JPH0533889B2 - - Google Patents

Info

Publication number
JPH0533889B2
JPH0533889B2 JP62016409A JP1640987A JPH0533889B2 JP H0533889 B2 JPH0533889 B2 JP H0533889B2 JP 62016409 A JP62016409 A JP 62016409A JP 1640987 A JP1640987 A JP 1640987A JP H0533889 B2 JPH0533889 B2 JP H0533889B2
Authority
JP
Japan
Prior art keywords
iron
polyester
plating
die
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62016409A
Other languages
Japanese (ja)
Other versions
JPS63183825A (en
Inventor
Kenji Tsunashima
Seizo Aoki
Susumu Yanaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62016409A priority Critical patent/JPS63183825A/en
Publication of JPS63183825A publication Critical patent/JPS63183825A/en
Publication of JPH0533889B2 publication Critical patent/JPH0533889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ポリエステルの溶融押出方法に関す
るものである。 [従来の技術] ポリエステルの溶融体が接する部分、例えば成
形用口金の素材としては、鉄を主体としたS45C、
S30C、SKD61、SKD11などを用いて、該ポリエ
ステルを溶融押出する方法が知られている。 [発明が解決しようとする問題点] しかし、かかる素材を用いる溶融押出方法には
次の問題点が存在していた。 (1) 鉄を主成分にしているために、錆が発生しや
すく、このため錆の部分を通過したポリマー流
が乱れ、口金を出たポリマー表面にスジ状表面
欠点やシートの厚みむらを生じる。 (2) 一方、錆を防止するためにクロムを合金にす
ると鉄材質が硬くなり、研磨性、開さく性が劣
る。この欠点を解消するためには、イオウや鉛
を多量に混在させざるを得ないが、これをする
とイオウや鉛の近傍で応力亀裂腐触による錆が
進行しやすくなり、結局フイルム表面欠点とな
る。 (3) また、鉄の表面にクロムメツキをして耐食
性、耐摩耗性を向上させる試みもあるが、クロ
ムメツキは、亀裂・クラツクが入りやすく、特
に端面には大きなクラツクが入り、いわゆる
“花が咲く”状態になりやすく、このため防蝕
機能が不十分であるのみならず、この亀裂部に
ポリエステルの重合触媒であるアンチモン元素
が鉄とイオン交換してアンチモン金属が析出す
る結果、表面凹凸となり、表面欠点となつてい
た。 本発明は、かかる問題点を改善し、上記欠点の
ないポリエステルの溶融押出方法を提供すること
を目的とする。 [問題点を解決するための手段] 本発明は、少なくとも表面が、ポリエステル化
合物(A)のトリエチレングリコール溶液中に浸漬し
たときの腐触度が15ppm以下である、鉄を50重量
%以上含有した金属からなる成形用口金を用い
て、ポリエステル化合物(A)を溶融押出するポリエ
ステルの溶融押出方法、に関するものである。 次に本発明でいうポリエステル化合物とは、ジ
カルボン酸とジオールとより重縮合により得られ
るエステル結合を分子鎖に存する高分子化合物で
あり、代表的なポリエステルとしては、ポリエチ
レンテレフタレート、ポリブチレンテレフタレー
ト、ポリエチレンナフタレート、ポリエチレン
α,β−ビス(2−クロルフエノキシ)エタン
4,4′−ジカルキシレート、及びそれらに他のコ
モノマー、例えばイソフタル酸、アジピン酸、シ
キロヘキサンジメタノールなどを共重合させたも
のや、エーテルやアミド結合を主鎖に有するもの
などを含むものである。もちろん該ポリエステル
に高分子として公知の添加剤、例えば安定剤、粘
度調整剤、酸化防止剤、充填剤、滑り剤、帯電防
止剤、ブロツキング防止剤、紫外線吸収剤などを
含有させてもよい。 本発明のポリエステルは、二軸あるいは一軸に
延伸されても、また熱処理されてもよく、更に該
ポリエステルの表面に新たな機能を付与するため
に別のポリマーをラミネートしたり、コロナ放
電、プラズマ処理などの表面処理をしてもよいこ
とは明らかである。該ポリエステルをフイルムに
したとき、その厚さは、特に限定しないが、
500μm以下、好ましくは150μm以下、更に好ま
しくは25μmのものが本発明の効果は顕著であ
る。 本発明においては、成形用口金の表面が、ポリ
エステル化合物(A)のトリエチレングリコール溶液
中に浸漬した時、鉄イオンの溶出濃度、すなわち
腐蝕度が15ppm以下である必要がある。腐蝕度が
15ppmを越えると、成形用口金の表面から鉄イオ
ンの溶出にともなつて、錆が発生したり、その溶
出しやすい部分にポリエステルの重合触媒のアン
チモン化合物の還元されたアンチモン金属が偏在
して析出したりする。その結果、口金表面に凸状
突起を発生し、それが吐出されたポリマーフイル
ム表面に凹スジ状欠点を生じる原因となる。ま
た、たとえ口金表面に均一にアンチモン金属や同
様に還元されたゲルマニウム金属などの特定金属
が付着しても、付着金属の部分脱落によつて、結
局吐出されたフイルムの表面欠点に結びつく。口
金表面に偏在して析出、脱落し、その凸状突起あ
るいは凹状深さの大きさが5〜10μm以上となる
と、吐出されたフイルム表面に凹スジ状あるいは
凸スジ状欠点が現われる。この凸状あるいは凹状
の口金表面欠点の大きさは、小さいものでも5〜
10μm、大きいものになると10mm程度にもなる。 本発明の成形用口金を構成する、鉄を50重量%
以上含有した金属からなる口金素材は、クロムメ
ツキ、銅メツキ、窒化チタン、炭化ケイ素などの
スパツタリング、更にはこれらの組合せからなる
表面処理層を有していることが好ましい。もちろ
ん、本発明の成形用口金は、上記で述べたメツ
キ、スパツタリングのような表面処理層のみをコ
ーテイングするだけではなく、口金素材が鉄を主
体としたクロム、ニツケル、炭素、イオウ、リン
などとの合金素材であつて、しかも溶出量が
15ppm以下であるような素材でもよい。しかし、
本発明の趣旨から、少なくとも口金素材には可能
な限り純度の高い均一組成のものであるのが好ま
しい。これは、不純物、特にイオウ、炭素、リン
などの元素が偏在した部分に、錆やアンチモン金
属、ゲルマニウム金属などの貴な金属が選択的に
析出付着しやすいためである。 しかし、メツキあるいはスパツタ法であつても
腐蝕度が15ppm以下でないと本発明の目的に合つ
た成形用口金とはなり得ない。すなわち、メツキ
やスパツタ法の場合、純度の高い金属をコーテイ
ングすることはできるが、でき上つたコーテイン
グ面に亀裂、クラツク、メツキむら、スパツタむ
ら、などの欠点が生じることがある。そこで、こ
れに基ずく鉄イオンの溶出を防止するために、メ
ツキやスパツタ条件を最適化すること、コーテイ
ング被処理表面の清浄度を上げ表面粗さを最適化
すること、さらには、メツキやスパツタをする前
に他の元素をスパツタやメツキをして、いわゆる
下地処理をしたり、さらには、2段、3段の多段
メツキやスパツタを行なう方法を採るのが好まし
い。 本発明の場合、表面無欠点性、耐摩耗性、防蝕
性、耐薬品性、ポリマーとの離型性、などの点か
らクロムメツキが好ましい。メツキ口金の場合、
ポリマー吐出リツプ先端のシヤープさRは好まし
くは100μmm以下、より好ましくは60μm以下、更
に好ましくは30μm以下にするのが剥離性の均
一、すなわち、幅方向の表面荒れにならず、望ま
しい。このように先端の鋭角な口金にするには、
単なるメツキ後の研磨では、研磨時にクラツクが
入りやすいので、メツキ前に口金リツプ先端部に
100〜500μmの間隙をあけて補助治具をあてた後
メツキをすると、コーナー部に亀裂が入つたり、
研磨時にクラツクが入つたりすることを防ぐこと
ができる。もちろん研磨によつてもよい。 メツキやスパツタを行なう被コーテイング素材
としては、特に限定はしないが、鉄を50重量%以
上含有する金属であつて、できる限り、イオウ、
リン、炭素、マンガン元素を少なく含有し、しか
もニツケル、クロムなどを多く含有した素材が好
ましい。 口金として使用する時の硬度は、研磨性、加工
性、取り扱い性などを考慮に入れるとHRC硬度
で28〜45度、好ましくは31〜40度の範囲のものが
よい。 成形用口金の形状は特に限定しないが、サーキ
ユラダイ、Tダイ、Lダイなどの任意のものに適
用することができる。 また、本発明においては、少なくとも成形用口
金の表面が上記の如き腐蝕度を満足する表面特性
を有していなければならないが、その他溶融ポリ
マーと接する部分、例えば、ギヤーポンプ、フイ
ルター、フイルター用ケーシング、ポリマー管及
びそれらの付属品も、かかる表面特性を有してい
ることが好ましい。 [測定法] (1) 各元素の含有量は、Na以上(原子番号≧11)
は、蛍光X線分析法により行なう。各元素の吸
収強度を測定し、フアンダメンタルパラメータ
ー法(THE EDAX EDITor Vol.5 No.4
19頁)による材料マトリツクスの吸収補正を加
えて、定量する。また、原子番号<11は、誘導
結合高周波プラズマ発光分光分析法により求め
る。ただし、測定する元素の濃度と発光強度の
関係を求めておき、これで補正する。また、原
子番号≧11でも、該手法を用いることができ
る。 (2) 口金の硬度は、JIS Z2245に従い、Cケール
で測定したロツクウエル硬さで表わす
(HRC)。 (3) 腐蝕度 ポリエステル化合物のトリエチレングリコー
ル溶液は、ポリエステル化合物を、トリエチレ
ングリコールに30重量%添加し、260℃でガラ
ス容器中で溶解分解させたものを用いる。 テストピースを浸漬する条件は、25℃で1
の上記ポリエステル化合物のトリエチレングリ
コール溶液のガラス容器中に、比表面積150cm2
のテストピースが完全に浸漬するようにして、
環流冷却器を取りつけ260℃で24時間処理をし、
直ちにテストピースを室温に取り出す。 もちろん、コーテイングされたサンプルの場
合は、液に浸漬する関係上、全面にコーテイン
グされていることが必要である。 得られた処理液の鉄イオンの定量は、次の通
りである。 (i) 操作 試料約1gをビーカー(100ml)に精秤し、
硫酸5mlを加えヒータ上で加熱(約300℃)し
試料を炭化する。硝酸を徐々に加えて加熱し、
分解する。試料が無色または透明になれば、乾
固直前まで加熱し、濃縮する。放冷後塩酸10ml
を加え加熱(約200℃)し、溶解する。 室温まで冷却後、25mlのメスフラスコにイオ
ン交換蒸溜水で洗い移し、標線まで薄める。 上記と同様に空試験を行ない。 得られた溶液をアルゴンプラズマ中に噴霧
し、誘導結合高周波プラズマ発生分光分析
(Inductively Coupled Plasma Atomic
Emission Spectrometry)により鉄(測定波
長は259.94nm)を測定する。 予め作成した検量線から鉄量を求める。試料
中の鉄含有量を次の式によつて算出する。 鉄(μg/g)=(S−Sb)×V/W S:検量線から餅めた試料液の発光強度に相当
する鉄濃度(μg/ml) Sb:検量線から求めた空試験液の発光強度に
相当する鉄濃度(μg/ml) V:測定液料(ml) W:採取試験量(g) (ii) 検量線作成操作 鉄標準原液(1.0mgFe/ml)を塩酸(1+4)
で希釈して0〜20(μgFe/ml)の範囲で鉄標
準液を調整する。 鉄標準液について試料と同様に測定し、鉄濃
度と発光強度の関係線を作成する。 (iii) 装置 セイコー電子工業製シーケンシヤル型ICP発
光分光分析装置SPS1100を用いた。 [実施例] 本発明を実施例に基ずいて説明する。 実施例1〜2、比較例1〜3 表に示したように、口金材質として母材に
SKD−61を用い、ボリマーの流路にあたる部分
をクロムメツキをした口金を用いた。口金はスリ
ツト幅2mm、幅1900mm、母材SKD−61のHRC硬
度40度のTダイ口金とし、これを250mmの押出機
の先端にとりつけ、口金温度を285℃に均一に加
熱して、該押出機にポリエチレンテレフタレート
(o−クロルフエノール中での極限粘度[η]=
0.62dl/g、重合触媒として三酸化アンチモン使
用)を供給し、285℃に加熱溶融後、上記口金か
ら溶融体を押出し、常法により静電荷を印加させ
ながらキヤストドラムで冷却し、厚さ100μmの
キヤストシートを得た。 かくして得られたキヤストシート上の表面欠点
が現われる時間を関数に、次にように分類した。 吐出から表面欠点が現われるまでの時間 1日未満 × 1日以上、2日未満 △ 2日以上、3日未満 ○ 3日以上 ◎ なお、用途によつても異なるが、上記キヤスト
フイルムを二軸延伸、熱処理してもよい。延伸条
件としては、公知の条件、たとえば長手方向に1
段又は多段に2.5〜6倍、幅方向に2.8〜5.5倍延伸
し、160〜240℃で熱処理する。二軸延伸フイルム
にして、直交ニコル下の偏光でフイルムを観察す
ると、スジ状の欠点が見やすくなる。 以上のように、たとえクロムメツキしていても
溶出鉄濃度が高い場合には、得られたフイルムに
表面欠点を生ずることが判る。
[Industrial Field of Application] The present invention relates to a method for melt extruding polyester. [Prior art] The material for the parts that come into contact with the polyester melt, such as the molding die, is S45C, which is mainly made of iron.
A method of melt extruding the polyester using S30C, SKD61, SKD11, etc. is known. [Problems to be Solved by the Invention] However, the following problems existed in the melt extrusion method using such materials. (1) Since the main component is iron, rust is likely to occur.This causes the polymer flow that passes through the rusted parts to be disturbed, resulting in streak-like surface defects and uneven sheet thickness on the polymer surface that exits the nozzle. . (2) On the other hand, when chromium is alloyed to prevent rust, the iron material becomes hard and has poor polishability and openability. In order to eliminate this defect, it is necessary to mix a large amount of sulfur and lead, but this makes it easier for rust to progress due to stress crack corrosion in the vicinity of the sulfur and lead, eventually resulting in film surface defects. . (3) There have also been attempts to improve corrosion and abrasion resistance by applying chrome plating to the surface of iron, but chrome plating is prone to cracks and cracks, and large cracks occur especially on the edges, causing so-called “flower blooming”. Not only does the anti-corrosion function become insufficient, but the antimony element, which is a polymerization catalyst for polyester, exchanges ions with iron in these cracks, causing antimony metal to precipitate, resulting in surface irregularities and It had become a drawback. The object of the present invention is to improve these problems and provide a method for melt extruding polyester that does not have the above drawbacks. [Means for Solving the Problems] The present invention provides a polyester compound (A) containing 50% by weight or more of iron, which has a degree of corrosion of 15 ppm or less when immersed in a triethylene glycol solution of the polyester compound (A). The present invention relates to a polyester melt extrusion method in which a polyester compound (A) is melt extruded using a molding die made of a metal. Next, the polyester compound referred to in the present invention is a polymer compound in which an ester bond obtained by polycondensation of a dicarboxylic acid and a diol exists in the molecular chain. Typical polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene Naphthalate, polyethylene α,β-bis(2-chlorophenoxy)ethane 4,4'-dicarxylate, and copolymerized products thereof with other comonomers such as isophthalic acid, adipic acid, cyclohexane dimethanol, etc. It also includes those having an ether or amide bond in the main chain. Of course, the polyester may contain additives known as polymers, such as stabilizers, viscosity modifiers, antioxidants, fillers, slip agents, antistatic agents, antiblocking agents, and ultraviolet absorbers. The polyester of the present invention may be biaxially or uniaxially stretched or heat treated, and furthermore, in order to impart new functions to the surface of the polyester, it may be laminated with another polymer, or may be subjected to corona discharge or plasma treatment. It is clear that surface treatments such as the following may be applied. When the polyester is made into a film, its thickness is not particularly limited, but
The effect of the present invention is remarkable when the diameter is 500 μm or less, preferably 150 μm or less, and more preferably 25 μm. In the present invention, when the surface of the molding die is immersed in a triethylene glycol solution of the polyester compound (A), the elution concentration of iron ions, that is, the degree of corrosion, must be 15 ppm or less. Corrosion degree
If it exceeds 15 ppm, rust may occur as iron ions are eluted from the surface of the molding die, and antimony metal, which is the reduced antimony compound of the polyester polymerization catalyst, is unevenly distributed and precipitated in areas where iron ions are easily eluted. I do things. As a result, convex projections are generated on the surface of the die, which causes concave streak-like defects on the surface of the discharged polymer film. Furthermore, even if specific metals such as antimony metal or similarly reduced germanium metal are uniformly deposited on the surface of the die, partial drop-off of the deposited metal will eventually lead to surface defects on the discharged film. If it precipitates and falls off unevenly on the surface of the die, and the depth of the convex protrusions or concavities exceeds 5 to 10 μm, concave or convex streak defects appear on the discharged film surface. The size of these convex or concave surface defects is 5 to
10μm, and larger ones can reach about 10mm. 50% by weight of iron constituting the molding die of the present invention
The base material made of the above metals preferably has a surface treatment layer made of chrome plating, copper plating, sputtering of titanium nitride, silicon carbide, etc., or a combination thereof. Of course, the molding die of the present invention is not only coated with surface treatment layers such as plating and sputtering as described above, but also has a die material that is made of iron-based chromium, nickel, carbon, sulfur, phosphorus, etc. It is an alloy material with a low elution amount.
Materials with a content of 15 ppm or less may be used. but,
