JPH05329163A - Method for detecting water presence-position in skin and apparatus therefor - Google Patents

Method for detecting water presence-position in skin and apparatus therefor

Info

Publication number
JPH05329163A
JPH05329163A JP16864392A JP16864392A JPH05329163A JP H05329163 A JPH05329163 A JP H05329163A JP 16864392 A JP16864392 A JP 16864392A JP 16864392 A JP16864392 A JP 16864392A JP H05329163 A JPH05329163 A JP H05329163A
Authority
JP
Japan
Prior art keywords
skin
light
image
wavelengths
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16864392A
Other languages
Japanese (ja)
Other versions
JP3255370B2 (en
Inventor
Mitsuo Hiramatsu
光夫 平松
Koji Muraki
広次 村木
Kazuyoshi Ota
和義 太田
Kazuaki Okumura
和明 奥村
Hiroto Sato
宏人 佐藤
Akira Date
朗 伊達
Takashi Yoshii
隆 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP16864392A priority Critical patent/JP3255370B2/en
Publication of JPH05329163A publication Critical patent/JPH05329163A/en
Application granted granted Critical
Publication of JP3255370B2 publication Critical patent/JP3255370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to detect the state of existence of water in the depth direction of a skin by irradiating the skin with near infrared light of at least two kinds of wave lengths and detecting the amt. of light of scattered light from the skin at least at two kinds of wave lengths. CONSTITUTION:A skin sample 3 is irradiated with a light source 5 emitting a near infrared light with at least two wave lengths and an image of a horny membrane of a guinea pig which is a sample is photographed by means of an infrared vidicon camera 8 through an optical lens system 6 and a wave length selective filter 7. The wave length selective filter 7 consists of wave length selective filters 71 and 72 through which only one of two near infrared lights with two wave length is transmitted and these are alternatively used by switching. Then, output of the camera 8 is inputted into an image treating apparatus 9, where difference of the amt. of light of the scattered light detected on every wave length is obtd. and this difference in this amt. of light and the depth where water exists in the skin is obtd. based on damping properties of the near infrared light in the skin. The obtd. result is outputted by means of a video monitor 10 and a video printer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、皮膚中に水分が存在す
る深さあるいはその分布を検出する方法と、それに用い
る装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the depth of water present in skin or its distribution, and an apparatus used therefor.

【0002】[0002]

【従来の技術】一般に、化粧品や医薬品の成分を決定す
るに際し、皮膚が含有する水分量を知ることは非常に重
要なことである。そこで、皮膚の水分含有量を測定する
方法としては、高周波インピーダンスを測定する方法、
マイクロ波の伝導性を測る方法、あるいは、水分含有量
の上昇による皮膚の弾力性の増加を測る方法などが用い
られている。
2. Description of the Related Art Generally, it is very important to know the amount of water contained in the skin when determining the components of cosmetics and pharmaceuticals. Therefore, as a method of measuring the water content of the skin, a method of measuring high frequency impedance,
A method of measuring the conductivity of microwaves, a method of measuring the elasticity of the skin due to an increase in the water content, or the like is used.

【0003】[0003]

【発明が解決しようとする課題】前述したように皮膚の
水分含有量の測定においては、特に、皮膚の深さ方向の
水分含有量の情報は極めて重要である。
As described above, in measuring the water content of the skin, information on the water content in the depth direction of the skin is extremely important.

【0004】しかしながら先に説明した方法では、いず
れも、皮膚のどの深さに水分が含有されているかという
情報については何も与えないという問題がある。
However, each of the above-mentioned methods has a problem that it does not give any information as to which depth of the skin contains water.

【0005】本発明は、上記の問題を解決した皮膚中の
水分の存在位置検出方法とそれに用いられる装置を得る
ことを目的とする。
An object of the present invention is to provide a method for detecting the position of water present in the skin and a device used for the method, which solves the above problems.

【0006】[0006]

【課題を解決するための手段】本発明に係る皮膚中の水
分の存在位置検出方法は、少なくとも2種類の波長の近
赤外光で皮膚を照明し、その皮膚からの散乱光の光量
を、少なくとも2種類の波長ごとに検出する第1ステッ
プと、波長ごとに検出された散乱光の光量の差を求める
第2ステップと、予め求められる近赤外光の皮膚中での
減衰性と、第2ステップで求められた光量の差にもとづ
き、皮膚中に水分が存在する深さを求める第3ステップ
とを備えることを特徴とする。
A method for detecting the presence position of water in the skin according to the present invention illuminates the skin with near-infrared light having at least two kinds of wavelengths, and determines the amount of scattered light from the skin, A first step of detecting at least two types of wavelengths, a second step of obtaining a difference in the amount of scattered light detected for each wavelength, an attenuation property of near-infrared light in the skin which is obtained in advance, And a third step for obtaining the depth of water in the skin based on the difference in the amount of light obtained in the two steps.

【0007】また、本発明に係る皮膚中の水分の存在位
置検出装置は、少なくとも2種類の波長の近赤外光で、
皮膚を照明する照明手段と、皮膚からの散乱光の像を、
少なくとも2種類の波長ごとに撮像する撮像手段と、波
長ごとに撮像された散乱光の像の強度差を演算する差分
手段とを備えることを特徴とする。ここで、照明手段
は、水分に対して十分に光の減衰性に差異がある複数の
波長の光を出射し、撮像手段は、複数の波長ごとに散乱
光の像を撮像するものとし、さらに、差分手段により求
められた散乱光の像の強度差と、予め求められる波長ご
との近赤外光の皮膚中での減衰性にもとづき、水分が皮
膚中に存在する深さを求める定量手段を更に備えるもの
とすることが望ましい。
Further, the apparatus for detecting the presence position of water in the skin according to the present invention uses near-infrared light of at least two kinds of wavelengths,
Illuminating means to illuminate the skin and the image of the scattered light from the skin,
It is characterized by comprising an image pickup means for picking up images for at least two types of wavelengths, and a difference means for calculating an intensity difference between images of scattered light picked up for each wavelength. Here, the illuminating means emits light of a plurality of wavelengths having sufficiently different light attenuating properties with respect to moisture, and the image capturing means captures an image of scattered light for each of the plurality of wavelengths. Quantitative means for determining the depth of water present in the skin based on the difference in the intensity of the scattered light image obtained by the difference means and the attenuability of near-infrared light for each wavelength obtained in advance in the skin. Further provision is desirable.

【0008】[0008]

【作用】異なる波長の近赤外光に対して水分子は異なる
吸収係数を有するため、水分子の存在によるそれぞれの
波長の光の減衰状態は異なるものとなり、その光が皮膚
中を透過する距離は、それぞれの波長によって異なる。
即ち皮膚に近赤外光を照射したとき、水に対する吸収係
数の大きい波長の光は、皮膚の比較的表面近傍に存在す
る水分子によって吸収および散乱され減衰し、一方、相
対的に水に対する吸収係数の小さい波長の光は、水分子
によって吸収および散乱され減衰する程度が比較的僅か
であるために皮膚のかなり深い部分にまで到達する。
[Function] Since water molecules have different absorption coefficients for near-infrared light of different wavelengths, the attenuation state of light of each wavelength differs due to the presence of water molecules, and the distance that the light penetrates through the skin Varies depending on the respective wavelengths.
That is, when the skin is irradiated with near-infrared light, light with a wavelength having a large absorption coefficient for water is absorbed and scattered by water molecules existing relatively near the surface of the skin, and is attenuated, while it is relatively absorbed by water. Light with a low coefficient of wavelength reaches deep into the skin due to its relatively small absorption and scattering by water molecules.

【0009】このため、吸収係数の異なる波長の光ごと
に、反射法で検出される散乱光の像の強度を測定するこ
とによって、照射された光の皮膚の表面近傍の位置と、
皮膚の表面から深い位置での減衰状態をそれぞれ知るこ
とができる。さらに、上述の散乱光の像の強度差を求め
ることによって、種々の測定条件による誤差を除去する
ことができ、しかも実際には測定し得ないような、皮膚
の表面から僅かに入った部分での水分の存在位置を知る
ことができる。
Therefore, by measuring the intensity of the image of the scattered light detected by the reflection method for each light having a different absorption coefficient, the position of the irradiated light near the surface of the skin,
It is possible to know the attenuation state at a deep position from the surface of the skin. Furthermore, by obtaining the difference in the intensity of the scattered light image described above, it is possible to eliminate errors due to various measurement conditions, and at a portion slightly entering the surface of the skin that cannot be actually measured. It is possible to know the location of the water content.

【0010】上述の方法では、検出される散乱光そのも
のの強度を測定することによって、二次元的像を得るこ
となく零次元での皮膚中の水分の存在状態を求めること
ができる。
In the above-mentioned method, by measuring the intensity of the scattered light itself detected, the presence state of water in the skin in the zero dimension can be obtained without obtaining a two-dimensional image.

【0011】さらに、上述の検出方法を実現する際に
は、少なくとも2種類の波長の近赤外光で、試料である
皮膚を照明する照明手段と、皮膚からの散乱光の像を、
少なくとも2種類の波長ごとに撮像する撮像手段と、波
長ごとに撮像された散乱光の像の強度差を演算する差分
手段と、差分手段により求められた強度差の像を表示す
る表示手段とを備える装置を用いる。このため、皮膚の
所望の位置において、その表面からどの程度に深さに水
分が存在するかという情報を確実に知ることができる。
Further, when realizing the above-mentioned detection method, an illuminating means for illuminating the skin as a sample with near-infrared light of at least two kinds of wavelengths and an image of scattered light from the skin are provided.
An image pickup unit that picks up images for at least two types of wavelengths, a difference unit that calculates an intensity difference between the scattered light images picked up for each wavelength, and a display unit that displays an image of the intensity difference obtained by the difference unit. Use the equipment provided. Therefore, at a desired position on the skin, it is possible to reliably know the depth of water from the surface of the skin.

【0012】[0012]

【実施例】以下に、本発明の実施例についてその詳細を
説明する。
EXAMPLES The details of the examples of the present invention will be described below.

