JPH0533087A - Copper alloy for small conductive member - Google Patents

Copper alloy for small conductive member

Info

Publication number
JPH0533087A
JPH0533087A JP19230991A JP19230991A JPH0533087A JP H0533087 A JPH0533087 A JP H0533087A JP 19230991 A JP19230991 A JP 19230991A JP 19230991 A JP19230991 A JP 19230991A JP H0533087 A JPH0533087 A JP H0533087A
Authority
JP
Japan
Prior art keywords
weight
copper alloy
content
workability
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19230991A
Other languages
Japanese (ja)
Inventor
Kenichi Komata
憲一 小又
Tatsuhiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19230991A priority Critical patent/JPH0533087A/en
Publication of JPH0533087A publication Critical patent/JPH0533087A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength of a copper alloy while its formability is maintained, to reduce its stress relaxing rate and to form a terminal and a connector having high reliability by limiting the grain size of an alloy in which Zn, Sn, Mn, Al, Zr or the like are specified. CONSTITUTION:The above copper alloy is formed of a compsn. constituted of, by weight, 10 to 38% Zn, 0.3 to 3% Sn, 0.5 to 3% Mn, 0.5 to 2% Al, 0.05 to 0.5% Zr, 0.5 to 3% Si, 0.01 to 2% Ni, 0.005 to 0.25% P and the balance Cu. Then, heat treating conditions such as annealing conditions are changed to limit its grain size, by which its alloy strength is increased and its stress relaxation is reduced. Thus, by using this alloy, a terminal, a connector or the like having high reliability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小型導電性部材用銅合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for small conductive members.

【0002】[0002]

【従来の技術及び課題】従来、電気部品や電子部品の端
子,コネクタの材料としては、成形加工性、導電性に優
れ、更に安価であることからCu−30〜35重量%Z
nの黄銅が広く用いられている。
2. Description of the Related Art Conventionally, Cu-30 to 35% by weight Z has been used as a material for terminals and connectors of electric parts and electronic parts because it is excellent in moldability and conductivity and is inexpensive.
n brass is widely used.

【0003】ところで、近年、電気・電子部品の小型
化、高密度化、高信頼性等の要求が高まってきている。
それに伴って、前記電気・電子部品の端子やコネクタ等
の導電性部材に対する小型化の要求が高まってきてい
る。こうした要求に応えるため、前記部材の素材自体の
強度を高めて該部材の薄肉化を可能にする必要がある。
しかしながら、前記黄銅を高強度化した従来の銅合金で
は、伸びが低下してプレス等の成形加工性が低下するた
め薄肉化が困難となる。
By the way, in recent years, there have been increasing demands for miniaturization, high density, high reliability and the like of electric and electronic parts.
Along with this, there is an increasing demand for miniaturization of conductive members such as terminals and connectors of the electric / electronic parts. In order to meet such a demand, it is necessary to increase the strength of the material itself of the member to enable the member to be thin.
However, in the conventional copper alloy in which the brass has a high strength, the elongation is reduced and the formability of a press or the like is reduced, so that it is difficult to reduce the wall thickness.

【0004】また、自動車用電気・電子部品の端子,コ
ネクタ等の導電性部材では、高温環境下での使用におい
ても高い嵌合性を有することが要求される。しかしなが
ら、前記黄銅は応力緩和率が大きく、高温環境下での熱
影響により応力が大幅に低下する。このため、前記部材
に接触不良等が発生するという問題点があった。
Further, conductive members such as terminals and connectors for electric / electronic parts for automobiles are required to have high fitting properties even when used in a high temperature environment. However, the brass has a large stress relaxation rate, and the stress is greatly reduced due to the thermal effect in a high temperature environment. Therefore, there is a problem in that a contact failure or the like occurs in the member.

【0005】本発明は、従来の問題点を解決するために
なされたもので、従来の黄銅の優れた成形加工性を維持
しつつ、強度を高め、かつ応力緩和率を小さくした小型
導電性部材用銅合金を提供しようとするものである。
The present invention has been made in order to solve the conventional problems, and is a small-sized conductive member which has improved strength and reduced stress relaxation rate while maintaining the excellent moldability of conventional brass. It is intended to provide a copper alloy for use.

【0006】[0006]

【課題を解決するための手段及び作用】本発明は、Zn
を10〜38重量%含むと共に、Sn:0.3〜3.0
重量%、Mn:0.5〜3.0重量%、Al:0.5〜
2.0重量%、Zr:0.05〜0.5重量%、Si:
0.5〜3.0重量%、Ni:0.01〜2.0重量
%、及びP:0.005〜0.25重量%のうち1種又
は2種以上を含み、残部がCuからなる銅合金であっ
て、結晶粒径を5〜50μmとしたことを特徴とする小
型導電性部材用銅合金である。
Means and Actions for Solving the Problems
10 to 38% by weight, and Sn: 0.3 to 3.0
% By weight, Mn: 0.5-3.0% by weight, Al: 0.5-
2.0% by weight, Zr: 0.05 to 0.5% by weight, Si:
0.5 to 3.0% by weight, Ni: 0.01 to 2.0% by weight, and P: 0.005 to 0.25% by weight, containing one or more kinds, and the balance being Cu. It is a copper alloy having a crystal grain size of 5 to 50 μm, and is a copper alloy for a small conductive member.

【0007】前記Znは、合金強度を高め、かつ伸びを
大きくする作用を有する。前記Znの含有量を限定した
理由は、その含有量を10重量%未満にすると前記作用
が十分に発揮されず、一方その含有量が38重量%を越
えると冷間加工性が著しく低下する。
The Zn has the functions of increasing the alloy strength and increasing the elongation. The reason why the content of Zn is limited is that if the content is less than 10% by weight, the above-mentioned action is not sufficiently exhibited, while if the content exceeds 38% by weight, cold workability is significantly deteriorated.

【0008】前記Sn、Mn、Al、Zr、Si、Ni
及びPは、合金強度を高め、かつ応力緩和を小さくする
作用をそれぞれ有する。これら元素の含有量をそれぞれ
限定した理由は、その含有量を各下限値(Sn:0.3
重量%、Mn:0.5重量%、Al:0.5重量%、Z
r:0.05重量%、Si:0.5重量%、Ni:0.
01重量%、P:0.005重量%)未満にすると前記
作用が十分に発揮されない。一方、その含有量が各上限
値(Sn:3.0重量%、Mn:3.0重量%、Al:
2.0重量%、Zr:0.5重量%、Si:3.0重量
%、Ni:2.0重量%、P:0.25重量%)を越え
ると熱間加工性や冷間加工性が著しく低下する。これら
元素の含有量の合計量(2種以上含有する場合)の上限
値は、熱間加工性及び冷間加工性をより高める観点から
3.0重量%とすることが望ましい。なお、前記Sn、
Mn、Al、及びSiの含有量が各上限値を越えた場合
には特に冷間加工性が著しく低下し、前記Zr、及びP
の含有量が各上限値を越えた場合には特に熱間加工性が
著しく低下する。また、前記Niの含有量の上限値を
2.0重量%にすることはコストの面からも適してい
る。
The above Sn, Mn, Al, Zr, Si, Ni
And P have the functions of increasing the alloy strength and reducing stress relaxation, respectively. The reason for limiting the content of each of these elements is that the content is limited to the lower limit (Sn: 0.3
% By weight, Mn: 0.5% by weight, Al: 0.5% by weight, Z
r: 0.05% by weight, Si: 0.5% by weight, Ni: 0.
If it is less than 01% by weight and P: 0.005% by weight), the above-mentioned action cannot be sufficiently exhibited. On the other hand, the content of each of the upper limit values (Sn: 3.0% by weight, Mn: 3.0% by weight, Al:
2.0 wt%, Zr: 0.5 wt%, Si: 3.0 wt%, Ni: 2.0 wt%, P: 0.25 wt%), hot workability and cold workability Is significantly reduced. The upper limit of the total content of these elements (when two or more kinds are contained) is preferably 3.0% by weight from the viewpoint of further improving hot workability and cold workability. The Sn,
When the contents of Mn, Al, and Si exceed the respective upper limits, the cold workability is remarkably deteriorated, and Zr and P
In particular, if the content of exceeds the respective upper limit values, the hot workability is significantly reduced. It is also suitable from the viewpoint of cost to set the upper limit of the Ni content to 2.0% by weight.

【0009】前記結晶粒径を限定した理由は、その粒径
を5μm未満にすると曲げ加工性が低下し、一方その粒
径が50μmを越えると合金強度を高め、かつ応力緩和
を小さくする作用が低減する。かかる結晶粒径は、焼鈍
条件などの熱処理条件を変えることにより調整できる。
The reason for limiting the crystal grain size is that if the grain size is less than 5 μm, the bending workability deteriorates, while if the grain size exceeds 50 μm, the alloy strength is increased and the stress relaxation is reduced. Reduce. The crystal grain size can be adjusted by changing heat treatment conditions such as annealing conditions.

【0010】以上のように、Zn;Sn、Mn、Al、
Zr、Si、Ni、及びPのうち1種又は2種以上をそ
れぞれ特定量含有し、残部がCuからなり、特定の結晶
粒径としたことによって、強度を高め、かつ応力緩和を
小さくでき、しかも従来の黄銅と同等の優れた成形加工
性を有する小型導電性部材用銅合金を得ることができ
る。
As described above, Zn; Sn, Mn, Al,
By containing a specific amount of one or more of Zr, Si, Ni, and P, and the balance being Cu, and having a specific crystal grain size, it is possible to increase strength and reduce stress relaxation, Moreover, it is possible to obtain a copper alloy for a small-sized conductive member, which has excellent moldability equivalent to that of conventional brass.

【0011】また、本発明に係る別の発明は、Znを1
0〜38重量%、Niを0.01〜2.0重量%、Pを
0.005〜0.25重量%含むと共に、Sn:0.3
〜3.0重量%、Mn:0.5〜3.0重量%、Al:
0.5〜2.0重量%、Si:0.5〜3.0重量%、
Fe:0.2〜3.0重量%、及びCo:0.5〜3.
0重量%のうち1種又は2種以上を合計3.0重量%以
下含み、残部がCuからなる銅合金であって、結晶粒径
を5〜50μmとしたことを特徴とする小型導電性部材
用銅合金である。
Another invention according to the present invention is that Zn is 1
0-38 wt%, Ni 0.01-2.0 wt%, P 0.005-0.25 wt% and Sn: 0.3
~ 3.0 wt%, Mn: 0.5-3.0 wt%, Al:
0.5 to 2.0% by weight, Si: 0.5 to 3.0% by weight,
Fe: 0.2 to 3.0% by weight, and Co: 0.5 to 3.
A small conductive member containing 0% by weight of one or two or more kinds in total of 3.0% by weight or less and the balance being Cu and having a crystal grain size of 5 to 50 μm. It is a copper alloy for use.

【0012】前記Ni及びPは、Nix Py の金属間化
合物を生成することにより合金強度を高め、かつ耐熱性
を向上させて応力緩和を小さくする作用を有する。前記
Ni及びPの含有量をそれぞれ限定した理由は、その含
有量を各下限値(Ni:0.01重量%、P:0.00
5重量%)未満にすると前記作用が十分に発揮されず、
特に高温環境下での応力緩和を十分に小さくできない。
一方、その含有量が各上限値(Ni:2.0重量%、
P:0.25重量%)を越えると熱間加工性及び冷間加
工性が著しく低下する。
The Ni and P have the functions of increasing the alloy strength by forming an intermetallic compound of Nix Py and improving the heat resistance to reduce stress relaxation. The reason why the contents of Ni and P are limited respectively is that the contents are set to the respective lower limit values (Ni: 0.01% by weight, P: 0.00
If it is less than 5% by weight, the above effect is not sufficiently exerted,
Especially, stress relaxation cannot be sufficiently reduced under a high temperature environment.
On the other hand, the content is the upper limit value (Ni: 2.0% by weight,
P: 0.25% by weight), the hot workability and cold workability are remarkably deteriorated.

【0013】前記Sn、Mn、Al、は、合金強度を高
め、かつ応力緩和を小さくする作用をそれぞれ有する。
これら元素の含有量をそれぞれ限定した理由は、その含
有量を各下限値(Sn:0.3重量%、Mn:0.5重
量%、Al:0.5重量%、Si:0.5重量%、F
e:0.2重量%、Co:0.5重量%)未満にすると
前記作用が十分に発揮されない。一方、その含有量が各
上限値(Sn:3.0重量%、Mn:3.0重量%、A
l:2.0重量%、Si:3.0重量%、Fe:3.0
重量%、Co:3.0重量%)を越えると熱間加工性や
冷間加工性が著しく低下する。これら元素の含有量の合
計量(2種以上含有する場合)の上限値を限定した理由
は、その量が3.0重量%を越えると熱間加工性や冷間
加工性が著しく低下する。なお、前記Sn、Al、S
i、Fe、及びCoの含有量が各上限値を越えた場合に
は特に冷間加工性が著しく低下し、前記Mnの含有量が
3.0重量%を越えた場合には特に熱間加工性が著しく
低下する。
The Sn, Mn, and Al each have an action of increasing alloy strength and reducing stress relaxation.
The reason for limiting the content of each of these elements is that the content is limited to the respective lower limit values (Sn: 0.3% by weight, Mn: 0.5% by weight, Al: 0.5% by weight, Si: 0.5% by weight). %, F
If it is less than e: 0.2 wt% and Co: 0.5 wt%), the above-mentioned action cannot be sufficiently exhibited. On the other hand, the content of each of the upper limit values (Sn: 3.0 wt%, Mn: 3.0 wt%, A
1: 2.0% by weight, Si: 3.0% by weight, Fe: 3.0
%, Co: 3.0% by weight), the hot workability and cold workability are significantly reduced. The reason for limiting the upper limit of the total content of these elements (when two or more elements are contained) is that when the content exceeds 3.0% by weight, hot workability and cold workability are significantly deteriorated. In addition, the Sn, Al, S
Especially when the content of i, Fe and Co exceeds the respective upper limits, the cold workability is remarkably deteriorated, and particularly when the content of Mn exceeds 3.0% by weight, the hot workability is particularly deteriorated. Sex significantly decreases.

【0014】前記Znの作用及びその含有量を限定した
理由、前記結晶粒径を限定した理由は、前述した発明の
小型導電性部材用銅合金と同様である。
The reason for limiting the action and content of Zn and the reason for limiting the crystal grain size are the same as those of the copper alloy for a small conductive member of the invention described above.

【0015】以上のように、Zn;Ni;P;Sn、M
n、Al、Si、Fe、及びCoのうち1種又は2種以
上をそれぞれ特定量含有し、残部がCuからなり、特定
の結晶粒径としたことによって、強度を高め、かつ応力
緩和を小さくでき、しかも従来の黄銅と同等の優れた成
形加工性を有する小型導電性部材用銅合金を得ることが
できる。
As described above, Zn; Ni; P; Sn, M
One or two or more of n, Al, Si, Fe, and Co are each contained in a specific amount, and the balance is made of Cu, and the specific crystal grain size is used, thereby increasing the strength and reducing the stress relaxation. In addition, it is possible to obtain a copper alloy for a small-sized conductive member, which has excellent moldability equivalent to that of conventional brass.

【0016】更に、本発明に係る別の発明は、Znを1
0〜38重量%、Zrを0.05〜0.5重量%含むと
共に、Sn:0.3〜3.0重量%、Al:0.5〜
2.0重量%、Si:0.3〜3.0重量%、Fe:
0.2〜3.0重量%、Co:0.3〜3.0重量%、
Ti:0.05〜0.5重量%、及びB:0.05〜
0.5重量%のうち1種又は2種以上を合計3.0重量
%以下含み、残部がCuからなる銅合金であって、結晶
粒径を5〜50μmとしたことを特徴とする小型導電性
部材用銅合金である。
Further, another invention according to the present invention is that Zn is 1
0-38 wt%, Zr 0.05-0.5 wt%, Sn: 0.3-3.0 wt%, Al: 0.5-
2.0% by weight, Si: 0.3 to 3.0% by weight, Fe:
0.2-3.0% by weight, Co: 0.3-3.0% by weight,
Ti: 0.05 to 0.5% by weight, and B: 0.05 to
0.5% by weight, 1 type or 2 or more types in total, 3.0% by weight or less in total, a copper alloy with the balance being Cu, characterized by having a crystal grain size of 5 to 50 μm It is a copper alloy for elastic members.

【0017】前記Zrは、合金強度を高め、かつ応力緩
和を小さくする作用を有する。前記Zrの含有量を限定
した理由は、その含有量を0.05重量%未満にすると
前記作用が十分に発揮されず、特に高温環境下での応力
緩和を十分に小さくできない。一方、その含有量が0.
5重量%を越えると熱間加工性及び冷間加工性が著しく
低下する。
Zr has the function of increasing alloy strength and reducing stress relaxation. The reason why the content of Zr is limited is that if the content is less than 0.05% by weight, the above-mentioned action is not sufficiently exhibited, and stress relaxation cannot be sufficiently reduced particularly in a high temperature environment. On the other hand, the content is 0.
If it exceeds 5% by weight, hot workability and cold workability are significantly deteriorated.

【0018】前記Sn、Al、Si、Fe、Co、T
i、及びBは、合金強度を高め、かつ応力緩和を小さく
する作用をそれぞれ有する。これら元素の含有量を限定
した理由は、その含有量を各下限値(Sn:0.3重量
%、Al:0.5重量%、Si:0.3重量%、Fe:
0.2重量%、Co:0.3重量%、Ti:0.05重
量%、B:0.05重量%)未満にすると前記作用が十
分に発揮されない。一方、その含有量が各上限値(S
n:3.0重量%、Al:2.0重量%、Si:3.0
重量%、Fe:3.0重量%、Co:3.0重量%、T
i:0.5重量%、B:0.5重量%)を越えると熱間
加工性や冷間加工性が著しく低下する。これら元素の含
有量の合計量(2種以上含有する場合)の上限値を限定
した理由は、その量が3.0重量%を越えると熱間加工
性や冷間加工性が著しく低下する。なお、前記Sn、A
l、Si、Fe、及びCoの含有量が各上限値を越えた
場合には特に冷間加工性が著しく低下し、前記Ti、及
びBの含有量が各上限値を越えた場合には特に熱間加工
性が著しく低下する。
The above Sn, Al, Si, Fe, Co, T
i and B have the effects of increasing the alloy strength and reducing stress relaxation, respectively. The reason for limiting the contents of these elements is that the lower limit values (Sn: 0.3% by weight, Al: 0.5% by weight, Si: 0.3% by weight, Fe:
If it is less than 0.2% by weight, Co: 0.3% by weight, Ti: 0.05% by weight, B: 0.05% by weight, the above-mentioned action cannot be sufficiently exhibited. On the other hand, the content of each of the upper limit values (S
n: 3.0% by weight, Al: 2.0% by weight, Si: 3.0
% By weight, Fe: 3.0% by weight, Co: 3.0% by weight, T
i: 0.5% by weight and B: 0.5% by weight), the hot workability and cold workability are remarkably deteriorated. The reason for limiting the upper limit of the total content of these elements (when two or more elements are contained) is that when the content exceeds 3.0% by weight, hot workability and cold workability are significantly deteriorated. In addition, the Sn, A
Especially when the contents of 1, Si, Fe and Co exceed the respective upper limits, the cold workability is remarkably deteriorated, and particularly when the contents of Ti and B exceed the respective upper limits. Hot workability is significantly reduced.

【0019】前記Znの作用及びその含有量を限定した
理由、前記結晶粒径を限定した理由は、前述した発明の
小型導電性部材用銅合金と同様である。
The reason for limiting the action and content of Zn and the reason for limiting the crystal grain size are the same as those of the copper alloy for a small conductive member of the invention described above.

【0020】以上のように、Zn;Zr;Sn、Al、
Si、Fe、Co、Ti、及びBのうち1種又は2種以
上をそれぞれ特定量含有し、残部がCuからなり、特定
の結晶粒径としたことによって、強度を高め、かつ応力
緩和を小さくでき、しかも従来の黄銅と同等の優れた成
形加工性を有する小型導電性部材用銅合金を得ることが
できる。
As described above, Zn; Zr; Sn, Al,
By containing a specific amount of one or more of Si, Fe, Co, Ti, and B, and the balance being Cu, and having a specific crystal grain size, strength is increased and stress relaxation is reduced. In addition, it is possible to obtain a copper alloy for a small-sized conductive member, which has excellent moldability equivalent to that of conventional brass.

【0021】[0021]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0022】実施例1〜29及び比較例1〜30 まず、高周波溶解炉で溶解鍛造することにより下記表1
〜6に示す合金組成のインゴットを得た。つづいて、こ
のインゴットを800〜850℃で熱間圧延して厚さ1
0mmの板状とした後、冷間圧延と焼鈍とを繰り返して
厚さ0.4mmとした。ひきつづき、650℃で1時間
焼鈍した後、冷間圧延して厚さ0.2mmとし、更に同
表1〜6に示す条件で焼鈍することにより同表1〜6に
示す結晶粒径の銅合金からなる板材を製造した。なお、
熱間圧延加工及び冷間圧延加工において割れ等の欠陥を
生じた場合には外削などを施して該欠陥を除去した。
Examples 1 to 29 and Comparative Examples 1 to 30 First, the following Table 1 was obtained by melting and forging in a high frequency melting furnace.
Ingots having alloy compositions shown in to 6 were obtained. Subsequently, this ingot is hot-rolled at 800 to 850 ° C. to a thickness of 1
After forming a 0 mm plate, cold rolling and annealing were repeated to a thickness of 0.4 mm. Continuously, it is annealed at 650 ° C. for 1 hour, then cold rolled to a thickness of 0.2 mm, and further annealed under the conditions shown in Tables 1 to 6 to obtain a copper alloy having a crystal grain size shown in Tables 1 to 6. A plate made of was manufactured. In addition,
When a defect such as a crack was generated in the hot rolling process and the cold rolling process, the defect was removed by performing external cutting or the like.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】前記製造工程における熱間圧延及び冷間圧
延での加工性を調べるために、各圧延材について割れの
有無をそれぞれ確認した。これらの結果を下記表7〜9
に示す。なお、前記加工性は次のように評価した。
In order to examine the workability in hot rolling and cold rolling in the manufacturing process, the presence or absence of cracks was confirmed for each rolled material. These results are shown in Tables 7-9 below.
Shown in. The workability was evaluated as follows.

【0030】○…割れを生じることなく、良好に加工で
きた。
◯: Good processing was possible without cracking.

【0031】△…僅かな割れを生じた。Δ: A slight crack was generated.

【0032】×…著しい割れを生じた。X: remarkable cracking occurred.

【0033】得られた実施例1〜29及び比較例1〜3
0の板材について、JIS Z 2201に準拠した引
張り試験を行ない、引張り強度及び伸びをそれぞれ測定
した。これらの結果を下記表7〜9に併記する。
The obtained Examples 1-29 and Comparative Examples 1-3
With respect to the plate material of No. 0, a tensile test based on JIS Z 2201 was performed, and tensile strength and elongation were measured. The results are also shown in Tables 7 to 9 below.

【0034】また、実施例1〜29及び比較例1〜30
の板材について、厚さ50%とする冷間圧延加工を施し
た後、以下に説明する試験(1),(2)により曲げ加
工性及び応力緩和率を調べた。これらの結果を下記表7
〜9に併記する。
Further, Examples 1 to 29 and Comparative Examples 1 to 30
After subjecting the plate material of (1) to cold rolling to a thickness of 50%, bending workability and stress relaxation rate were examined by tests (1) and (2) described below. These results are shown in Table 7 below.
Are also described in ~ 9.

【0035】(1)曲げ試験 角度90°V(内側半径:r=0°)の曲げを1回行な
った後、実体顕微鏡(倍率:×30)で板材(試験片
幅:10mm)を観察することにより曲げ加工性を調べ
た。なお、前記曲げ加工性は次のように評価した。
(1) Bending test After bending once at an angle of 90 ° V (inside radius: r = 0 °), the plate material (test piece width: 10 mm) is observed with a stereoscopic microscope (magnification: × 30). Therefore, the bending workability was investigated. The bending workability was evaluated as follows.

【0036】○…僅かなシワのみでクラックを生じるこ
となく、良好に曲げ加工できた。
B: Good bending was possible without causing cracks even with slight wrinkles.

【0037】△…多数のシワと微少のクラックを生じ
た。
Δ: Many wrinkles and minute cracks were generated.

【0038】×…多数のクラック及び開口箇所を生じ
た。
X: Many cracks and openings were generated.

【0039】(2)応力緩和試験 両持ち梁式により板材に耐力の1/3の応力となる曲げ
を負荷し、150℃の恒温槽中に500時間放置した。
この500時間経過後の緩和した応力の初期応力に対す
る比を応力緩和率として算出した。
(2) Stress Relaxation Test The plate material was loaded with a bending that was a stress of 1/3 of the proof stress by the double-supported beam method and left in a constant temperature bath at 150 ° C. for 500 hours.
The ratio of the relaxed stress after the lapse of 500 hours to the initial stress was calculated as the stress relaxation rate.

【0040】[0040]

【表7】 [Table 7]

【0041】[0041]

【表8】 [Table 8]

【0042】[0042]

【表9】 [Table 9]

【0043】表7から明らかなように実施例1〜10の
板材は、熱間加工性、冷間加工性、及び曲げ加工性が良
好で、かつ十分な伸びがあって比較例10,11(従来
の黄銅を特定結晶粒径としたもの)と同等の優れた成形
加工性を有し、しかも比較例10,11と比べて引張り
強さが大きく、応力緩和率が小さいことがわかる。
As is clear from Table 7, the plate materials of Examples 1 to 10 have good hot workability, cold workability and bending workability, and have sufficient elongation to give Comparative Examples 10 and 11 ( It can be seen that it has excellent moldability equal to that of conventional brass having a specific crystal grain size), and has a larger tensile strength and a smaller stress relaxation rate than those of Comparative Examples 10 and 11.

【0044】これに対し、比較例1の板材は、結晶粒度
が5μm未満の銅合金からなるため曲げ加工性が低下し
ている。比較例2の板材は、結晶粒度が50μmを越え
る銅合金からなるため引張り強さが低下し、かつ応力緩
和率が大きくなっている。比較例3の板材は、Znの含
有量が10重量%未満の銅合金からなるため引張り強さ
が低下し、かつ伸びが小さくなっている。比較例4の板
材は、Znの含有量が38重量%を越えると共に、添加
元素(Sn、Mn、Al、Zr、Si、Ni及びPのう
ち1種又は2種以上)の含有量が所定量未満の銅合金か
らなるため冷間加工性が低下し、かつ応力緩和率が大き
くなっている。比較例5,7の板材は、添加元素の含有
量が所定量未満の銅合金からなるため引張り強さが低下
し、かつ応力緩和率が大きくなっている。比較例6,
8,9の板材は、添加元素の含有量が所定量を越える銅
合金からなるため熱間加工性及び冷間加工性が低下して
いる。
On the other hand, since the plate material of Comparative Example 1 is made of a copper alloy having a grain size of less than 5 μm, the bending workability is deteriorated. Since the plate material of Comparative Example 2 is made of a copper alloy having a grain size of more than 50 μm, the tensile strength is lowered and the stress relaxation rate is increased. Since the plate material of Comparative Example 3 is made of a copper alloy having a Zn content of less than 10% by weight, the tensile strength is reduced and the elongation is reduced. In the plate material of Comparative Example 4, the content of Zn exceeds 38% by weight and the content of the additive element (one or more of Sn, Mn, Al, Zr, Si, Ni and P) is a predetermined amount. Since it is made of a copper alloy of less than 1, the cold workability is deteriorated and the stress relaxation rate is increased. Since the plate materials of Comparative Examples 5 and 7 are made of a copper alloy having an additive element content of less than a predetermined amount, the tensile strength is reduced and the stress relaxation rate is increased. Comparative Example 6,
Since the plate materials of Nos. 8 and 9 are made of a copper alloy in which the content of the additional element exceeds a predetermined amount, the hot workability and the cold workability are deteriorated.

【0045】表8から明らかなように実施例11〜20
の板材は、熱間加工性、冷間加工性、及び曲げ加工性が
良好で、かつ十分な伸びがあって比較例10,11と同
等の優れた成形加工性を有し、しかも比較例10,11
と比べて引張り強さがに大きく、応力緩和率が小さいこ
とがわかる。
As is clear from Table 8, Examples 11 to 20
The plate material of No. 2 has good hot workability, cold workability and bending workability, has sufficient elongation, and has excellent formability equivalent to that of Comparative Examples 10 and 11, and further, Comparative Example 10 , 11
It can be seen that the tensile strength is large and the stress relaxation rate is small as compared with.

【0046】これに対し、比較例12の板材は、Znの
含有量が10重量%未満の銅合金からなるため引張り強
さが低下し、かつ伸びが小さくなっている。比較例13
の板材は、Znの含有量が38重量%を越える銅合金か
らなるため冷間加工性及び曲げ加工性が低下している。
比較例14の板材は、結晶粒度が5μm未満の銅合金か
らなるため曲げ加工性が低下している。比較例15の板
材は、結晶粒度が50μmを越える銅合金からなるため
引張り強さが低下し、かつ応力緩和率が大きくなってい
る。比較例16の板材は、Niの含有量が2.0重量%
を越える銅合金からなるため熱間加工性及び冷間加工性
が低下している。比較例17の板材は、Pの含有量が
0.25重量%を越える銅合金からなるため熱間加工性
及び冷間加工性が低下している。比較例18の板材は、
添加元素(Sn、Mn、Al、Si、Fe、及びCoの
うち1種又は2種以上)の含有量が所定量未満の銅合金
からなるため引張り強さが低下し、かつ応力緩和率が大
きくなっている。比較例19,20,21の板材は、添
加元素の含有量が所定量を越える銅合金からなるため熱
間加工性や冷間加工性が低下し、かつ曲げ加工性が低下
している。
On the other hand, the plate material of Comparative Example 12 has a lower tensile strength and a lower elongation because it is made of a copper alloy having a Zn content of less than 10% by weight. Comparative Example 13
Since the plate material (1) is made of a copper alloy having a Zn content of more than 38% by weight, cold workability and bendability are deteriorated.
Since the plate material of Comparative Example 14 is made of a copper alloy having a grain size of less than 5 μm, bending workability is deteriorated. Since the plate material of Comparative Example 15 is made of a copper alloy having a grain size of more than 50 μm, the tensile strength is reduced and the stress relaxation rate is increased. The plate material of Comparative Example 16 has a Ni content of 2.0% by weight.
Hot workability and cold workability are deteriorated because it is made of a copper alloy of over 60%. Since the plate material of Comparative Example 17 is made of a copper alloy having a P content of more than 0.25% by weight, hot workability and cold workability are deteriorated. The plate material of Comparative Example 18 is
Since the content of the additive element (one or more of Sn, Mn, Al, Si, Fe and Co) is less than the predetermined amount, the tensile strength is reduced and the stress relaxation rate is large. Has become. Since the plate materials of Comparative Examples 19, 20, and 21 are made of a copper alloy in which the content of the additive element exceeds a predetermined amount, hot workability and cold workability are deteriorated, and bending workability is also deteriorated.

【0047】表9から明らかなように実施例20〜21
の板材は、熱間加工性、冷間加工性、及び曲げ加工性が
良好で、かつ十分な伸びがあって比較例10,11と同
等の優れた成形加工性を有し、しかも比較例10,11
と比べて引張り強さがに大きく、応力緩和率が小さいこ
とがわかる。
As is clear from Table 9, Examples 20-21
The plate material of No. 2 has good hot workability, cold workability and bending workability, has sufficient elongation, and has excellent formability equivalent to that of Comparative Examples 10 and 11, and further, Comparative Example 10 , 11
It can be seen that the tensile strength is large and the stress relaxation rate is small as compared with.

【0048】これに対し、比較例22の板材は、Znの
含有量が10重量%未満の銅合金からなるため引張り強
さが低下し、かつ伸びが小さくなっている。比較例23
の板材は、Znの含有量が38重量%を越える銅合金か
らなるため冷間加工性及び曲げ加工性が低下している。
比較例24の板材は、結晶粒度が5μm未満の銅合金か
らなるため冷間加工性及び曲げ加工性が低下している。
比較例25の板材は、結晶粒度が50μmを越える銅合
金からなるため引張り強さが低下し、かつ応力緩和率が
大きくなっている。比較例26の板材は、Zrの含有量
が0.05重量%未満の銅合金からなるため応力緩和率
が大きくなっている。比較例27の板材は、Zrの含有
量が0.5重量%を越える銅合金からなるため熱間加工
性、冷間加工性及び曲げ加工性が低下している。比較例
28,29,30の板材は、添加元素(Sn、Al、S
i、Fe、Co、Ti、及びBのうち1種又は2種以
上)の含有量が所定量を越える銅合金からなるため熱間
加工性、冷間加工性及び曲げ加工性が低下している。
On the other hand, the plate material of Comparative Example 22 is made of a copper alloy having a Zn content of less than 10% by weight, so that the tensile strength is lowered and the elongation is reduced. Comparative Example 23
Since the plate material (1) is made of a copper alloy having a Zn content of more than 38% by weight, cold workability and bendability are deteriorated.
Since the plate material of Comparative Example 24 is made of a copper alloy having a grain size of less than 5 μm, cold workability and bendability are deteriorated.
Since the plate material of Comparative Example 25 is made of a copper alloy having a grain size of more than 50 μm, the tensile strength is lowered and the stress relaxation rate is increased. The plate material of Comparative Example 26 has a large stress relaxation rate because it is made of a copper alloy having a Zr content of less than 0.05% by weight. Since the plate material of Comparative Example 27 is made of a copper alloy having a Zr content of more than 0.5% by weight, hot workability, cold workability and bendability are deteriorated. The plate materials of Comparative Examples 28, 29, and 30 are additive elements (Sn, Al, S).
The hot workability, cold workability and bending workability are deteriorated because it is made of a copper alloy having a content of one or more of i, Fe, Co, Ti, and B) exceeding a predetermined amount. .

【0049】[0049]

【発明の効果】以上詳述した如く、本発明によれば従来
の黄銅の優れた成形加工性を維持しつつ、強度を高め、
かつ応力緩和率を小さくでき、ひいては薄肉化しても十
分な強度を有し、かつ高温環境下においても高い嵌合性
を長期間に亘って維持可能な高信頼性の端子やコネクタ
等を形成し得る小型導電性部材用銅合金を提供すること
ができる。かかる銅合金は、特に自動車用電気・電子部
品の端子,コネクタ等の素材として好適である。
As described in detail above, according to the present invention, the strength is increased while maintaining the excellent moldability of the conventional brass,
In addition, the stress relaxation rate can be made small, and even if it is made thin, it has sufficient strength, and forms a highly reliable terminal or connector that can maintain high mating properties for a long period of time even in a high temperature environment. It is possible to provide the obtained copper alloy for a small conductive member. Such a copper alloy is particularly suitable as a material for terminals and connectors of electric and electronic parts for automobiles.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Znを10〜38重量%含むと共に、S
n:0.3〜3.0重量%、Mn:0.5〜3.0重量
%、Al:0.5〜2.0重量%、Zr:0.05〜
0.5重量%、Si:0.5〜3.0重量%、Ni:
0.01〜2.0重量%、及びP:0.005〜0.2
5重量%のうち1種又は2種以上を含み、残部がCuか
らなる銅合金であって、結晶粒径を5〜50μmとした
ことを特徴とする小型導電性部材用銅合金。
1. An alloy containing 10 to 38% by weight of Zn and S
n: 0.3-3.0 wt%, Mn: 0.5-3.0 wt%, Al: 0.5-2.0 wt%, Zr: 0.05-
0.5% by weight, Si: 0.5 to 3.0% by weight, Ni:
0.01-2.0% by weight, and P: 0.005-0.2
A copper alloy for a small conductive member, which comprises one or more of 5% by weight and the balance is Cu, and has a crystal grain size of 5 to 50 μm.
【請求項2】 Znを10〜38重量%、Niを0.0
1〜2.0重量%、Pを0.005〜0.25重量%含
むと共に、Sn:0.3〜3.0重量%、Mn:0.5
〜3.0重量%、Al:0.5〜2.0重量%、Si:
0.5〜3.0重量%、Fe:0.2〜3.0重量%、
及びCo:0.5〜3.0重量%のうち1種又は2種以
上を合計3.0重量%以下含み、残部がCuからなる銅
合金であって、結晶粒径を5〜50μmとしたことを特
徴とする小型導電性部材用銅合金。
2. Zn of 10 to 38% by weight and Ni of 0.0
1-2.0 wt%, 0.005-0.25 wt% P, Sn: 0.3-3.0 wt%, Mn: 0.5
~ 3.0 wt%, Al: 0.5-2.0 wt%, Si:
0.5-3.0% by weight, Fe: 0.2-3.0% by weight,
And Co: 0.5 to 3.0% by weight, one or two or more of which is a total of 3.0% by weight or less, and a balance is Cu, and is a copper alloy having a crystal grain size of 5 to 50 μm. A copper alloy for a small conductive member characterized by the above.
【請求項3】 Znを10〜38重量%、Zrを0.0
5〜0.5重量%含むと共に、Sn:0.3〜3.0重
量%、Al:0.5〜2.0重量%、Si:0.3〜
3.0重量%、Fe:0.2〜3.0重量%、Co:
0.3〜3.0重量%、Ti:0.05〜0.5重量
%、及びB:0.05〜0.5重量%のうち1種又は2
種以上を合計3.0重量%以下含み、残部がCuからな
る銅合金であって、結晶粒径を5〜50μmとしたこと
を特徴とする小型導電性部材用銅合金。
3. Zn of 10 to 38% by weight and Zr of 0.0
5 to 0.5 wt%, Sn: 0.3 to 3.0 wt%, Al: 0.5 to 2.0 wt%, Si: 0.3 to
3.0% by weight, Fe: 0.2 to 3.0% by weight, Co:
One or two of 0.3 to 3.0% by weight, Ti: 0.05 to 0.5% by weight, and B: 0.05 to 0.5% by weight.
A copper alloy for a small conductive member, comprising a total of 3.0% by weight or less of seeds and a balance of Cu and having a crystal grain size of 5 to 50 μm.
JP19230991A 1991-07-31 1991-07-31 Copper alloy for small conductive member Pending JPH0533087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19230991A JPH0533087A (en) 1991-07-31 1991-07-31 Copper alloy for small conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19230991A JPH0533087A (en) 1991-07-31 1991-07-31 Copper alloy for small conductive member

Publications (1)

Publication Number Publication Date
JPH0533087A true JPH0533087A (en) 1993-02-09

Family

ID=16289133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19230991A Pending JPH0533087A (en) 1991-07-31 1991-07-31 Copper alloy for small conductive member

Country Status (1)

Country Link
JP (1) JPH0533087A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
JP2001164328A (en) * 1999-10-01 2001-06-19 Dowa Mining Co Ltd Copper alloy for connector and producing method therefor
EP1452613A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
US20080253924A1 (en) * 2004-08-10 2008-10-16 Keiichiro Oishi Master Alloy for Casting a Modified Copper Alloy and Casting Method Using the Same
WO2013103149A1 (en) 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
WO2014103409A1 (en) 2012-12-28 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014104130A1 (en) 2012-12-26 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014104198A1 (en) 2012-12-28 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014109083A1 (en) 2013-01-09 2014-07-17 三菱マテリアル株式会社 Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
WO2014115353A1 (en) 2013-01-28 2014-07-31 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
WO2014147862A1 (en) 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
WO2014147861A1 (en) 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
WO2015004939A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
WO2015004940A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
WO2017018487A1 (en) * 2015-07-30 2017-02-02 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, thin copper alloy sheet for electronic/electric devices, and conductive part and terminal for electronic/electric devices
TWI609730B (en) * 2005-12-12 2018-01-01 Mitsubishi Shindoh Co Ltd Master alloy for copper alloy upgrading, and casting method using same
US20190001257A1 (en) * 2017-07-03 2019-01-03 Marsulex Environmental Technologies Corporation Wet flue gas desulfurization process and apparatus
WO2021025071A1 (en) 2019-08-06 2021-02-11 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these
EP4170050A1 (en) * 2016-01-21 2023-04-26 Fortune Mfg. Co. Ltd. Unleaded free-cutting brass alloys with excellent castability and application thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985055A (en) * 1996-11-07 1999-11-16 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
JP2001164328A (en) * 1999-10-01 2001-06-19 Dowa Mining Co Ltd Copper alloy for connector and producing method therefor
EP1452613A3 (en) * 2003-02-28 2004-09-22 Wieland-Werke AG Lead-free copper alloy and use thereof
CN100430498C (en) * 2003-02-28 2008-11-05 威兰德-沃克公开股份有限公司 A lead-free copper alloy and its use
EP1452613A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
US20080253924A1 (en) * 2004-08-10 2008-10-16 Keiichiro Oishi Master Alloy for Casting a Modified Copper Alloy and Casting Method Using the Same
US20150132179A1 (en) * 2004-08-10 2015-05-14 Mitsubishi Shindoh Co., Ltd. Master alloy for casting a modified copper alloy and casting method using the same
TWI609730B (en) * 2005-12-12 2018-01-01 Mitsubishi Shindoh Co Ltd Master alloy for copper alloy upgrading, and casting method using same
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
WO2013103149A1 (en) 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
EP3284835A2 (en) 2012-01-06 2018-02-21 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
WO2014104130A1 (en) 2012-12-26 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
JP2014141740A (en) * 2012-12-26 2014-08-07 Mitsubishi Materials Corp Copper alloy for electronic/electrical device, copper alloy thin sheet for electronic/electrical device, conductive component for electronic/electrical device and terminal
KR20150098625A (en) 2012-12-26 2015-08-28 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014103409A1 (en) 2012-12-28 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014104198A1 (en) 2012-12-28 2014-07-03 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
KR20150099773A (en) 2012-12-28 2015-09-01 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
KR20150101455A (en) 2012-12-28 2015-09-03 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
WO2014109083A1 (en) 2013-01-09 2014-07-17 三菱マテリアル株式会社 Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
WO2014115353A1 (en) 2013-01-28 2014-07-31 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
KR20150109378A (en) 2013-01-28 2015-10-01 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, electroconductive component and terminal for electronic/electric device
WO2014147862A1 (en) 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
KR20150129780A (en) 2013-03-18 2015-11-20 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
WO2014147861A1 (en) 2013-03-18 2014-09-25 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
KR20150129719A (en) 2013-03-18 2015-11-20 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive component and terminal for electrical and electronic equipment
WO2015004939A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
WO2015004940A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
US10190194B2 (en) 2013-07-10 2019-01-29 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
KR20160029033A (en) 2013-07-10 2016-03-14 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
JP2017031449A (en) * 2015-07-30 2017-02-09 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device and conductive component and terminal for electronic and electrical device
WO2017018487A1 (en) * 2015-07-30 2017-02-02 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, thin copper alloy sheet for electronic/electric devices, and conductive part and terminal for electronic/electric devices
EP4170050A1 (en) * 2016-01-21 2023-04-26 Fortune Mfg. Co. Ltd. Unleaded free-cutting brass alloys with excellent castability and application thereof
US20190001257A1 (en) * 2017-07-03 2019-01-03 Marsulex Environmental Technologies Corporation Wet flue gas desulfurization process and apparatus
US11926889B2 (en) 2019-08-06 2024-03-12 Mitsubishi Materials Corporation Copper alloy plate, copper alloy plate with plating film, and methods for producing these
WO2021025071A1 (en) 2019-08-06 2021-02-11 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these
KR20220041082A (en) 2019-08-06 2022-03-31 미쓰비시 마테리알 가부시키가이샤 A copper alloy plate, a copper alloy plate with a plating film, and their manufacturing method

Similar Documents

Publication Publication Date Title
JPH0533087A (en) Copper alloy for small conductive member
JP3739214B2 (en) Copper alloy sheet for electronic parts
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
KR930005072B1 (en) Copper alloy for electronic instrument and method of manufacturing the same
JPWO2010126046A1 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
KR20040038677A (en) High strength and electric conductivity copper alloy excellent in workability
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP3872932B2 (en) Copper alloy with enhanced crack resistance
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
US5508001A (en) Copper based alloy for electrical and electronic parts excellent in hot workability and blankability
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
TW201819644A (en) Copper alloy plate and method for producing same
KR100513943B1 (en) Copper and copper alloy, and method for production of the same
JPS6345336A (en) Copper alloy for electronic and electric appliance and its production
JP4225733B2 (en) Terminal, connector, lead frame material plate
US4990309A (en) High strength copper-nickel-tin-zinc-aluminum alloy of excellent bending processability
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPH0987814A (en) Production of copper alloy for electronic equipment
CN111647768A (en) High-strength copper alloy sheet and method for producing same