From the spirit of the present invention, it is preferable that at least the base material has a uniform composition with as high purity as possible. This is because rust and noble metals such as antimony metal and germanium metal tend to selectively deposit and adhere to areas where impurities, particularly elements such as sulfur, carbon, and phosphorus, are unevenly distributed. However, even if the plating or sputtering method is used, unless the degree of corrosion is 15 ppm or less, a molding die that meets the purpose of the present invention cannot be obtained. That is, in the case of the plating or sputtering method, it is possible to coat a highly pure metal, but the resulting coating surface may have defects such as cracks, cracks, uneven plating, and uneven spatter. Therefore, in order to prevent the elution of iron ions based on this, it is necessary to optimize the plating and spatter conditions, increase the cleanliness of the surface to be coated and optimize the surface roughness, and further improve the plating and spatter conditions. It is preferable to sputter or plate other elements before applying so-called surface treatment, or to perform multi-stage plating or sputtering in two or three stages. In the case of the present invention, chrome plating is preferred from the viewpoints of surface defect-freeness, abrasion resistance, corrosion resistance, chemical resistance, mold releasability from polymers, and the like. In the case of a Metsuki clasp,
The sharpness R of the tip of the polymer discharge lip is preferably 100 μm or less, more preferably 60 μm or less, and still more preferably 30 μm or less to ensure uniform peelability, that is, to avoid surface roughness in the width direction. To make the cap with a sharp tip like this,
If you simply polish after plating, cracks are likely to occur during polishing, so please clean the tip of the cap lip before plating.
If you apply plating after applying an auxiliary jig with a gap of 100 to 500 μm, cracks may appear at the corners.
This can prevent cracks from forming during polishing. Of course, polishing may also be used. The material to be coated for plating or spatting is not particularly limited, but it must be a metal containing 50% by weight or more of iron, and as much as possible, sulfur,
A material containing a small amount of phosphorus, carbon, and manganese elements and a large amount of nickel, chromium, etc. is preferable. When used as a base, the hardness should be in the range of 28 to 45 degrees, preferably 31 to 40 degrees in terms of HRC hardness, taking into account polishability, workability, handling, etc. The shape of the molding die is not particularly limited, but it can be applied to any shape such as a circular die, T die, L die, etc. In addition, in the present invention, at least the surface of the molding die must have surface characteristics that satisfy the degree of corrosion as described above, but other parts that come into contact with the molten polymer, such as gear pumps, filters, filter casings, Preferably, polymeric tubes and their accessories also have such surface properties. [Measurement method] (1) Content of each element is Na or higher (atomic number ≧11)
is carried out by fluorescent X-ray analysis. The absorption intensity of each element was measured and the fundamental parameter method (THE EDAX EDITor Vol.5 No.4
Add absorption correction for the material matrix according to page 19) and quantify. In addition, atomic number <11 is determined by inductively coupled high frequency plasma emission spectroscopy. However, the relationship between the concentration of the element to be measured and the luminescence intensity is determined in advance, and the correction is made using this. Furthermore, this method can be used even when the atomic number is ≧11. (2) The hardness of the cap is expressed as Rockwell hardness (HRC) measured with C kale according to JIS Z2245. (3) Corrosion degree The polyester compound in triethylene glycol solution is prepared by adding 30% by weight of the polyester compound to triethylene glycol and dissolving and decomposing it in a glass container at 260°C. The conditions for immersing the test piece are 1 at 25°C.
A triethylene glycol solution of the above polyester compound in a glass container with a specific surface area of 150 cm 2
Make sure that the test piece is completely immersed in the
Attach a reflux condenser and process at 260℃ for 24 hours.
Immediately remove the test piece to room temperature. Of course, in the case of a coated sample, the entire surface must be coated because it will be immersed in a liquid. The amount of iron ions in the obtained treatment solution was determined as follows. (i) Procedure Weigh approximately 1 g of the sample into a beaker (100 ml),
Add 5 ml of sulfuric acid and heat on a heater (approximately 300°C) to carbonize the sample. Gradually add nitric acid and heat.
Disassemble. When the sample becomes colorless or transparent, heat it until just before drying and concentrate. After cooling, add 10ml of hydrochloric acid.
Add and heat (approximately 200℃) to dissolve. After cooling to room temperature, transfer to a 25 ml volumetric flask with ion-exchanged distilled water and dilute to the marked line. Perform a blank test in the same manner as above. The obtained solution was sprayed into argon plasma and inductively coupled radio frequency plasma generation spectroscopy (Inductively Coupled Plasma Atomic
Iron (measurement wavelength is 259.94 nm) is measured using Emission Spectrometry. Determine the amount of iron from the calibration curve created in advance. Calculate the iron content in the sample using the following formula. Iron (μg/g) = (S-Sb) x V/W S: Iron concentration (μg/ml) corresponding to the luminescence intensity of the sample solution prepared from the calibration curve Sb: Iron concentration (μg/ml) of the blank test solution determined from the calibration curve Iron concentration corresponding to luminescence intensity (μg/ml) V: Measurement liquid material (ml) W: Collection test amount (g) (ii) Calibration curve creation procedure Add iron standard stock solution (1.0mgFe/ml) to hydrochloric acid (1+4)
Prepare an iron standard solution in the range of 0 to 20 (μgFe/ml) by diluting it with Measure the iron standard solution in the same way as the sample, and create a relationship line between iron concentration and luminescence intensity. (iii) Apparatus A sequential ICP emission spectrometer SPS1100 manufactured by Seiko Electronics Industries was used. [Example] The present invention will be explained based on an example. Examples 1-2, Comparative Examples 1-3 As shown in the table, the base material was
SKD-61 was used, and a cap with chrome plating on the part corresponding to the flow path of the polymer was used. The die was a T-die die with a slit width of 2 mm, a width of 1900 mm, and a base material of SKD-61 with an HRC hardness of 40 degrees. This was attached to the tip of a 250 mm extruder, and the die was uniformly heated to 285°C to extrude the die. Polyethylene terephthalate (intrinsic viscosity in o-chlorophenol [η] =
0.62 dl/g (using antimony trioxide as a polymerization catalyst), heated and melted at 285°C, extruded the melt from the above-mentioned die, cooled with a cast drum while applying an electrostatic charge in a conventional manner, and formed a 100 μm thick mold. I got a cast sheet. The cast sheets thus obtained were classified as follows based on the time at which surface defects appeared. Time from discharge to appearance of surface defects: Less than 1 day × 1 day or more, less than 2 days △ 2 days or more, less than 3 days ○ 3 days or more ◎ Although it varies depending on the application, the above cast film may be biaxially stretched. , heat treatment may be performed. The stretching conditions are known, for example, 1
It is stretched 2.5 to 6 times in stages or in multiple stages, and 2.8 to 5.5 times in the width direction, and heat treated at 160 to 240°C. When the film is biaxially stretched and observed with polarized light under crossed Nicols, streak-like defects become easier to see. As described above, it can be seen that even if the film is chromium plated, if the eluted iron concentration is high, surface defects will occur in the obtained film.

【表】 [発明の効果] 本発明は、鉄を50重量%以上含有した金属上に
クロムなどの純度の高い金属をメツキしたり、あ
るいは窒化チタン、炭化ケイ素などのセラミツク
をスパツタリングしたりして、しかもポリエステ
ル化合物のトリエチレングリコール溶液中に該口
金を浸漬したときの溶出量を規制したことにより
ポリマー中の金属化合物が口金材質と化学反応を
起こし、口金に金属が部分的に偏在して析出する
ことを極力小さく抑制することができるのみなら
ず、防蝕性、耐ピンホール性、耐摩耗性、剥離性
などに優れているため、表面の平滑で無欠点なシ
ートを得ることができる。
[Table] [Effects of the invention] The present invention can be achieved by plating a highly pure metal such as chromium on a metal containing 50% by weight or more of iron, or by sputtering a ceramic such as titanium nitride or silicon carbide. Moreover, by regulating the amount of elution when the cap is immersed in a triethylene glycol solution of a polyester compound, the metal compound in the polymer causes a chemical reaction with the cap material, causing metal to be partially unevenly distributed and precipitated in the cap. In addition to being able to suppress the damage to a minimum, it also has excellent corrosion resistance, pinhole resistance, abrasion resistance, peelability, etc., so it is possible to obtain a sheet with a smooth surface and no defects.

Claims (1)

【特許請求の範囲】 1 少なくとも表面が、ポリエステル化合物(A)の
トリエチレングリコール溶液中に浸漬したときの
腐触度が15ppm以下である、鉄を50重量%以上含
有した金属からなる成形用口金を用いて、ポリエ
ステル化合物(A)を溶融押出するポリエステルの溶
融押出方法。 2 鉄を50重量%以上含有した金属が、クロムメ
ツキ、銅メツキ、窒化チタンスパツタリング、炭
化ケイ素スパツタリング又はこれらの組合せから
なる表面処理層を有していることを特徴とする特
許請求の範囲第1項に記載のポリエステルの溶融
押出方法。
[Scope of Claims] 1. A molding die made of a metal containing 50% by weight or more of iron, at least the surface of which has a degree of corrosion of 15 ppm or less when immersed in a triethylene glycol solution of polyester compound (A). A polyester melt extrusion method in which a polyester compound (A) is melt extruded using a polyester compound (A). 2. Claim No. 2, characterized in that the metal containing 50% by weight or more of iron has a surface treatment layer made of chrome plating, copper plating, titanium nitride sputtering, silicon carbide sputtering, or a combination thereof. The method for melt extrusion of polyester according to item 1.
JP62016409A 1987-01-27 1987-01-27 Method of melt extruding polyester Granted JPS63183825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016409A JPS63183825A (en) 1987-01-27 1987-01-27 Method of melt extruding polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016409A JPS63183825A (en) 1987-01-27 1987-01-27 Method of melt extruding polyester

Publications (2)

Publication Number Publication Date
JPS63183825A JPS63183825A (en) 1988-07-29
JPH0533889B2 true JPH0533889B2 (en) 1993-05-20

Family

ID=11915440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016409A Granted JPS63183825A (en) 1987-01-27 1987-01-27 Method of melt extruding polyester

Country Status (1)

Country Link
JP (1) JPS63183825A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168108A (en) * 1983-03-09 1984-09-21 Tanaka Kikinzoku Kogyo Kk Surface treatment of nozzle
JPS61279525A (en) * 1985-06-05 1986-12-10 Polyplastics Co Die of extruder
JPS63212527A (en) * 1986-07-21 1988-09-05 Yoshinobu Hosoma Protective film for die and the like of die-casting
JPH0533890A (en) * 1991-07-30 1993-02-09 Toyota Motor Corp Pipe joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140819U (en) * 1985-02-20 1986-09-01

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168108A (en) * 1983-03-09 1984-09-21 Tanaka Kikinzoku Kogyo Kk Surface treatment of nozzle
JPS61279525A (en) * 1985-06-05 1986-12-10 Polyplastics Co Die of extruder
JPS63212527A (en) * 1986-07-21 1988-09-05 Yoshinobu Hosoma Protective film for die and the like of die-casting
JPH0533890A (en) * 1991-07-30 1993-02-09 Toyota Motor Corp Pipe joint

Also Published As

Publication number Publication date
JPS63183825A (en) 1988-07-29

Similar Documents

Publication Publication Date Title
EP1872935B1 (en) Biaxially oriented polyester film and metal-like laminated films
CN1141413C (en) Corrosion resistant and drawable aluminum alloy, article thereof and process of making article
TWI394658B (en) Steel sheet for containers
JP5186814B2 (en) Steel plate for containers and manufacturing method thereof
JP4897818B2 (en) Steel plate for container and manufacturing method thereof
CN1875128A (en) A stainless steel strip coated with a metallic layer
JPH0533889B2 (en)
JPH0533890B2 (en)
EP2937439A1 (en) Hard coating film having excellent adhesion resistance to soft metal
JPH05320377A (en) Polyester film for metallic plate cladding processing
JP3859108B2 (en) Polyester film for metal plate lamination molding
JPH09150492A (en) Laminated film for laminating metal plate
JP2002302793A (en) Conductor roller and producing method thereof
JP4265768B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JPH01280525A (en) Molding mouth piece
US1256084A (en) Mehtod of plating ferrous metals.
JP3514917B2 (en) Industrial rolls
JPH04299115A (en) Method for melt extrusion of sheetlike article
JP4494758B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP3796110B2 (en) Polyester film laminate metal plate and metal container
JPH0841627A (en) Zn-mg alloy plated steel sheet excellent in spot weldability
JPH11254624A (en) Polyester film for metal plate laminate
JP2004249705A (en) Polyester film for coating metal sheet, its manufacturing method and method for manufacturing polyester film-coated metal sheet
JP2000177001A (en) Biaxially oriented polyester film for molding
JPS63179038A (en) Aluminum alloy for cylinder having excellent surface smoothness