【0013】本発明が測定の対象とする水分子はH−O
−H結合を有しており、この結合は近赤外域の光に対し
て特徴的な吸収スペクトルを示す。
The water molecule to be measured by the present invention is H--O.
It has a -H bond, and this bond shows a characteristic absorption spectrum for light in the near infrared region.

【0014】図1は、その水分子の近赤外域の光に対す
る吸収係数を示したものであり、波長1.45μm付
近、及び1.94μm付近でその値が極大となることが
わかる。本発明は、この特性に着目してなされたもので
ある。
FIG. 1 shows the absorption coefficient of the water molecule for light in the near infrared region, and it can be seen that the value becomes maximum near the wavelengths of 1.45 μm and 1.94 μm. The present invention has been made paying attention to this characteristic.

【0015】以下に、その詳細を説明する。The details will be described below.

【0016】皮膚サンプルとして、モルモットの角層、
表皮および真皮からなる厚さの異なる試料を用意した。
この試料を積分球を用いた近赤外スペクトル測定装置に
より、透過率測定を行なった。1.45μm,1.68
μmおよび1.94μmにおける透過率と、皮膚の厚さ
との関係を示したのが図2である。図2は、1.68μ
mの光が、2mm程度の深さまで入り込んでいることを
示している。また、1.94μmの光は、200μm程
度の深さまで、1.45μmの光は950μm程度の深
さまで入り込んでいることがわかった。
As a skin sample, the horny layer of guinea pig,
Samples composed of epidermis and dermis having different thicknesses were prepared.
The transmittance of this sample was measured by a near infrared spectrum measuring device using an integrating sphere. 1.45 μm, 1.68
FIG. 2 shows the relationship between the transmittance at μm and 1.94 μm and the skin thickness. Fig. 2 shows 1.68μ
It is shown that m light has entered to a depth of about 2 mm. It was also found that the light of 1.94 μm penetrates to a depth of about 200 μm and the light of 1.45 μm penetrates to a depth of about 950 μm.

【0017】このようにして、近赤外域の各波長の光
が、被測定試料である皮膚の中をどの程度侵入するかと
いう情報を得ることができた。
In this way, it was possible to obtain information on how much light of each wavelength in the near infrared region penetrates into the skin to be measured.

【0018】次に、水分子が極大の吸収係数を有する
1.94μmと1.45μmの2波長を用い、上記で得
られた近赤外光の皮膚中での減衰特性を利用して、皮膚
中の水分の存在位置を検出する方法について詳細に説明
する。
Next, by using two wavelengths of 1.94 μm and 1.45 μm in which water molecules have a maximum absorption coefficient, the attenuation characteristics of the near infrared light obtained above in the skin are utilized to The method of detecting the existing position of moisture in the inside will be described in detail.

【0019】図3は、上述の原理を用いた装置の概略図
である。皮膚サンプル3は光源5により照明されるが、
この光源5は少なくとも2波長の近赤外光を出射するも
のである。試料であるモルモット角質膜の像は、光学レ
ンズ系6及び波長選択フィルタ7を介して赤外線ビジコ
ンカメラ8により撮像される。ここで、波長選択フィル
タ71、72はそれぞれ上記2波長の近赤外光の一方の
みを透過するようになっており、交互に切り換え得る。
なお、光源5が上記2波長の近赤外光のみを選択的に出
射できるときは、上記の波長選択フィルタは不要とな
る。
FIG. 3 is a schematic diagram of an apparatus using the above principles. The skin sample 3 is illuminated by the light source 5,
The light source 5 emits near-infrared light having at least two wavelengths. An image of the guinea pig cornea, which is a sample, is taken by the infrared vidicon camera 8 via the optical lens system 6 and the wavelength selection filter 7. Here, each of the wavelength selection filters 71 and 72 is configured to transmit only one of the near-infrared light of the above two wavelengths, and can be switched alternately.
When the light source 5 can selectively emit only the near-infrared light of the above two wavelengths, the above wavelength selection filter becomes unnecessary.

【0020】赤外線ビジコンカメラ8で撮像された角質
膜の画像データは画像処理装置9に送られ、デジタルデ
ータに変換された後、所定の処理がされる。即ち、画像
処理装置9は少なくとも画像記憶部91と画像減算部9
2を有し、2波長の画像データはそれぞれ画像記憶部9
1に記憶される。そして、画像減算部92において、減
算処理がされる。撮像された画像データの減算後の画像
データは、それぞれビデオモニタ10で必要に応じて表
示され、あるいはビデオプリンタ11で印刷される。こ
れにより、皮膚の所定の深さ情報を、二次元的に表示し
把握することができる。
The image data of the cornea taken by the infrared vidicon camera 8 is sent to the image processing device 9, converted into digital data, and then subjected to predetermined processing. That is, the image processing device 9 includes at least the image storage unit 91 and the image subtraction unit 9
2 and image data of two wavelengths are stored in the image storage unit 9 respectively.
Stored in 1. Then, the image subtraction unit 92 performs subtraction processing. The image data after the subtraction of the captured image data is displayed on the video monitor 10 as needed, or printed by the video printer 11. Thereby, the predetermined depth information of the skin can be two-dimensionally displayed and grasped.

【0021】次に、上述の装置を用いて、具体的に実験
を行った結果について説明する。まず、各波長でのイメ
ージを得るため、3種類のバンドパスフィルタを検出器
の前に設け、波長1.45μm、1.65μm、1.9
4μmのイメージをそれぞれ得た。なお、1.45μm
及び1.94μmのイメージは、それらの近傍の波長で
ある1.65μmのバンドパスフィルタを用いて得られ
たイメージを参照として用い、レシオイメージングを行
うことにより、光源の照射むら、検出器の感度むらを補
正した。
Next, the result of a concrete experiment using the above-mentioned apparatus will be described. First, in order to obtain an image at each wavelength, three types of bandpass filters are provided in front of the detector, and wavelengths of 1.45 μm, 1.65 μm, and 1.9.
Images of 4 μm were obtained respectively. In addition, 1.45 μm
And 1.94 μm images are used as a reference for images obtained by using a bandpass filter of 1.65 μm, which is a wavelength in the vicinity of them, and ratio imaging is performed to detect uneven irradiation of a light source and detector sensitivity. Corrected unevenness.

【0022】図4及び図5はそれぞれ、(1.45μm
のイメージ)/(1.65μmのイメージ)の演算によ
り補正されて得られた1.45μmのイメージI1
(1.94μmのイメージ)/(1.65μmのイメー
ジ)の演算により補正されて得られた1.94μmのイ
メージI2 を示し、それらを2つのフレームメモリにい
れた。なお、画像処理装置9において、浮動小数点演算
を行った結果を表示するため、16,000を掛けた。
FIG. 4 and FIG. 5 respectively show (1.45 μm
Image) 1./(1.55 μm image) corrected to obtain a 1.45 μm image I 1 ,
(Image 1.94) / shows the 1.94 image I 2 of the obtained corrected by calculation (image 1.65 .mu.m), and put them in a two-frame memory. In addition, in order to display the result of performing the floating point calculation in the image processing apparatus 9, 16,000 is multiplied.

【0023】次に画像処理装置9によりI1 −I2 の減
算処理をすることにより、新たなイメージI3 (図6)
が得られた。こうして得られたイメージI3 は、皮膚中
の水分がある平均深さx近傍に存在しているという情報
を含んでいる。これについて、図7を用いて説明する。
図7(a)に示す曲線a及びbはそれぞれ波長1.45
μm及び1.94μmの光が単位光量、ブタの皮膚中へ
入り込んだ時の各深さにおける光の強度を表しており、
吸収係数の小さい波長1.45μmの光のほうが、波長
1.94μmの光よりも深い位置に到達していることが
わかる。これらの光が皮膚中の水分子に吸収および散乱
されて皮膚の表面まで戻ってくる散乱反射光は、図7
(b)の曲線a2 及びb2 で示される。即ち、波長1.
45μmの光の光量は、曲線a2 のように皮膚の浅い位
置だけでなくより深い位置の水分子の存在状態を示して
おり、一方、波長1.94μmの光の光量は、曲線b2
のように、主として浅い位置での水分子の存在状態を示
していることがわかる。したがって、散乱反射後、外へ
出てきて検出された波長1.45μmの光量から波長
1.94μmの光量を引いた差を表す曲線cは、得られ
た光量の差に対応する深さでの水分の存在状態を示すこ
とになる。なお、この光量の差が持っている平均的重心
値としての深さxは、下記に示す数式1によって定量的
に求めることができるものである。
Next, a new image I 3 (FIG. 6) is obtained by subtracting I 1 -I 2 by the image processing device 9.
was gotten. The image I 3 thus obtained contains the information that the water content in the skin is in the vicinity of the average depth x. This will be described with reference to FIG.
The curves a and b shown in FIG. 7A have a wavelength of 1.45, respectively.
The light intensity of μm and 1.94 μm represents the unit light amount, and the light intensity at each depth when it enters the skin of a pig,
It can be seen that the light with a wavelength of 1.45 μm, which has a small absorption coefficient, reaches a deeper position than the light with a wavelength of 1.94 μm. Scattered reflected light that returns to the surface of the skin after being absorbed and scattered by water molecules in the skin is shown in FIG.
It is shown by the curves a 2 and b 2 in (b). That is, the wavelength 1.
The light amount of 45 μm light indicates the existence state of water molecules not only at the shallow position of the skin but also at the deeper position as shown by the curve a 2 , while the light amount of the light of wavelength 1.94 μm is equal to the curve b 2
It can be seen that the state of existence of water molecules is mainly shown in the shallow position. Therefore, the curve c representing the difference obtained by subtracting the light amount at the wavelength of 1.94 μm from the light amount at the wavelength of 1.45 μm detected after coming out after the scattering reflection is at the depth corresponding to the difference in the obtained light amount. It indicates the presence of water. The depth x, which is the average value of the center of gravity of the light amount difference, can be quantitatively determined by the following mathematical formula 1.

【0024】[0024]

【数1】 但し、k1 ,k2 は、それぞれ波長λ1 ,λ2 の近赤外
光の水を含んだ皮膚中での減衰係数である。
[Equation 1] However, k 1 and k 2 are attenuation coefficients of near-infrared light having wavelengths λ 1 and λ 2 in the skin containing water.

【0025】以上説明してきたように、このような手法
により、実際には測定していないような、皮膚表面から
わずかに入り込んだ部分に存在する水分の位置を検出す
ることができる。もちろん、二つの波長は任意に選択す
ることが可能である。どの程度の深さ付近の情報が得ら
れるかどうかは、先に図1に示した水の吸収スペクトル
により決定される。この情報を逆用すれば、二つの波長
を選択することによって、皮膚のどの程度の深さに水分
が存在するか確認する方法を提供することができる。
As described above, by such a method, it is possible to detect the position of water present in a portion slightly invading from the skin surface, which is not actually measured. Of course, the two wavelengths can be arbitrarily selected. How deep the information can be obtained is determined by the water absorption spectrum shown in FIG. By reversing this information, selecting two wavelengths can provide a way of ascertaining how deep the water is in the skin.

【0026】次に、波長ごとに検出された皮膚からの反
射散乱光の光量の差を求めることによって、皮膚中に存
在する水分の深さを検出するという手法に関し、その有
効性について以下に説明する。
Next, regarding the method of detecting the depth of water present in the skin by obtaining the difference in the amount of reflected and scattered light from the skin detected for each wavelength, its effectiveness will be described below. To do.

【0027】上記実施例で用いた皮膚等の被測定試料の
散乱による係数を10cm-1とする。この試料中に、単
位長さの水層がそれぞれの深さで存在するときの反射率
を求める。
The coefficient due to scattering of the sample to be measured such as the skin used in the above example is set to 10 cm -1 . The reflectance when a water layer having a unit length is present at each depth in this sample is obtained.

【0028】図8は、水層がそれぞれ異なった深さA〜
Dに存在するとき、用いる光として波長1.68μm、
1.87μm、及び1.94μmを選択したときの反射
率を示している。符号Eは水層が存在しないときの相対
的な反射率を示している。
FIG. 8 shows that the water layers have different depths A ...
When present in D, the wavelength of the light used is 1.68 μm,
The reflectance is shown when 1.87 μm and 1.94 μm are selected. The symbol E indicates the relative reflectance when the water layer does not exist.

【0029】図9は、水層の存在する深さを変えていっ
た時の反射率と波長との関係を連続的に示したものであ
る。明らかに、反射率より水層の存在する深さを識別す
るには、波長1.94μmでの測定がより有利であるこ
とがわかる。ところが、1.94μmでの測定だけで
は、反射率の絶対的な測定値そのものから水層の存在す
る深さを決定することになる。しかし実際には、反射率
そのものは、光源の輝度、被測定物質の表面状態、測定
物質内の二次元的位置依存性などにより変動しやすく、
反射率そのものの絶対値測定は、かなりの誤差を含み、
高い精度で水層の存在する深さを求めるのは困難であ
る。そこで、変動しやすいある特定の1波長における反
射率そのものから水層の存在する深さを求める代わり
に、二つの波長での反射率を測定することとした。即
ち、二つの波長での反射散乱光の光量差を求め、図9に
おける曲線の傾きを求めるのである。この傾きを求める
ことによって、変動する誤差の原因となる光源の安定
性、試料依存性などの問題をかなり除去できるので、よ
り高精度に水層の存在する深さを求めることができる。
特に、被測定物質の表面からの正反射によって、測定反
射光量に与えられる影響は大きく、この影響を除去でき
る長所は大きい。
FIG. 9 continuously shows the relationship between the reflectance and the wavelength when the depth at which the water layer exists is changed. Obviously, it can be seen that the measurement at the wavelength of 1.94 μm is more advantageous for distinguishing the depth at which the water layer exists from the reflectance. However, the measurement at 1.94 μm alone determines the depth at which the water layer exists from the absolute measured value of the reflectance itself. However, in reality, the reflectance itself tends to fluctuate due to the brightness of the light source, the surface state of the substance to be measured, the two-dimensional position dependency within the substance to be measured, and the like.
The absolute value measurement of the reflectance itself contains a considerable error,
It is difficult to obtain the depth of the water layer with high accuracy. Therefore, instead of obtaining the depth at which the water layer exists from the reflectance itself at one specific wavelength that tends to fluctuate, the reflectance at two wavelengths was measured. That is, the difference in the amount of reflected and scattered light at the two wavelengths is obtained, and the slope of the curve in FIG. 9 is obtained. By determining this slope, problems such as light source stability and sample dependence that cause varying errors can be considerably eliminated, so that the depth at which the water layer exists can be determined with higher accuracy.
In particular, specular reflection from the surface of the substance to be measured has a great influence on the amount of light reflected by the measurement, and there is a great advantage that this influence can be eliminated.

【0030】図10は、前述の曲線の傾きと水層の存在
する深さとの関係を表す検量線を示すものである。な
お、二波長の選択は図9にもとづき、1.87μm近傍
と1.94μm近傍を選択することが望ましい。例え
ば、波長1.87μmと1.94μmでの反射光の反射
率の差を測定したのち、検量線よりその差に対応する水
層の存在深さを検出する。また、他の波長1.91μm
を選んだ場合でも同様にすることによって、水層の深さ
を知ることが可能になる。この方法により、図8に示す
ような水層の深さに関する情報を得ることができる。
FIG. 10 is a calibration curve showing the relationship between the slope of the above curve and the depth at which the water layer exists. Note that it is desirable to select two wavelengths in the vicinity of 1.87 μm and in the vicinity of 1.94 μm based on FIG. For example, after measuring the difference in reflectance of reflected light at wavelengths of 1.87 μm and 1.94 μm, the depth of the water layer corresponding to the difference is detected from the calibration curve. In addition, other wavelengths 1.91 μm
Even if you select, the depth of the water layer can be known by doing the same. By this method, information about the depth of the water layer as shown in FIG. 8 can be obtained.

【0031】上記実施例では、二次元での各絵素ごとの
演算処理を行ったが、もちろん零次元の計測も十分可能
である。即ち、波長λ1 とλ2 における散乱光の光量R
1 及びR2 の差を求めることにより、水分が存在する深
さを定量することができる。また、上記実施例では二つ
の波長を選択して、得られる像の差を求めて深さ情報を
得たが、もちろん、三つの波長、あるいはそれ以上の多
波長を選択し、深さ情報を求めることも可能である。
In the above embodiment, the arithmetic processing is performed for each picture element in two dimensions, but of course, zero dimension measurement is also possible. That is, the light quantity R of the scattered light at the wavelengths λ 1 and λ 2
By determining the difference between 1 and R 2 , the depth at which water is present can be quantified. Further, in the above embodiment, two wavelengths were selected, and depth information was obtained by obtaining the difference between the obtained images, but of course, three wavelengths or multiple wavelengths of more than that were selected to obtain depth information. It is also possible to ask.

【0032】[0032]

【発明の効果】以上詳細に説明したように本発明によれ
ば、少なくとも異なる2種類の波長の近赤外光を皮膚に
照射し、その反射散乱光を検出あるいは撮像することに
より、皮膚中のどの深さに水分が含有されているか知る
ことができる。特に、異なる波長ごとの散乱光の光量差
あるいはその散乱光による像の強度差を求めることによ
り、種々の測定条件による誤差をほぼ完全に除去するこ
とができ、皮膚中の水分の存在位置を高精度に検出する
ことができる。
As described in detail above, according to the present invention, by irradiating the skin with near-infrared light having at least two different wavelengths, and detecting or imaging the reflected and scattered light, the skin It is possible to know at what depth water is contained. In particular, by obtaining the difference in the amount of scattered light for each different wavelength or the difference in image intensity due to the scattered light, errors due to various measurement conditions can be removed almost completely, and the presence of water in the skin can be increased. It can be detected accurately.

【0033】本発明は、反射法を用いており、皮膚の表
面より少し深い領域からの情報を入手する場合に特に有
効である。
The present invention uses the reflection method and is particularly effective for obtaining information from a region slightly deeper than the surface of the skin.

【図面の簡単な説明】[Brief description of drawings]

【図1】近赤外光に対する水分子の吸収係数を示す図で
ある。
FIG. 1 is a diagram showing an absorption coefficient of water molecules for near infrared light.

【図2】光の透過率と深さの関係を示す図である。FIG. 2 is a diagram showing a relationship between light transmittance and depth.

【図3】本発明の実施例に係る装置の概略図である。FIG. 3 is a schematic diagram of an apparatus according to an embodiment of the present invention.

【図4】測定結果を示す写真である。FIG. 4 is a photograph showing a measurement result.

【図5】測定結果を示す写真である。FIG. 5 is a photograph showing a measurement result.

【図6】測定結果を示す写真である。FIG. 6 is a photograph showing a measurement result.

【図7】演算処理の結果を示す図である。FIG. 7 is a diagram showing a result of arithmetic processing.

【図8】水層の存在位置と光の反射率の相対関係を示す
図である。
FIG. 8 is a diagram showing a relative relationship between an existing position of a water layer and light reflectance.

【図9】光の波長と反射率の連続的な関係を示す図であ
る。
FIG. 9 is a diagram showing a continuous relationship between light wavelength and reflectance.

【図10】検量線を示す図である。FIG. 10 is a diagram showing a calibration curve.

【符号の説明】[Explanation of symbols]

1…シャーレ底部、2…濾紙、31〜36…角質膜、5
…光源、6…光学レンズ系、71及び72…波長選択フ
ィルタ、8…赤外線ビジコンカメラ、9…画像処理装
置、10…ビデオモニタ、11…ビデオプリンタ。
1 ... Petri dish bottom, 2 ... Filter paper, 31-36 ... Corneal membrane, 5
... light source, 6 ... optical lens system, 71 and 72 ... wavelength selection filter, 8 ... infrared vidicon camera, 9 ... image processing device, 10 ... video monitor, 11 ... video printer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 和明 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 佐藤 宏人 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 伊達 朗 滋賀県野洲郡野洲町上屋88番地 マックス ファクター株式会社内 (72)発明者 吉井 隆 滋賀県野洲郡野洲町上屋88番地 マックス ファクター株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuaki Okumura 1126-1 Nono-shi, Hamamatsu-shi, Shizuoka Prefecture Hamamatsu Photonics Co., Ltd. (72) Hiroto Sato 1126 1126 Ichino-cho, Hamamatsu-shi, Shizuoka Prefecture Hamamatsu Photonics Co., Ltd. (72) Inventor, Akira Date, No. 88, Kamiya, Yasu-cho, Yasu-gun, Shiga Prefecture, Max Factor Co., Ltd. (72) Inventor, Takashi Yoshii, 88, Kamiya, Yasu-cho, Yasu-gun, Shiga Prefecture, Max Factor, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2種類の波長の近赤外光で皮
膚を照明し、その皮膚からの散乱光の光量を、前記少な
くとも2種類の波長ごとに検出する第1ステップと、 波長ごとに検出された前記散乱光の光量の差を求める第
2ステップと、 予め求められる前記近赤外光の皮膚中での減衰性と、前
記第2ステップで求められた前記光量の差にもとづき、
前記皮膚中に水分が存在する深さを求める第3ステップ
とを備えることを特徴とする、皮膚中の水分の存在位置
検出方法。
1. A first step of illuminating skin with near-infrared light of at least two types of wavelengths, and detecting the amount of scattered light from the skin for each of the at least two types of wavelengths, and detecting for each wavelength. Based on the difference between the amount of light obtained in the second step, and the second step of obtaining the difference in the amount of light of the scattered light obtained, attenuating the near-infrared light in the skin obtained in advance,
And a third step of determining a depth at which water exists in the skin.
【請求項2】 少なくとも2種類の波長の近赤外光で皮
膚を照明し、その皮膚からの散乱光の像を、前記少なく
とも2種類の波長ごとに撮像する第1ステップと、 波長ごとに撮像された前記散乱光の像の強度の差を求め
る第2ステップと、 予め求められる前記近赤外光の皮膚中での減衰性と、前
記第2ステップで求められた前記散乱光の像の強度の差
にもとづき、前記皮膚中に水分が存在する深さの分布を
求める第3ステップとを備えることを特徴とする、皮膚
中の水分の存在位置検出方法。
2. A first step of illuminating the skin with near-infrared light having at least two types of wavelengths, and capturing an image of scattered light from the skin for each of the at least two types of wavelengths; The second step of obtaining the difference in the intensity of the scattered light image obtained, the attenuation of the near-infrared light in the skin obtained in advance, and the intensity of the image of the scattered light obtained in the second step And a third step of obtaining a distribution of depths at which water exists in the skin based on the difference between the above.
【請求項3】 少なくとも2種類の波長の近赤外光で、
皮膚を照明する照明手段と、 前記皮膚からの散乱光の像を、前記少なくとも2種類の
波長ごとに撮像する撮像手段と、 前記波長ごとに撮像された前記散乱光の像の強度差を演
算する差分手段と、 を備えることを特徴とする、皮膚中の水分の存在位置検
出装置。
3. Near infrared light of at least two types of wavelengths,
Illuminating means for illuminating the skin, imaging means for imaging the image of the scattered light from the skin for each of the at least two types of wavelengths, and calculating an intensity difference between the images of the scattered light for each of the wavelengths. A device for detecting the presence position of water in the skin, comprising: a difference means.
【請求項4】 前記照明手段は、水分に対して十分に光
の減衰性に差異がある複数の波長の光を出射し、 前記撮像手段は、前記複数の波長ごとに前記散乱光の像
を撮像する請求項3記載の、皮膚中の水分の存在位置検
出装置。
4. The illuminating means emits light of a plurality of wavelengths having sufficiently different light attenuation properties with respect to moisture, and the imaging means forms an image of the scattered light for each of the plurality of wavelengths. The apparatus for detecting the presence position of water in the skin according to claim 3, which captures an image.
【請求項5】 前記差分手段により求められた前記散乱
光の像の強度差と、予め求められる前記波長ごとの近赤
外光の皮膚中での減衰性にもとづき、前記水分が皮膚中
に存在する深さを求める定量手段を更に備える請求項3
記載の皮膚中の水分の存在位置検出装置。
5. The water is present in the skin based on the intensity difference of the image of the scattered light obtained by the difference means and the attenuation of near-infrared light of each wavelength obtained in advance in the skin. 4. A quantifying means for determining a depth to be measured.
The device for detecting the presence position of water in the skin described.
【請求項6】 前記差分手段により求められた前記強度
差の像を表示する表示手段を更に備える請求項3記載の
皮膚中の水分の存在位置検出装置。
6. The apparatus for detecting the position of water in the skin according to claim 3, further comprising display means for displaying the image of the intensity difference obtained by the difference means.
JP16864392A 1992-06-03 1992-06-03 Method and apparatus for detecting location of water in skin Expired - Fee Related JP3255370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16864392A JP3255370B2 (en) 1992-06-03 1992-06-03 Method and apparatus for detecting location of water in skin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16864392A JP3255370B2 (en) 1992-06-03 1992-06-03 Method and apparatus for detecting location of water in skin

Publications (2)

Publication Number Publication Date
JPH05329163A true JPH05329163A (en) 1993-12-14
JP3255370B2 JP3255370B2 (en) 2002-02-12

Family

ID=15871845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16864392A Expired - Fee Related JP3255370B2 (en) 1992-06-03 1992-06-03 Method and apparatus for detecting location of water in skin

Country Status (1)

Country Link
JP (1) JP3255370B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184555A (en) * 1994-12-29 1996-07-16 Agency Of Ind Science & Technol Method for inspecting distribution of moisture
US5991433A (en) * 1996-05-23 1999-11-23 Kao Corporation Method for analyzing skin surface and apparatus therefor
US6591122B2 (en) * 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
KR100398362B1 (en) * 2000-09-01 2003-09-19 스펙트론 테크 주식회사 Method and apparatus for measuring skin moisture by using near-infrared reflectance spectroscopy
WO2003012412A3 (en) * 2001-07-25 2003-10-30 Univ Bristol Infra-red photometric stereo
US7239902B2 (en) 2001-03-16 2007-07-03 Nellor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US7657292B2 (en) 2001-03-16 2010-02-02 Nellcor Puritan Bennett Llc Method for evaluating extracellular water concentration in tissue
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US9013402B2 (en) 2010-09-14 2015-04-21 Sony Corporation Information processing device, information processing method, and program
JP2015134157A (en) * 2013-12-20 2015-07-27 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Optical brain function measurement apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184555A (en) * 1994-12-29 1996-07-16 Agency Of Ind Science & Technol Method for inspecting distribution of moisture
US5991433A (en) * 1996-05-23 1999-11-23 Kao Corporation Method for analyzing skin surface and apparatus therefor
KR100398362B1 (en) * 2000-09-01 2003-09-19 스펙트론 테크 주식회사 Method and apparatus for measuring skin moisture by using near-infrared reflectance spectroscopy
US7239902B2 (en) 2001-03-16 2007-07-03 Nellor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US7236811B2 (en) 2001-03-16 2007-06-26 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US6591122B2 (en) * 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US7657292B2 (en) 2001-03-16 2010-02-02 Nellcor Puritan Bennett Llc Method for evaluating extracellular water concentration in tissue
US8229529B2 (en) 2001-03-16 2012-07-24 Nellcor Puritan Bennett Llc Device and method for monitoring body fluid and electrolyte disorders
US8457722B2 (en) 2001-03-16 2013-06-04 Covidien Lp Device and method for monitoring body fluid and electrolyte disorders
WO2003012412A3 (en) * 2001-07-25 2003-10-30 Univ Bristol Infra-red photometric stereo
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US9013402B2 (en) 2010-09-14 2015-04-21 Sony Corporation Information processing device, information processing method, and program
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
JP2015134157A (en) * 2013-12-20 2015-07-27 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Optical brain function measurement apparatus

Also Published As

Publication number Publication date
JP3255370B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
Tyo et al. Target detection in optically scattering media by polarization-difference imaging
JP6923961B2 (en) A method for estimating the amount of blood components in a fluid canister
EP2005886B1 (en) Method and apparatus for measuring skin texture
US10648907B2 (en) Total protein measurement using whole blood refractometry
US7970456B2 (en) Method and apparatus for detecting the presence of dermal melanin in epithelial tissue
CN104968257B (en) The imaging system of probe with the guiding of EO-1 hyperion camera
JP3255370B2 (en) Method and apparatus for detecting location of water in skin
EP0712602A2 (en) Apparatus for measuring concentration of hemoglobin and method for the same
JPH10504896A (en) Apparatus and method for optical characterization of light scattering sample structure and composition
CA3054601C (en) A lateral flow test system
CN109155058A (en) Compensate optical coherence tomography scanning
JP2007178407A (en) Foreign matter intrusion inspection method for inspection object, and device used therefor
US10753862B2 (en) Method, apparatus and software for detection and localization of hidden defects in optically diffuse media
JP2021021568A (en) Light absorption amount difference measurement apparatus and light absorption amount difference measurement method, and imaging apparatus of light absorption amount difference image and imaging method of light absorption amount difference image
Kendall et al. Spectroscopic optical coherence tomography for classification of colorectal cancer in a mouse model
JP2004329888A (en) Method and apparatus for measuring concentration of specific component
JPH06123700A (en) Method and device for measuring infrared-ray absorption
JPH05332919A (en) Method and apparatus for measuring position where absorption component in scattering substance is present
WO2018215671A1 (en) Probe, system and method for analysing the skin
JP4517800B2 (en) Measuring device for optical properties of skin
Singh et al. Non-invasive blood glucose level measurement from laser reflected spectral patterns images
TW202242408A (en) Biological information measurement device, biological information measurement method, and program
WO2023078704A1 (en) Apparatuses, methods and computer program products for imaging a structure at least partially obscured, in a visible wavelength range, by a liquid
WO2022214660A1 (en) System and method for determining surface cleaning in a food manufacturing facility
ElMasry et al. Prediction of Meat Spectral Signatures in the Near Infrared Region Using Optical Properties of Main Chromophores

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees