the air conditioner of the second embodiment.

【図7】 従来例空気調和機の概略構成図。FIG. 7 is a schematic configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1,51…圧縮機 2,52…室外熱
交換器 3,53…室内熱交換器 4,54…輻射パ
ネル 5,56…第2の膨張弁 6,58…第3の
膨張弁 7,57…第1の膨張弁 19…ヒートパイ
プ 21…上ヘッダー管(上端連結管) 22…下ヘッダー管(下端連結管) 23…冷却用冷媒管 24…加熱用冷媒管 25…ヒートパイプ冷媒
1, 51 ... Compressor 2, 52 ... Outdoor heat exchanger 3, 53 ... Indoor heat exchanger 4, 54 ... Radiation panel 5, 56 ... Second expansion valve 6, 58 ... Third expansion valve 7, 57 ... First expansion valve 19 ... Heat pipe 21 ... Upper header pipe (upper end connecting pipe) 22 ... Lower header pipe (lower end connecting pipe) 23 ... Cooling refrigerant pipe 24 ... Heating refrigerant pipe 25 ... Heat pipe refrigerant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 陽 大阪市阿倍野区長池町22番22号シヤープ株 式会社内 (72)発明者 小谷 正則 大阪市阿倍野区長池町22番22号シヤープ株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yo Yoshida, 22-22 Nagaikecho, Naganocho, Abeno-ku, Osaka City (72) Inventor Masanori Otani 22-22, Nagaikecho, Abeno-ku, Osaka City, Sharp Corporation

Claims (1)

【特許請求の範囲】 【請求項1】 圧縮機,室外熱交換器,第1の膨張弁,
室内熱交換器を順次連結した冷凍サイクルにおける前記
室内熱交換器による対流空気調和と,前記冷凍サイクル
を流れる冷媒の一部を用いる輻射パネルによる輻射空気
調和とを行う空気調和機において,上記輻射パネルに垂
直方向の複数のヒートパイプを配設し,該ヒートパイプ
の上端及び下端を連結管で接続すると共に,所定量の冷
媒を充填し,前記下端の連結管に加熱用冷媒管を貫通さ
せて前記第1の膨張弁と前記室内熱交換器との間に配管
し,前記上端の連結管に冷却用冷媒管を貫通させて,該
冷却用冷媒管の一方を第2の膨張弁を介して前記室外熱
交換器に接続し,該冷却用冷媒管の他方を第3の膨張弁
を介して前記圧縮機に接続してなることを特徴とする空
気調和機。
Claims: 1. A compressor, an outdoor heat exchanger, a first expansion valve,
An air conditioner that performs convective air conditioning by the indoor heat exchanger in a refrigeration cycle in which indoor heat exchangers are sequentially connected and radiant air conditioning by a radiant panel that uses a part of the refrigerant flowing in the refrigeration cycle, A plurality of heat pipes in the vertical direction are connected to each other, the upper and lower ends of the heat pipes are connected by connecting pipes, a predetermined amount of refrigerant is filled, and the heating pipes are inserted into the connecting pipes at the lower end. Piping is provided between the first expansion valve and the indoor heat exchanger, a cooling refrigerant pipe is passed through the connecting pipe at the upper end, and one of the cooling refrigerant pipes is passed through a second expansion valve. An air conditioner connected to the outdoor heat exchanger, wherein the other side of the cooling refrigerant pipe is connected to the compressor via a third expansion valve.
JP3193037A 1991-08-01 1991-08-01 Air conditioner Expired - Fee Related JP2599518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193037A JP2599518B2 (en) 1991-08-01 1991-08-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193037A JP2599518B2 (en) 1991-08-01 1991-08-01 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0533969A true JPH0533969A (en) 1993-02-09
JP2599518B2 JP2599518B2 (en) 1997-04-09

Family

ID=16301118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193037A Expired - Fee Related JP2599518B2 (en) 1991-08-01 1991-08-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP2599518B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854153B1 (en) * 2007-01-26 2008-08-26 엘지전자 주식회사 air conditioning system
KR100854154B1 (en) * 2007-01-26 2008-08-26 엘지전자 주식회사 air conditioning system
KR101250192B1 (en) * 2006-01-04 2013-04-05 엘지전자 주식회사 A heating structure used air-conditioner
JP2013245832A (en) * 2012-05-23 2013-12-09 Sharp Corp Radiant type air conditioner
WO2016039346A1 (en) * 2014-09-12 2016-03-17 シャープ株式会社 Radiation-type air conditioner
CN106839198A (en) * 2016-12-29 2017-06-13 湖北兴致天下信息技术有限公司 A kind of cooling double loop water-cooled heat-pipe air-cooling air conditioner integrated machine of computer room
CN107477741A (en) * 2017-09-12 2017-12-15 北京工业大学 A kind of compound annual cooling down system of convertible mode of operation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250192B1 (en) * 2006-01-04 2013-04-05 엘지전자 주식회사 A heating structure used air-conditioner
KR100854153B1 (en) * 2007-01-26 2008-08-26 엘지전자 주식회사 air conditioning system
KR100854154B1 (en) * 2007-01-26 2008-08-26 엘지전자 주식회사 air conditioning system
JP2013245832A (en) * 2012-05-23 2013-12-09 Sharp Corp Radiant type air conditioner
WO2016039346A1 (en) * 2014-09-12 2016-03-17 シャープ株式会社 Radiation-type air conditioner
JP2016057040A (en) * 2014-09-12 2016-04-21 シャープ株式会社 Radiation type air conditioner
CN106839198A (en) * 2016-12-29 2017-06-13 湖北兴致天下信息技术有限公司 A kind of cooling double loop water-cooled heat-pipe air-cooling air conditioner integrated machine of computer room
CN107477741A (en) * 2017-09-12 2017-12-15 北京工业大学 A kind of compound annual cooling down system of convertible mode of operation

Also Published As

Publication number Publication date
JP2599518B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
CN111102770A (en) Air conditioning system capable of continuously heating
CN103890495B (en) Refrigerating air conditioning device and humidity control device
KR20090082733A (en) Air conditioning system
JP2002081767A (en) Air conditioner
GB2545114A (en) Dehumidifying device
CN108800668A (en) A kind of the cooling heat exchange device and its control method of energy saving dehumidifying
JPH0533969A (en) Air conditioner
JP5542777B2 (en) Air conditioner
JP2006317012A (en) Air conditioner
JPH0533968A (en) Air conditioner
CN216203824U (en) Air conditioner
CN113432262B (en) Air conditioning system
CN112944618B (en) Air conditioner capacity estimation method and air conditioner
JP2003139436A (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
CN114165844A (en) Air conditioner
JP2686371B2 (en) Air conditioner
CN115234981B (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP3873794B2 (en) Air conditioner with humidification function
JPH02171562A (en) Freezing cycle device
KR200325841Y1 (en) Heat Pump Air Conditioner
KR100911789B1 (en) Air conditioner for dehumidification
JPH07180927A (en) Multi-chamber type cooling and heating device
KR100512146B1 (en) Air conditioner for dehumidification and control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees