JPH05339090A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH05339090A
JPH05339090A JP14949792A JP14949792A JPH05339090A JP H05339090 A JPH05339090 A JP H05339090A JP 14949792 A JP14949792 A JP 14949792A JP 14949792 A JP14949792 A JP 14949792A JP H05339090 A JPH05339090 A JP H05339090A
Authority
JP
Japan
Prior art keywords
sample
container
crystal
melted
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14949792A
Other languages
Japanese (ja)
Other versions
JP3144058B2 (en
Inventor
Minoru Kaneko
稔 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP04149497A priority Critical patent/JP3144058B2/en
Publication of JPH05339090A publication Critical patent/JPH05339090A/en
Application granted granted Critical
Publication of JP3144058B2 publication Critical patent/JP3144058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the ideal crystal by successively crystallizing a sample melted by uniform heating from its one end and surely completely the crystallization at another end. CONSTITUTION:A container 1 in which the polycrystalline sample 6 is encapsulated is heated from the circumference in the state of disposing a high radiation rate material 8 at its one end. The heating is stopped after this sample 6 is melted and this sample melt is cooled by a cooling gas 9 from another end of the container 1, by which the sample is successively crystallized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融試料を一方向固化さ
せて単結晶を得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for unidirectionally solidifying a molten sample to obtain a single crystal.

【0002】[0002]

【従来の技術】近年、ロケットなどを利用して無重力状
態を作り出して地上では得られない理想的な結晶を作る
という試みがなされている。この種の無重力実験の際に
は通常、ブリッジマン法と呼ばれる結晶成長法が採用さ
れる。
2. Description of the Related Art In recent years, attempts have been made to create an ideal crystal that cannot be obtained on the ground by creating a weightless state using a rocket or the like. A crystal growth method called Bridgman method is usually adopted in this kind of weightlessness experiment.

【0003】ブリッジマン法は本来、結晶化させようと
する試料を入れた容器を複数のヒ−タから成る適当な温
度勾配をもたせた炉内で動かすか、または容器を固定し
て炉を動かすことによって、容器の一方の端から結晶化
を開始させて他方の端の方へ結晶成長させていく方法で
ある。しかし、この種の実験では打上げ能力の小さい小
型ロケットが使用されため搭載できる実験装置の重量に
は厳しい制約があり、実験装置を簡略化せざるを得な
い。また、結晶成長に適した無重力状態が達成されるの
は約6分間程度でしかないため、その限られた短い時間
の間に試料の溶融開始から冷却・結晶化までの工程を全
て完了させなければならない。
The Bridgman method essentially involves moving a container containing a sample to be crystallized in a furnace having a suitable temperature gradient consisting of a plurality of heaters, or fixing the container and moving the furnace. In this way, crystallization is started from one end of the container and the crystal is grown toward the other end. However, since a small rocket with a small launch capability is used in this type of experiment, the weight of the experimental device that can be mounted is severely limited, and the experimental device must be simplified. In addition, the weightless state suitable for crystal growth is achieved for only about 6 minutes, so all the steps from the start of melting the sample to the cooling and crystallization must be completed within the limited short time. I have to.

【0004】そこで、試料の加熱は一個の均熱ヒ−タを
用いた一様な加熱とし、試料の溶融後ヒ−タを切って容
器の一方の端のみをヘリウムなどの冷却ガスで冷やすこ
とによって試料に温度勾配をもたせて冷却端側から結晶
を成長させていく方法が提案された。この方法によれ
ば、ヒ−タの温度を制御するための装置や試料容器と加
熱炉とを相対移動させるための駆動機構および相対移動
速度の制御装置を省略することができ、実験装置の大幅
な簡略化、軽量化が可能である。また、冷却ガスを用い
て溶融試料を強制的に冷却するので短時間で結晶成長を
完了させることができる。
Therefore, the sample is heated uniformly by using one soaking heater, and after the sample is melted, the heater is cut and only one end of the container is cooled with a cooling gas such as helium. Proposed a method of growing a crystal from the cooling end side by giving a temperature gradient to the sample. According to this method, a device for controlling the temperature of the heater, a drive mechanism for relatively moving the sample container and the heating furnace, and a control device for the relative moving speed can be omitted, and thus the experimental apparatus can be greatly improved. It can be simplified and lightened. Further, since the molten sample is forcibly cooled by using the cooling gas, the crystal growth can be completed in a short time.

【0005】[0005]

【発明が解決しようとする課題】ところが、均熱ヒ−タ
を用いた上述の方法では、ヒ−タを切ったのち容器の一
方の端のみを強制冷却することによって、溶融した試料
を一方の端から先に凝固点以下に冷却してそこから順次
凝固させていき、ある程度までは一方向に結晶を成長さ
せていくことができるが、その結晶成長の途中の時点で
溶融試料のもう一方の端も凝固点以下に冷えてしまうこ
とがある。そうなると両端からの結晶成長となるため、
最終的に得られる結晶の中間部に不純物層や欠陥が生じ
てしまうことになり、所望の大きさで理想的な結晶を得
ることができない。
However, in the above-mentioned method using the soaking heater, the molten sample is removed from the molten sample by forcibly cooling only one end of the container after cutting the heater. It is possible to grow the crystal in one direction up to a certain degree by cooling it below the freezing point first and then solidifying it sequentially from the end, but at the point during the crystal growth, the other end of the molten sample May cool below the freezing point. In that case, crystal growth from both ends,
Impurity layers and defects will occur in the intermediate portion of the finally obtained crystal, and an ideal crystal with a desired size cannot be obtained.

【0006】この発明は上記課題を解消すべく創案され
たものであり、その目的は一様な加熱によって溶融させ
た試料をその一方の端から順次結晶化させていって確実
にもう一方の端で結晶化を完了させることのできる結晶
成長法を提供することにある。
The present invention was devised in order to solve the above-mentioned problems, and its purpose is to successively crystallize a sample melted by uniform heating from one end thereof to ensure the other end. The purpose of the present invention is to provide a crystal growth method capable of completing crystallization.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明の結晶成長法においては、多結晶試料を封入
した容器をその一方の端に高輻射率材を配した状態で周
囲から加熱し、当該試料が溶融したのち加熱を止め、そ
の溶融した試料を当該容器のもう一方の端から冷却して
結晶化させていく。
In order to achieve the above object, in the crystal growth method of the present invention, a container enclosing a polycrystalline sample is heated from the surroundings with a high emissivity material arranged at one end thereof. Then, after the sample is melted, heating is stopped, and the melted sample is cooled from the other end of the container and crystallized.

【0008】[0008]

【作用】多結晶試料の傍らに高輻射率材を配しておけば
これらを同時に一様に加熱した場合でも一般に多結晶試
料よりも高輻射率材の方がかなり温度が高くなる。多結
晶試料よりも高輻射率材料の方が熱を吸収しやすいから
である。したがって、上記手段のように多結晶試料を封
入した容器をその一方の端に高輻射率材を配した状態で
周囲から加熱すれば、高輻射率材を配していない側より
もこれを配した側の温度を高くした状態で多結晶試料を
加熱することができる。そして試料が溶融したのち加熱
を止め、その溶融した試料を容器の高輻射率材を配して
いない方の端から冷却すれば、試料の両端間の温度勾配
を高くとることができるので、一方の端からもう一方の
端へ確実に一方向に結晶化が進行していく。
When a high emissivity material is arranged beside the polycrystalline sample, the high emissivity material generally has a considerably higher temperature than the polycrystalline sample even when they are heated uniformly at the same time. This is because the high emissivity material absorbs heat more easily than the polycrystalline sample. Therefore, if the container in which the polycrystalline sample is sealed as in the above means is heated from the surroundings with the high emissivity material being arranged at one end of the container, the container is placed more than the side without the high emissivity material. The polycrystalline sample can be heated with the temperature on the heating side increased. Then, after the sample is melted, the heating is stopped, and if the melted sample is cooled from the end of the container where the high emissivity material is not arranged, the temperature gradient between both ends of the sample can be made high. Crystallization surely proceeds in one direction from one end to the other end.

【0009】[0009]

【実施例】図1にこの発明の方法によって単結晶を製造
するための装置の概念図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of an apparatus for producing a single crystal by the method of the present invention.

【0010】同図において、1は試料容器である石英ア
ンプルであり、石英アンプル1の周囲にはコイル型の均
熱ヒ−タ2が設けられている。石英アンプル1は均熱ヒ
−タ2と同軸的に設けられた円筒状のガラス管3と、ガ
ラス管3の途中を閉塞しこの石英アンプル1の結晶成長
室の底を構成する隔壁4と、ガラス管3内に多結晶試料
6を入れた後にこれを密封するためのカップ状の内蓋5
とからなる。隔壁4並びに内蓋5の材質はガラス管3と
同質で、隔壁4は多結晶試料6を入れる前に、内蓋5は
多結晶試料6を入れた後にガラス管3に気密に溶接され
たものである。この例では、多結晶試料6と共に種子結
晶7が石英アンプル1内に封入されている。種子結晶7
は多結晶試料6と同じ構成元素の単結晶で、この装置に
よって単結晶を作成するに際し別途作成されたものであ
る。ただしこの場合、図のように多結晶試料6を内蓋5
側に、種子結晶7を隔壁4側に配置しておく必要があ
る。この装置では石英アンプル1内で溶融させた試料を
種子結晶7側から冷却して結晶を成長させていくことに
なるからである。そのためにガラス管3の隔壁4側端部
はヘリウムガスなどの冷却ガス9を導入するための冷却
ガス供給源(図示せず)に接続されている。また、内蓋
5の中には高輻射率材であるカ−ボン材8が詰め込まれ
ている。このカ−ボン材8としてはカ−ボン繊維を編ん
だもの又はカ−ボン棒が使用される。
In FIG. 1, reference numeral 1 denotes a quartz ampoule which is a sample container, and a coil-type soaking heater 2 is provided around the quartz ampoule 1. The quartz ampoule 1 has a cylindrical glass tube 3 provided coaxially with the heat equalizing heater 2, and a partition wall 4 which closes the glass tube 3 to form the bottom of the crystal growth chamber of the quartz ampoule 1. A cup-shaped inner lid 5 for sealing the polycrystalline sample 6 after putting it in the glass tube 3
Consists of. The material of the partition wall 4 and the inner lid 5 is the same as that of the glass tube 3, and the partition wall 4 is hermetically welded to the glass tube 3 after putting the polycrystalline sample 6 in the inner lid 5 before putting the polycrystalline sample 6 in it. Is. In this example, a seed crystal 7 together with a polycrystalline sample 6 is enclosed in a quartz ampoule 1. Seed crystal 7
Is a single crystal having the same constituent elements as the polycrystalline sample 6, and was separately prepared when the single crystal was prepared by this apparatus. However, in this case, the polycrystalline sample 6 is placed on the inner lid 5 as shown in the figure.
, It is necessary to arrange the seed crystal 7 on the partition 4 side. This is because in this apparatus, the sample melted in the quartz ampoule 1 is cooled from the seed crystal 7 side to grow the crystal. Therefore, the end of the glass tube 3 on the side of the partition wall 4 is connected to a cooling gas supply source (not shown) for introducing a cooling gas 9 such as helium gas. The inner lid 5 is filled with a carbon material 8 which is a high emissivity material. As the carbon material 8, a knitted carbon fiber or a carbon rod is used.

【0011】この装置をロケットに搭載して打ち上げる
ことによって無重力状態で結晶成長を行うことができ
る。ただし、通常この種の無重力実験に使用される小型
ロケットの場合、打ち上げから落下の間で結晶成長に適
した無重力状態(10-5G程度)になるのは高々6分間
程度である。その短時間の間に、試料の溶融開始から冷
却・結晶化までの工程を全て完了させなければならな
い。したがって、試料が完全に溶融するまでの所用時間
を差し引くと、冷却開始から結晶化完了にあてることの
できる時間は6分間のうちのさらに限られた時間とな
る。この装置は、このように極めて限られた時間内で、
溶融試料を隔壁4側から内蓋5側へ確実に一方向に凝固
させいって結晶化させることを可能とする。
By mounting this device on a rocket and launching it, crystals can be grown in a weightless state. However, in the case of a small rocket that is usually used for this kind of weightlessness experiment, the weightlessness suitable for crystal growth (about 10 -5 G) between launch and fall is about 6 minutes at most. In the short time, all the steps from the start of melting the sample to the cooling and crystallization must be completed. Therefore, when the time required until the sample is completely melted is subtracted, the time that can be devoted to the completion of crystallization from the start of cooling is a further limited time of 6 minutes. This device, in this very limited time,
It is possible to surely solidify the molten sample from the partition wall 4 side to the inner lid 5 side in one direction and crystallize it.

【0012】以下に、ゲルマニウムの単結晶を作成する
場合を例にとり説明する。
The case of forming a germanium single crystal will be described below as an example.

【0013】まず、ゲルマニウムの多結晶試料6と種子
結晶7とを石英アンプル1内に封入し、ロケットの打ち
上げ前から均熱ヒ−タ2に通電して試料を予め800℃
程度に加熱しておく。ヒ−タ加熱によって、内蓋5から
種子結晶7の多結晶試料6との境目部分にかけての領域
が主に加熱される。
First, a germanium polycrystal sample 6 and a seed crystal 7 were enclosed in a quartz ampoule 1, and the soaking heater 2 was energized before the rocket was launched to preheat the sample to 800 ° C.
Heat to a degree. Due to the heater heating, the region from the inner lid 5 to the boundary between the seed crystal 7 and the polycrystalline sample 6 is mainly heated.

【0014】ロケット打上げ後しばらくの間はヒ−タ温
度を800℃程度に保ち、無重力状態となる少し手前で
再びヒ−タ温度を上げて1200℃程度を目標温度とし
て試料を加熱していく。無重力状態となった直後に加熱
温度はゲルマニウムの融点である936℃に達し、多結
晶試料6が溶融し始める。その際、多結晶試料6の溶融
は内蓋5に近い方から始まる。内蓋5に詰め込まれてい
るカ−ボン材8の温度が多結晶試料6よりも先にかなり
高温になるからである。
The temperature of the heater is kept at about 800 ° C. for a while after the launch of the rocket, the heater temperature is raised again just before the weightless state is reached, and the sample is heated with a target temperature of about 1200 ° C. Immediately after the weightless state, the heating temperature reaches 936 ° C., which is the melting point of germanium, and the polycrystalline sample 6 begins to melt. At that time, the melting of the polycrystalline sample 6 starts from the side closer to the inner lid 5. This is because the temperature of the carbon material 8 packed in the inner lid 5 becomes considerably higher than that of the polycrystalline sample 6.

【0015】そして、多結晶試料6が完全に溶融したの
ち直ちに均熱ヒ−タ2の通電を絶ち、ガラス管3内への
冷却ガス9の導入を開始する。これにより、溶融試料は
隔壁4を介して種子結晶7側から冷却されて急速に凝固
結晶化していく。溶融試料の温度は内蓋5に近いほど高
温になっているので、種子結晶7側から内蓋5側へ確実
に一方向に結晶が成長していくことになり、理想的な結
晶が得られる。
Immediately after the polycrystalline sample 6 is completely melted, the soaking heater 2 is immediately de-energized, and the introduction of the cooling gas 9 into the glass tube 3 is started. As a result, the molten sample is cooled from the seed crystal 7 side through the partition wall 4 and rapidly solidified and crystallized. The temperature of the melted sample becomes higher as it gets closer to the inner lid 5, so that the crystal surely grows in one direction from the seed crystal 7 side to the inner lid 5 side, and an ideal crystal is obtained. .

【0016】この実施例の方法によれば、溶融試料が凝
固する際の膨脹によって石英アンプル1が割れてしまう
危険性は極めて少ない。これは上述したように溶融試料
が種子結晶7側から内蓋5側へ確実に一方向に凝固し結
晶化していくため、凝固の際の膨脹による体積増加分が
順次結晶成長方向(内蓋5側)へ逃げていくことになる
ためである。これに対しカ−ボン材8がない場合には、
ヒ−タ2を切ると種子結晶7側からの結晶成長の途中で
溶融試料がその外周部からも固まり始める。そのため、
拡径方向への膨脹となり石英アンプル1を割ってしまう
危険性がある。
According to the method of this embodiment, the risk of the quartz ampoule 1 cracking due to expansion when the molten sample solidifies is extremely low. This is because, as described above, the melted sample surely solidifies and crystallizes in one direction from the seed crystal 7 side to the inner lid 5 side. This is because it will run away to the side). On the other hand, if there is no carbon material 8,
When the heater 2 is cut, the molten sample begins to solidify also from the outer peripheral portion during the crystal growth from the seed crystal 7 side. for that reason,
There is a risk of expanding the quartz ampoule 1 due to expansion in the diameter expanding direction.

【0017】[0017]

【発明の効果】以上要するに本発明によれば、試料の両
端間の温度勾配を大きくとることができるので、溶融さ
せた試料をその一方の端から順次結晶化させていって確
実にもう一方の端で結晶化を完了させて理想的な結晶を
得ることができる。
In summary, according to the present invention, since the temperature gradient between both ends of the sample can be made large, the melted sample is successively crystallized from one end thereof to ensure the other Crystallization can be completed at the edges to obtain ideal crystals.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法によって単結晶を製造するための
装置構成例を示す概念図である。
FIG. 1 is a conceptual diagram showing a structural example of an apparatus for producing a single crystal by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 石英アンプル(容器) 2 均熱ヒ−タ 3 ガラス管 4 隔壁 5 内蓋 6 多結晶試料 7 種子結晶 8 カ−ボン材(高輻射率材) 9 冷却ガス 1 Quartz Ampoule (Container) 2 Soaking Heater 3 Glass Tube 4 Partition 5 Inner Lid 6 Polycrystalline Sample 7 Seed Crystal 8 Carbon Material (High Emissivity Material) 9 Cooling Gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多結晶試料を封入した容器をその一方の
端に高輻射率材を配した状態で周囲から加熱し、当該試
料が溶融したのち加熱を止め、その溶融した試料を当該
容器のもう一方の端から冷却して結晶化させるようにし
たことを特徴とする単結晶成長法。
1. A container enclosing a polycrystalline sample is heated from the surroundings in a state where a high emissivity material is arranged at one end of the container, the heating is stopped after the sample is melted, and the molten sample is stored in the container. A single crystal growth method characterized by cooling from the other end to crystallize.
JP04149497A 1992-06-09 1992-06-09 Single crystal growth method Expired - Fee Related JP3144058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04149497A JP3144058B2 (en) 1992-06-09 1992-06-09 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04149497A JP3144058B2 (en) 1992-06-09 1992-06-09 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH05339090A true JPH05339090A (en) 1993-12-21
JP3144058B2 JP3144058B2 (en) 2001-03-07

Family

ID=15476446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04149497A Expired - Fee Related JP3144058B2 (en) 1992-06-09 1992-06-09 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP3144058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080291A (en) * 2000-09-07 2002-03-19 Ishikawajima Harima Heavy Ind Co Ltd Testing cartridge for space laboratory for manufacturing apparatus of single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080291A (en) * 2000-09-07 2002-03-19 Ishikawajima Harima Heavy Ind Co Ltd Testing cartridge for space laboratory for manufacturing apparatus of single crystal
JP4641600B2 (en) * 2000-09-07 2011-03-02 株式会社Ihiエアロスペース Cartridge for space experiment of single crystal manufacturing equipment

Also Published As

Publication number Publication date
JP3144058B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
Eyer et al. Floating zone growth of silicon under microgravity in a sounding rocket
US8506706B2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US4264406A (en) Method for growing crystals
US5057287A (en) Liquid encapsulated zone melting crystal growth method and apparatus
KR20070039607A (en) Method of growing single crystals from melt
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
US2890139A (en) Semi-conductive material purification method and apparatus
US4923561A (en) Crystal growth method
JP3144058B2 (en) Single crystal growth method
US5007980A (en) Liquid encapsulated zone melting crystal growth method and apparatus
US6736893B2 (en) Process for growing calcium fluoride monocrystals
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPH09169590A (en) Crystallization hearth
US20040221793A1 (en) Method for producing an optical fluoride crystal without annealing
JP3885245B2 (en) Single crystal pulling method
JP2690420B2 (en) Single crystal manufacturing equipment
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
RU2046159C1 (en) Method and apparatus for growing of monocrystals from high-melting point materials
JP3369394B2 (en) Crystal preparation method
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0692780A (en) Apparatus for production of semiconductor single crystal
JP3154351B2 (en) Single crystal growth method
JPS60204700A (en) Preparation of single crystal
JPH0656573A (en) Liquid phase epitaxial growth device
JPS61227989A (en) Production of single crystal and apparatus therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees