JPH05332919A - Method and apparatus for measuring position where absorption component in scattering substance is present - Google Patents

Method and apparatus for measuring position where absorption component in scattering substance is present

Info

Publication number
JPH05332919A
JPH05332919A JP16864192A JP16864192A JPH05332919A JP H05332919 A JPH05332919 A JP H05332919A JP 16864192 A JP16864192 A JP 16864192A JP 16864192 A JP16864192 A JP 16864192A JP H05332919 A JPH05332919 A JP H05332919A
Authority
JP
Japan
Prior art keywords
light
image
wavelengths
measured
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16864192A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiramatsu
光夫 平松
Koji Muraki
広次 村木
Kazuyoshi Ota
和義 太田
Kazuaki Okumura
和明 奥村
Hiroto Sato
宏人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP16864192A priority Critical patent/JPH05332919A/en
Publication of JPH05332919A publication Critical patent/JPH05332919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain data in the depthwise direction of the presence or distribution of particles having the light absorption band in a to-be-measured scattering substance by casting lights of two different wavelengths to an object and detecting or photographing the reflected scattering light. CONSTITUTION:A to-be-measured object 1 is illuminated by a light source 2. The light source 2 outputs infrared rays of at least two kinds of wavelengths. An image of the object, 1 is photographed by arm infrared vidicon camera 5 via an optical lens system 3 and wavelength selecting filters 41, 42. Each of the filters 41, 42 allows only one of the infrared lights of the wavelengths lambda1, lambda2 to pass therethrough. The filters 41, 42 may be switched over. The image data of the object 1 obtained by the camera 5 is sent to an image processor 6. After the image data is converted to a digital data, the data is processed through a predetermined treatment. More specifically, the image data of each wavelength lambda1, lambda2 is stored in an image memory part 61, and also subjected to a subtraction process at. an image subtracting part 62. The image after the subtraction process is displayed at 7 or printed at 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、散乱かつ吸収する被測
定物中の吸収を担う成分が散乱物質内に存在する深さあ
るいはその分布を測定する方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the depth or distribution of an absorption component in an object to be scattered and absorbed in a scattering substance.

【0002】[0002]

【従来の技術】散乱光を測定することにより、吸収を担
う成分物質の濃度を光学的に測定する技術が従来から知
られている。ここで、吸収を担う成分物質すなわち被測
定分子が、溶液のような均一な媒体中に存在する場合に
は、Lambert-Beerの法則が成立し、通常の吸収法で容易
に測定できる。しかし、被測定分子が不均一な散乱媒体
中に存在する場合には、何らかの工夫が必要となる。
2. Description of the Related Art A technique for optically measuring the concentration of a component substance responsible for absorption by measuring scattered light has been conventionally known. Here, when the component substance responsible for absorption, that is, the molecule to be measured is present in a uniform medium such as a solution, Lambert-Beer's law is established, and it can be easily measured by a normal absorption method. However, when the molecule to be measured is present in a non-uniform scattering medium, some kind of device is required.

【0003】現在、各種粉粒体やフィルム、紙、布など
の水分測定、あるいは細胞懸濁液、葉片、組織片などの
測定では、二波長、三波長あるいは多波長の比較波長を
用いたり、あるいはオパールガラス法を用いて、物質の
表面状態、粒子の大きさ、色などの影響を除去する方式
が用いられている。
At present, in measuring the water content of various powders or particles, films, papers, cloths, etc., or in measuring cell suspensions, leaf pieces, tissue pieces, etc., two-wavelength, three-wavelength or multi-wavelength comparative wavelengths are used, Alternatively, the opal glass method is used to remove the influence of the surface state of the substance, the size of particles, the color, and the like.

【0004】[0004]

【発明が解決しようとする課題】先に説明した方法で
は、被測定散乱物質内の吸収を担う成分分子の散乱物質
内に存在する深さ方向の情報については、何も与えない
欠点がある。本発明は、このような課題を解決すること
を目的とする。
The method described above has a disadvantage that it does not give any information in the depth direction of the component molecules responsible for absorption in the scattering substance to be measured, which are present in the scattering substance. The present invention aims to solve such problems.

【0005】[0005]

【課題を解決するための手段】本発明に係る散乱物質内
の吸収成分の存在位置測定方法は、少なくとも2種類の
波長の光で散乱かつ吸収する被測定物を照明し、当該被
測定物からの散乱光の光量を少なくとも2種類の波長ご
とに検出する第1ステップと、波長ごとに検出された散
乱光の光量の差を求める第2ステップと、あらかじめ求
められる被測定物の波長ごとの光の減衰性と、第2ステ
ップで求められた光量の差にもとづき、散乱かつ吸収す
る被測定物内の吸収を担う成分が存在する深さを求める
第3ステップとを備える。ここで、吸収を担う成分物質
が、O−H,C−H,N−HもしくはO−D結合のいず
れかを含む分子であることが望ましい。
A method for measuring the presence position of an absorbing component in a scattering material according to the present invention illuminates an object to be measured which scatters and absorbs light of at least two kinds of wavelengths, and First step of detecting the amount of scattered light of each of at least two types of wavelengths, a second step of obtaining a difference in the amount of scattered light detected for each wavelength, and light of each wavelength of the object to be measured which is obtained in advance. And the third step of determining the depth at which the component responsible for absorption in the DUT that scatters and absorbs exists, based on the difference in the amount of light determined in the second step. Here, the component substance responsible for absorption is preferably a molecule containing any of OH, CH, NH, or OD bonds.

【0006】また、本発明に係る散乱物質内の吸収成分
の存在位置測定装置は、少なくとも2種類の波長の光で
被測定物を照明する照明手段と、被測定物からの散乱光
の像を少なくとも2種類の波長ごとに撮像する撮像手段
と、波長ごとに撮像された散乱光の像の強度差を演算す
る差分手段とを備えることを特徴とする。ここで、照明
手段は、O−H,C−H,N−HもしくはO−D結合の
いずれかを含む分子に対して十分に光の減衰性に差異が
ある複数の波長の光を出射し、撮像手段は、複数の波長
ごとに散乱光の像を撮像するようにしてもよい。さら
に、差分手段により求められた散乱光の像の強度差と、
あらかじめ求められる被測定物の波長ごとの光の減衰性
にもとづき、散乱かつ吸収する被測定物内の吸収を担う
成分が存在する深さを求める定量手段を更に備えること
が望ましい。
Further, the apparatus for measuring the existence position of the absorbing component in the scattering material according to the present invention, illuminating means for illuminating the object to be measured with light of at least two kinds of wavelengths, and an image of scattered light from the object to be measured. It is characterized by comprising an image pickup means for picking up images for at least two types of wavelengths, and a difference means for calculating an intensity difference between images of scattered light picked up for each wavelength. Here, the illuminating means emits light of a plurality of wavelengths having sufficiently different light attenuating properties with respect to a molecule containing any of OH, CH, NH, and OD bonds. The image capturing means may capture an image of scattered light for each of a plurality of wavelengths. Furthermore, the intensity difference of the scattered light image obtained by the difference means,
It is desirable to further include a quantification means for determining the depth at which the component responsible for absorption in the measured object that scatters and absorbs exists, based on the attenuability of light for each wavelength of the measured object that is obtained in advance.

【0007】[0007]

【作用】本発明が測定の対象とする散乱物質内に存在す
る吸収を担う成分は、異なる二波長の光に対して吸収ス
ペクトル(すなわち光の減衰性)に差異のある物質であ
り、このような物質としては、典型的には近赤外域の光
に吸収を持つ分子がある。具体的には、水、アルコー
ル、重水、ベンゼンあるいはn−ヘキシルアミンなどで
ある。これらの分子は、それぞれH−O−H、R−O−
H、O−D、C−H、N−H結合を持ち、これらの結合
は、赤外光域にある伸縮振動、変角振動の倍音、結合音
が、近赤外域においてそれぞれ特徴的な吸収スペクトル
を示す。
The component responsible for absorption existing in the scattering substance to be measured by the present invention is a substance having a difference in absorption spectrum (that is, light attenuating property) with respect to light of two different wavelengths. Such substances typically include molecules that absorb light in the near infrared region. Specifically, it is water, alcohol, heavy water, benzene, n-hexylamine, or the like. These molecules are H--O--H and R--O--, respectively.
It has H, O-D, C-H, and N-H bonds, and these bonds are characteristic absorptions of stretching vibration, bending vibration overtone, and combined sound in the infrared region in the near infrared region, respectively. The spectrum is shown.

【0008】これを具体的に示したのが、図1および図
2である。本発明者は、波長1100nmから2600
nmの範囲において、水、重水、エタノール、ベンゼ
ン、石油エーテル、n−ヘキシルアミンについて、その
吸収度の波長依存性を調べた。図示の通り、赤外域にお
いて、特徴的なスペクトルが確認できた。なお、測定は
200μmの光路長のセルを用いた。また、カッコの材
料については、水および重水に比べて縦軸スケールが5
倍になっている。
This is specifically shown in FIGS. 1 and 2. The present inventor has found that the wavelength is from 1100 nm to 2600.
In the range of nm, the wavelength dependence of the absorbance was investigated for water, heavy water, ethanol, benzene, petroleum ether, and n-hexylamine. As shown in the figure, a characteristic spectrum was confirmed in the infrared region. The measurement used a cell having an optical path length of 200 μm. In addition, the parenthesis material has a vertical scale of 5 compared to water and heavy water.
Doubled.

【0009】本発明は、この吸収スペクトルの特性に着
目してなされたものである。すなわち、被測定物に近赤
外光を照射した時、被測定分子の吸収係数の大きい波長
では、光は散乱媒体中の比較的表面近傍で減衰してしま
う。一方、相対的に被測定分子の吸収係数の小さい波長
では、光は散乱媒体のかなり深い部分にまで到着する。
反射法で検出される散乱光も同様に、被測定分子の吸収
スペクトルを反映した、波長に依存した散乱媒体の深さ
方向の被測定分子の含有量に関する情報が含まれてい
る。本発明は、この反射法で検出される散乱光を被測定
分子の吸収係数の異なる複数の波長で測定し、両者の光
量の差を求めることにより、散乱かつ吸収する被測定物
中の吸収を担う成分が散乱物質内に存在する深さに関す
る情報を得ている。
The present invention was made by paying attention to the characteristics of the absorption spectrum. That is, when the DUT is irradiated with near-infrared light, the light is attenuated relatively near the surface of the scattering medium at a wavelength having a large absorption coefficient of the molecule to be measured. On the other hand, at the wavelength where the absorption coefficient of the molecule to be measured is relatively small, the light reaches a considerably deep portion of the scattering medium.
Similarly, the scattered light detected by the reflection method also includes information about the content of the molecule to be measured in the depth direction of the scattering medium, which reflects the absorption spectrum of the molecule to be measured and which depends on the wavelength. The present invention measures the scattered light detected by this reflection method at a plurality of wavelengths having different absorption coefficients of the molecule to be measured, and obtains the difference in the amount of light between the two to obtain the absorption in the object to be scattered and absorbed. We have obtained information about the depth at which the responsible component is present in the scattering material.

【0010】[0010]

【実施例】具体的な実施例の説明に先立ち、本発明の原
理を更に詳しく説明する。
EXAMPLES The principle of the present invention will be described in more detail before the description of specific examples.

【0011】図3のように、被測定物の内部には測定す
べき吸収物質および散乱物質が含まれているものと仮定
し、これに二波長(λ1 、λ2 )の赤外光が照射された
とする。
As shown in FIG. 3, it is assumed that the object to be measured contains an absorbing substance and a scattering substance to be measured, and the infrared light of two wavelengths (λ 1 , λ 2 ) is included in this. It is supposed to be irradiated.

【0012】ここで、赤外光λ1 、λ2 の散乱かつ吸収
する被測定物による減衰係数はk1、k2 であり、これ
らは区別可能な程度に差があるものとする。この波長λ
1 、λ2 光の照射により、当然に波長λ1 、λ2 の散乱
反射光が検出されるが、この検出光量をD1 、D2 とす
る。
Here, the attenuation coefficients of the object to be measured which scatter and absorb the infrared light λ 1 and λ 2 are k 1 and k 2 , and these are assumed to have a distinguishable difference. This wavelength λ
Of course, the scattered reflected light of the wavelengths λ 1 and λ 2 is detected by the irradiation of the 1 and λ 2 lights, and the detected light amounts are D 1 and D 2 .

【0013】ここで、波長λ1 、λ2 の間には、散乱係
数にあまり大きな差異がない(すなわち、Mieの散乱
理論で導かれる散乱係数が略同等)と仮定すると、検出
光量D1 、D2 は吸収が支配的な減衰係数に対応した値
となり、かつ減衰係数の小さい波長(λ1 と仮定する)
の検出光量D1 は深い位置の情報を相対的により多く持
ち、減衰係数の大きい波長(λ2 と仮定する)の検出光
量検出光量D2 は浅い位置の情報を相対的により多く持
つことになる。
Assuming that there is not much difference in the scattering coefficient between the wavelengths λ 1 and λ 2 (that is, the scattering coefficients derived by Mie's scattering theory are almost equal), the detected light amount D 1 , D 2 has a value corresponding to an attenuation coefficient where absorption is dominant and has a small attenuation coefficient (assumed to be λ 1 )
The detected light amount D 1 of D has a relatively large amount of information at a deep position, and the detected light amount D 2 of a wavelength having a large attenuation coefficient (assumed to be λ 2 ) has a relatively large amount of information at a shallow position. ..

【0014】これを示したのが図4である。実線で示す
曲線a1 、a2 は、深さ:xにおける波長λ1 、λ2
照明光の強度であり、減衰係数の小さい波長λ1 の照明
光が、波長λ2 の照明光に比べて深い位置まで到達して
いることがわかる。この照明光が散乱物質で散乱されて
被測定物の表面まで戻ってくる散乱反射光は、点線で示
す曲線b1 、b2 のようになり、 b1 =a1 ×a1 、b2 =a2 ×a2 として求められる。すなわち、波長λ1 の検出光量D1
は被測定物の浅い位置だけでなく深い位置の散乱情報も
多く含み、波長λ2 の検出光量D2 は主として浅い位置
の散乱情報を多く含むことがわかる。
This is shown in FIG. Curves a 1 and a 2 shown by solid lines are the intensities of the illumination light of wavelengths λ 1 and λ 2 at the depth: x, and the illumination light of wavelength λ 1 having a small attenuation coefficient is compared to the illumination light of wavelength λ 2. You can see that it has reached a deep position. The scattered reflected light that is the illumination light scattered by the scattering substance and returns to the surface of the object to be measured is as shown by the curved lines b 1 and b 2 , and b 1 = a 1 × a 1 and b 2 = It is calculated as a 2 × a 2 . That is, the detection light amount D 1 of the wavelength lambda 1
It is understood that includes not only a shallow position of the object to be measured but also a large amount of scattering information at a deep position, and the detected light amount D 2 of the wavelength λ 2 mainly includes a large amount of shallow position scattering information.

【0015】したがって、これらの差cを c=b1 −b2 =a1 ×a1 −a2 ×a2 として求めると、Cは検出光量差D1 −D2 であり、散
乱かつ吸収する被測定物内の各深さから寄与している散
乱反射光量の分布を示していることがわかる。
Therefore, when these differences c are calculated as c = b 1 -b 2 = a 1 × a 1 -a 2 × a 2 , C is the detected light amount difference D 1 -D 2, which is scattered and absorbed. It can be seen that the distribution of the amount of scattered reflected light that contributes from each depth in the measured object is shown.

【0016】ここで被測定物からの散乱反射光量の差が
持っている平均的重心値としての深さ情報dは、例えば
下記の式
Here, the depth information d as an average barycentric value which the difference in the amount of scattered reflection light from the object to be measured has, for example, the following equation:

【0017】[0017]

【数1】 により定量的に求める。但しk1 ,k2 はそれぞれ、波
長λ1 ,λ2 の光の散乱かつ吸収する被測定物中での減
衰係数である。
[Equation 1] To obtain quantitatively. However, k 1 and k 2 are attenuation coefficients in the DUT that scatters and absorbs light of wavelengths λ 1 and λ 2 , respectively.

【0018】次に、本発明に係る測定装置および測定方
法の概要を説明する。
Next, the outline of the measuring apparatus and the measuring method according to the present invention will be described.

【0019】図5はその構成を示す概要図である。被測
定物体1は光源2により照明されるが、この光源2は少
なくとも二波長の赤外光を出力する。この被測定物体1
の像は、光学レンズ系3およびは波長選択フィルタ4
1、42を介して赤外線ビジコンカメラ5により撮像さ
れる。
FIG. 5 is a schematic diagram showing the structure. The object 1 to be measured is illuminated by a light source 2 which outputs at least two wavelengths of infrared light. This measured object 1
Image of the optical lens system 3 and the wavelength selection filter 4
An image is picked up by the infrared vidicon camera 5 via 1, 42.

【0020】ここで、波長選択フィルタ41、42はそ
れぞれ、上記二波長λ1 、λ2 の赤外光の一方のみを透
過するようになっており、交互に切り換え得る。なお、
光源2がλ1 、λ2 の赤外光のみを選択的に出力できる
ときは、上記の波長選択フィルタ41、42は不要とな
る。
Here, the wavelength selection filters 41 and 42 are adapted to transmit only one of the infrared light having the two wavelengths λ 1 and λ 2 , and can be switched alternately. In addition,
When the light source 2 can selectively output only infrared light of λ 1 and λ 2 , the wavelength selection filters 41 and 42 described above are unnecessary.

【0021】赤外線ビジコンカメラ5で撮像されたこと
による被測定物体1の画像データは画像処理装置6に送
られ、デジタルデータに変換された後、所定の処理がさ
れる。すなわち、画像処理装置6は少なくとも画像記憶
部61と画像減算部62を有し、波長λ1 、λ2 の画像
データはそれぞれ画像記憶部61に記憶される。そし
て、画像減算部62において、図4に対応する減算処理
がされる。
The image data of the object to be measured 1 captured by the infrared vidicon camera 5 is sent to the image processing device 6, converted into digital data, and then subjected to predetermined processing. That is, the image processing device 6 has at least the image storage unit 61 and the image subtraction unit 62, and the image data of the wavelengths λ 1 and λ 2 are stored in the image storage unit 61, respectively. Then, the image subtraction unit 62 performs the subtraction process corresponding to FIG.

【0022】撮像された画像データの減算後の画像デー
タは、それぞれビデオモニタ7で必要に応じて表示さ
れ、あるいはビデオプリンタ8で印刷される。これによ
り、被測定物体1の所定の深さ情報を、二次元的に表示
し把握することができる。
The image data after the subtraction of the imaged image data is displayed on the video monitor 7 as necessary or printed by the video printer 8. Thereby, the predetermined depth information of the measured object 1 can be two-dimensionally displayed and grasped.

【0023】以下に、具体的実施例について詳細に説明
する。
Specific examples will be described in detail below.

【0024】実施例1 試料としてランの葉を用い、光源にタングステンランプ
を用い、検出器に赤外ビジコンカメラを用い、演算処理
に画像解析処理装置を用いた(図5参照)。各波長での
試料のイメージを得るため、3種類のバンドパスフィル
タを検出器の前に設け、1.68μm、1.8μm、
1.94μmのイメージをそれぞれ得た。なお、1.6
8μmのイメージは1.94μmおよび1.8μmのイ
メージの参照として用い、光源の照射むら、検出器の感
度むらを補正するために用いた。
Example 1 An orchid leaf was used as a sample, a tungsten lamp was used as a light source, an infrared vidicon camera was used as a detector, and an image analysis processing device was used for arithmetic processing (see FIG. 5). In order to obtain an image of the sample at each wavelength, three types of bandpass filters were installed in front of the detector, and 1.68 μm, 1.8 μm,
Images of 1.94 μm were obtained respectively. In addition, 1.6
The 8 μm image was used as a reference for the 1.94 μm and 1.8 μm images, and was used to correct the uneven illumination of the light source and the uneven sensitivity of the detector.

【0025】(1.8μmのイメージ)/(1.64μ
mのイメージ)および(1.94μmのイメージ)/
(1.64μmのイメージ)の演算により得られたもの
を補正した1.8μmおよび1.94μmのイメージ
が、それぞれ図6乃至図8で示される写真である。な
お、画像解析処理装置において、浮動小数点演算を行な
った結果を表示するため16,000を掛けた。
(1.8 μm image) / (1.64 μ
m image) and (1.94 μm image) /
Images obtained by the calculation (image of 1.64 μm) and corrected to 1.8 μm and 1.94 μm are photographs shown in FIGS. 6 to 8, respectively. In the image analysis processing device, 16,000 was multiplied to display the result of floating point calculation.

【0026】次に、波長1.8μmと1.94μmでの
光源の強度補正および検出器の分光感度補正を行なった
後、1.8μmのイメージ(写真(図6))と1.94
μmのイメージ(写真(図7))を2つのフレームメモ
リに入れ、画像解析処理装置により{イメージ(写真
(図6))}−{イメージ(写真(図7))}の減算処
理した。これにより得られたイメージが写真(図8)で
ある。
Next, after correcting the intensity of the light source and the spectral sensitivity of the detector at the wavelengths of 1.8 μm and 1.94 μm, the image of 1.8 μm (photograph (FIG. 6)) and 1.94 are obtained.
A μm image (photograph (FIG. 7)) was placed in two frame memories, and the image analysis processing device performed a subtraction process of {image (photograph (FIG. 6))}-{image (photograph (FIG. 7))}. The image thus obtained is a photograph (FIG. 8).

【0027】次に、得られたイメージ(写真(図8))
の持っている深さ方向の情報を明らかにする。
Next, the obtained image (photograph (FIG. 8))
The information in the depth direction that the person has is revealed.

【0028】まず、波長1.8μmおよび1.94μm
光の、ランの葉中での減衰性を測定した。スペクトル測
定装置により透過率測定を行なった。透過率は厚さの増
大と共に減少し、やがてほとんど透過しなくなる。ラン
の葉の場合、1.8μmの光は1.5mm程度、また
1.94μmの光は250μm程度であり、ほとんど透
過しなくなることがわかった。
First, wavelengths of 1.8 μm and 1.94 μm
The attenuation of light in orchid leaves was measured. The transmittance was measured with a spectrum measuring device. The transmittance decreases with increasing thickness, and eventually becomes almost non-transmissive. In the case of orchid leaves, the light of 1.8 μm was about 1.5 mm, and the light of 1.94 μm was about 250 μm, and it was found that almost no light was transmitted.

【0029】これらの結果をもとに、波長1.8μmお
よび1.94μm光が、単位光量だけランの葉の中へ入
り込んだ時の各深さにおける減衰性を表わしたのが図4
である。なお、葉の中の水分分布は、深さ方向に対して
実際には不均一である場合が多いが、一様であると仮定
している。
Based on these results, FIG. 4 shows the attenuating property at each depth when light of wavelengths 1.8 μm and 1.94 μm penetrates into orchid leaves by a unit amount of light.
Is. The water distribution in the leaf is assumed to be uniform, although it is often uneven in the depth direction.

【0030】曲線a1 は1.8μmの光の葉の中での減
衰性を表わしている。曲線b1 =a1 ×a1 は1.8μ
mの光が散乱後、反射して出てくる光が持っている深さ
方向の水分含有量の情報を示している。同様に、曲線a
2 は1.94μmの光の葉の中での減衰性を表わし、曲
線b2 =a2 ×a2 は1.94μmの光が散乱後、反射
して出てくる光が持っている深さ方向の水分含有量の情
報を示している。曲線cは曲線b1 =a1 ×a1 から曲
線b2 =a2 ×a2 を減算したものである。すなわち、
曲線cは散乱反射後、外へ出てきて検出された1.8μ
mの光量から1.94μmの光量を引いたものであり、
その光量が持っている深さ方向の情報を示している。な
お、曲線cの重心深さを算出すると290μmとなっ
た。
The curve a 1 represents the attenuation of light of 1.8 μm in the leaf. The curve b 1 = a 1 × a 1 is 1.8μ
The information of the water content in the depth direction of the light that is reflected and emitted after the light of m is scattered is shown. Similarly, the curve a
2 represents the attenuation of the light of 1.94 μm in the leaf, and the curve b 2 = a 2 × a 2 shows the depth of the light that is reflected after the light of 1.94 μm is scattered. The information of the water content of the direction is shown. The curve c is obtained by subtracting the curve b 2 = a 2 × a 2 from the curve b 1 = a 1 × a 1 . That is,
The curve c is 1.8 μ which is detected after coming out after scattering reflection.
It is the light amount of m minus the light amount of 1.94 μm,
The information in the depth direction of the quantity of light is shown. The depth of the center of gravity of the curve c was calculated to be 290 μm.

【0031】この方法により、ランの葉からの1.8μ
mと1.94μmの散乱反射光量の差は、平均的重心値
としての深さdを持つことが明らかになった。もちろ
ん、二つの波長は任意に選択することが可能である。例
えば重水の測定では2.0μmと1.85μm、エタノ
ールの測定では、1.72μmと1.35μm、ベンゼ
ンの測定では1.69μmと1.62μm、石油エーテ
ルの測定では1.74μmと1.6μm、n−ヘキシル
アミンの測定では2.03μmと1.95μmが深さ方
向の情報を得る場合には望ましい。
By this method 1.8 μ from orchid leaves
It was revealed that the difference between the amount of scattered reflection light of m and 1.94 μm has the depth d as the average value of the center of gravity. Of course, the two wavelengths can be arbitrarily selected. For example, 2.0 μm and 1.85 μm for heavy water measurement, 1.72 μm and 1.35 μm for ethanol measurement, 1.69 μm and 1.62 μm for benzene measurement, and 1.74 μm and 1.6 μm for petroleum ether measurement. , N-hexylamine is preferably 2.03 μm and 1.95 μm for obtaining information in the depth direction.

【0032】また、上記の実施例では二次元での各絵素
ごとの演算処理を行なったが、もちろん零次元の計測で
も、同様にして得られる波長λ1 とλ2 における散乱光
のλ1 ,λ2 の散乱反射光量の差が、ある平均的、重心
値としての深さを持つことができる。
[0032] In the above embodiment has been performed calculation processing for each pixel in two dimensions, in course of the zero-dimensional measurement, the scattered light at the wavelength lambda 1 and lambda 2 obtained in the same manner as lambda 1 , Λ 2 , the difference in the amount of scattered reflected light can have a certain average depth as the center of gravity.

【0033】実施例2 波長ごとに検出された散乱かつ吸収する被測定物からの
反射散乱光の光量の差を求めて、吸収成分が散乱物質内
に存在する深さを求める本発明の有効性を示す例を以下
に示す。
Example 2 Effectiveness of the present invention for obtaining the depth at which the absorptive component exists in the scattering substance by obtaining the difference in the amount of the reflected and scattered light from the DUT that is scattered and absorbed detected for each wavelength. An example is shown below.

【0034】被測定試料の散乱による減衰係数を10c
-1とする。この試料中に、単位長さの水層が各深さで
存在するときの反射率を求める。図9(a)は、水層が
それぞれ異なった深さに存在するとき(A,B,Cおよ
びD)、各波長(1.68μm,1.87μmおよび
1.94μm)の光を用いたときの反射率を示してい
る。右端(E)は水層が存在しないときの反射率を示し
ている。図9(b)は、水層の存在する深さを変えてい
った時の、反射率と波長との関係を示したものである。
明らかに、水層の存在する深さを識別するには1.94
μmでの測定がより有利であることがわかる。ところ
が、1.94μmでの測定だけでは、反射率の絶対的な
測定値そのものから水層の存在する深さを決定すること
になる。但し、実際には反射率そのものは、光源の輝
度、被測定物質の表面状態、測定物質内の二次元的位置
依存性などにより変動しやすく、反射率そのものの絶対
値測定はかなりの誤差を含み、高い精度で水層の存在す
る深さを求めるのは困難である。
The attenuation coefficient due to scattering of the sample to be measured is 10c.
m- 1 . The reflectance is obtained when a water layer having a unit length exists at each depth in this sample. FIG. 9 (a) shows that when the water layers are present at different depths (A, B, C and D), light of each wavelength (1.68 μm, 1.87 μm and 1.94 μm) is used. Shows the reflectance of. The right end (E) shows the reflectance when there is no water layer. FIG. 9B shows the relationship between the reflectance and the wavelength when the depth at which the water layer exists is changed.
Clearly, to identify the depth at which the water layer exists, 1.94
It can be seen that the measurement in μm is more advantageous. However, the measurement at 1.94 μm alone determines the depth at which the water layer exists from the absolute measured value of the reflectance itself. However, in reality, the reflectance itself is likely to fluctuate due to the brightness of the light source, the surface state of the measured substance, the two-dimensional position dependence within the measured substance, etc., and the absolute value measurement of the reflectance itself involves a considerable error. , It is difficult to obtain the depth of water layer with high accuracy.

【0035】そこで、図9(b)は各深さxを徐々に変
えていった時の反射率Rと波長λとの関係を示したもの
であるが、変動しやすい、ある特定の波長における反射
率そのものから水層の存在する深さを求める代わりに、
二つの波長での反射率を測定する。すなわち、二つの波
長での反射光量の差を求め、図9(b)における曲線の
傾きを求める。この傾きを求める方法は、変動する誤差
の要因となる光源の安定性、試料依存性などの問題をか
なり除去できるので、より高精度に水層の存在する深さ
を求めることができる。特に、被測定物質の表面からの
正反射によって、測定反射光量に与えられる影響は大き
く、この影響を除去できる長所は大きい。
Therefore, FIG. 9B shows the relationship between the reflectance R and the wavelength λ when each depth x is gradually changed. Instead of finding the depth of the water layer from the reflectance itself,
Measure reflectance at two wavelengths. That is, the difference between the amounts of reflected light at the two wavelengths is obtained, and the slope of the curve in FIG. 9B is obtained. Since the method of obtaining the inclination can considerably eliminate the problems such as the stability of the light source and the sample dependence that cause the varying error, the depth at which the water layer exists can be obtained with higher accuracy. In particular, specular reflection from the surface of the substance to be measured has a great influence on the amount of light reflected by the measurement, and there is a great advantage that this influence can be eliminated.

【0036】なお、図9(b)から明らかなように、二
つの波長の選択の仕方としては1.87μm近傍と1.
92μm近傍が望ましい。曲線の傾きと、水層の存在す
る深さとの関係を示す検量線を図10に示す。但し、こ
こでは曲線の傾きは、1.87μmの反射率を基準とし
た1.91μmあるいは1.94μmの相対反射率で示
している。すなわち、1.87μmの反射率を基準とし
て、1.91μmあるいは1.94μmにおける相対反
射率を測定することにより、図9(a)に示されている
ような相対的な水層の深さに関する情報を得ることがで
きる。なお、図9(a)および(b)を求める際して
は、水の減衰係数を図1のスペクトルから1.85μm
から1.94μmまで0.01μmごとに8cm
-1(1.85μm),8.5cm-1,10cm-1,1
3.4cm-1,21.2cm-1,36.8cm-1(1.
90μm),62.5cm-1,90.8cm-1,10
5.5cm-1,114cm-1として用いた。
As is apparent from FIG. 9B, the two wavelengths can be selected in the vicinity of 1.87 μm and 1.
Around 92 μm is desirable. A calibration curve showing the relationship between the slope of the curve and the depth at which the water layer exists is shown in FIG. However, the slope of the curve is shown here as a relative reflectance of 1.91 μm or 1.94 μm with reference to the reflectance of 1.87 μm. That is, by measuring the relative reflectance at 1.91 μm or 1.94 μm with reference to the reflectance of 1.87 μm, the relative depth of the water layer as shown in FIG. You can get information. When obtaining FIGS. 9A and 9B, the attenuation coefficient of water is 1.85 μm from the spectrum of FIG.
From 1.94 μm to 0.01 cm every 8 cm
-1 (1.85 μm), 8.5 cm -1 , 10 cm -1 , 1
3.4 cm -1 , 21.2 cm -1 , 36.8 cm -1 (1.
90 μm), 62.5 cm -1 , 90.8 cm -1 , 10
It was used as 5.5 cm −1 and 114 cm −1 .

【0037】本発明は、植物の葉だけでなく農産物、食
料品、動物生体あるいは紙、合板、塗膜などの深さ(厚
さ)方向の被測定分子の含有量の情報を得るために適用
可能である。また、実施例では、二つの波長を選択し
て、得られる光量の差を求めて、深さ情報を得たが、も
ちろん三つの波長、あるいはそれ以上の多波長を選択
し、深さ情報を求めるのことも可能である。
The present invention is applied to obtain information on the content of molecules to be measured in the depth (thickness) direction of not only plant leaves but also agricultural products, foodstuffs, animal organisms, or paper, plywood, coatings, etc. It is possible. Further, in the embodiment, two wavelengths are selected, the difference in the obtained light amount is obtained, and the depth information is obtained, but of course, three wavelengths or multiple wavelengths more than that are selected, and the depth information is obtained. It is also possible to ask.

【0038】[0038]

【発明の効果】本発明によれば、異なる2種類の波長の
光(赤外光)を照射し、反射散乱光を検出あるいは撮像
することにより、被測定散乱物質中の光吸収帯を持つ分
子の存在あるいは分布に関して、深さ方向の情報を得る
ことができるようになる。例えば、葉の水分イメージン
グでは、はじめて平均的、重心値として表面から0.3
mm程度深い場所、近傍の水分量を、本発明の方法によ
りイメージングすることができた。本発明は反射法を用
いており、表面より少し深い領域からの情報を入手する
場合に、特に有効である。
According to the present invention, by irradiating light (infrared light) of two different wavelengths and detecting or imaging reflected scattered light, a molecule having a light absorption band in the scattering material to be measured. It becomes possible to obtain information in the depth direction regarding the existence or distribution of. For example, in leaf moisture imaging, the average value of the center of gravity is 0.3 from the surface for the first time.
By the method of the present invention, it was possible to image the water content in the vicinity of a place about mm deep. The present invention uses the reflection method, and is particularly effective when acquiring information from a region slightly deeper than the surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】光吸収スペクトルの計測値を示すグラフ。FIG. 1 is a graph showing measured values of a light absorption spectrum.

【図2】光吸収スペクトルの計測値を示すグラフ。FIG. 2 is a graph showing measured values of light absorption spectra.

【図3】本発明方法の原理説明図。FIG. 3 is an explanatory view of the principle of the method of the present invention.

【図4】本発明方法の原理説明図。FIG. 4 is an explanatory view of the principle of the method of the present invention.

【図5】実施例の装置の構成図。FIG. 5 is a configuration diagram of an apparatus according to an embodiment.

【図6】測定結果を示す写真。FIG. 6 is a photograph showing the measurement results.

【図7】測定結果を示す写真。FIG. 7 is a photograph showing the measurement results.

【図8】測定結果を示す写真。FIG. 8 is a photograph showing the measurement results.

【図9】実施例の説明図。FIG. 9 is an explanatory diagram of an example.

【図10】実施例の説明図。FIG. 10 is an explanatory diagram of an example.

【符号の説明】[Explanation of symbols]

1…試料、2…光源、3…光学系、41,42…波長選
択フィルタ、5…赤外線ビジコンカメラ、6…画像処理
装置、7…ビデオモニタ、8…ビデオプリンタ。
1 ... Sample, 2 ... Light source, 3 ... Optical system, 41, 42 ... Wavelength selection filter, 5 ... Infrared vidicon camera, 6 ... Image processing device, 7 ... Video monitor, 8 ... Video printer.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月25日[Submission date] February 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】測定結果を示す薄膜の写真。FIG. 6 is a photograph of a thin film showing measurement results.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】 明細書[Document name to be amended] Statement

【補正対象項目名】 図7[Name of item to be corrected] Figure 7

【補正方法】 変更[Correction method] Change

【補正の内容】[Contents of correction]

【図7】測定結果を示す薄膜の写真。FIG. 7 is a photograph of a thin film showing measurement results.

【手続補正3】[Procedure 3]

【補正対象書類名】 明細書[Document name to be amended] Statement

【補正対象項目名】 図8[Name of item to be corrected] Fig. 8

【補正方法】 変更[Correction method] Change

【補正の内容】[Contents of correction]

【図8】測定結果を示す薄膜の写真。FIG. 8 is a photograph of a thin film showing measurement results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 和明 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 佐藤 宏人 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuaki Okumura 1126-1 Nono-shi, Hamamatsu-shi, Shizuoka Prefecture 1126 Hamamatsu Photonics Co., Ltd. (72) Hiroto Sato 1126 1126 Ichino-cho, Hamamatsu-shi, Shizuoka Prefecture Within Photonics Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2種類の波長の光で散乱かつ
吸収する被測定物を照明し、当該被測定物からの散乱光
の光量を前記少なくとも2種類の波長ごとに検出する第
1ステップと、 波長ごとに検出された前記散乱光の光量の差を求める第
2ステップと、 あらかじめ求められる前記被測定物の前記波長ごとの光
の減衰性と、前記第2ステップで求められた前記光量の
差にもとづき、前記散乱かつ吸収する被測定物内の吸収
を担う成分が存在する深さを求める第3ステップとを備
えることを特徴とする散乱物質内の吸収成分の存在位置
測定方法。
1. A first step of illuminating an object to be measured which scatters and absorbs light having at least two kinds of wavelengths, and detecting the amount of scattered light from the object to be measured for each of the at least two kinds of wavelengths. A second step of obtaining a difference in the light amount of the scattered light detected for each wavelength, an attenuating property of the light of each wavelength of the measured object, which is obtained in advance, and a difference in the light amount obtained in the second step. And a third step of determining a depth at which the component responsible for absorption in the object to be scattered and absorbed is present, based on the above.
【請求項2】 前記吸収を担う成分が、O−H,C−
H,N−HもしくはO−D結合のいずれかを含む分子で
ある請求項1記載の散乱物質内の吸収成分の存在位置測
定方法。
2. The component responsible for the absorption is OH, C-
The method for measuring the existing position of an absorbing component in a scattering material according to claim 1, wherein the method is a molecule containing any of H, N-H, and O-D bonds.
【請求項3】 少なくとも2種類の波長の光で被測定物
を照明し、当該被測定物からの散乱光の像を前記少なく
とも2種類の波長ごとに撮像する第1ステップと、 波長ごとに撮像された前記散乱光の像の強度の差を求め
る第2ステップと、 あらかじめ求められる前記被測定物の前記波長ごとの光
の減衰性と、前記第2ステップで求められた前記散乱光
の像の強度の差にもとづき、前記散乱かつ吸収する被測
定物内の吸収を担う成分が存在する深さの分布を求める
第3ステップとを備えることを特徴とする散乱物質内の
吸収成分の存在位置測定方法。
3. A first step of illuminating an object to be measured with light of at least two types of wavelengths, and capturing an image of scattered light from the object of measurement for each of the at least two types of wavelengths; and capturing for each wavelength. A second step of obtaining a difference in the intensity of the scattered light image obtained, an attenuating property of the light of each wavelength of the measured object which is obtained in advance, and an image of the scattered light image obtained in the second step. And a third step of obtaining a depth distribution in which the component responsible for absorption in the object to be scattered and absorbed is present based on the difference in intensity. Method.
【請求項4】 前記吸収を担う成分が、O−H,C−
H,N−HもしくはO−D結合のいずれかを含む分子で
ある請求項3記載の散乱物質内の吸収成分の存在位置測
定方法。
4. The component responsible for the absorption is OH, C-
The method for measuring the existing position of an absorptive component in a scattering material according to claim 3, wherein the method is a molecule containing any of H, N-H, and O-D bonds.
【請求項5】 少なくとも2種類の波長の光で被測定物
を照明する照明手段と、 前記被測定物からの散乱光の像を前記少なくとも2種類
の波長ごとに撮像する撮像手段と、 前記波長ごとに撮像された前記散乱光の像の強度差を演
算する差分手段とを備えることを特徴とする散乱物質内
の吸収成分の存在位置測定装置。
5. An illuminating means for illuminating an object to be measured with light of at least two kinds of wavelengths, an imaging means for picking up an image of scattered light from the object to be measured for each of the at least two kinds of wavelengths, and the wavelengths. And a difference unit that calculates a difference in intensity of the images of the scattered light taken for each of the images.
【請求項6】 前記照明手段は、O−H,C−H,N−
HもしくはO−D結合のいずれかを含む分子に対して十
分に光の減衰性に差異がある複数の波長の光を出射し、 前記撮像手段は、前記複数の波長ごとに前記散乱光の像
を撮像する請求項5記載の散乱物質内の吸収成分の存在
位置測定装置。
6. The illuminating means is OH, CH, N-
The light having a plurality of wavelengths having sufficiently different light attenuating properties with respect to the molecule containing either the H or the O-D bond is emitted, and the imaging unit is an image of the scattered light for each of the plurality of wavelengths. The apparatus for measuring the existing position of the absorbing component in the scattering material according to claim 5, which captures an image.
【請求項7】 前記差分手段により求められた前記散乱
光の像の強度差と、あらかじめ求められる前記被測定物
の前記波長ごとの光の減衰性にもとづき、前記散乱かつ
吸収する被測定物内の吸収を担う成分が存在する深さを
求める定量手段を更に備える請求項5記載の散乱物質内
の吸収成分の存在位置測定装置。
7. The inside of the DUT that scatters and absorbs based on the intensity difference of the image of the scattered light obtained by the difference means and the attenuation of the light of each wavelength of the DUT that is obtained in advance. The apparatus for measuring the existing position of an absorbing component in a scattering material according to claim 5, further comprising a quantifying means for obtaining a depth at which a component responsible for absorption of the component exists.
【請求項8】 前記差分手段により求められた前記強度
差の像を表示する表示手段を更に備える請求項5記載の
散乱物質内の吸収成分の存在位置測定装置。
8. The apparatus for measuring the position of an absorptive component in a scattering material according to claim 5, further comprising display means for displaying an image of the intensity difference obtained by the difference means.
JP16864192A 1992-06-03 1992-06-03 Method and apparatus for measuring position where absorption component in scattering substance is present Pending JPH05332919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16864192A JPH05332919A (en) 1992-06-03 1992-06-03 Method and apparatus for measuring position where absorption component in scattering substance is present

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16864192A JPH05332919A (en) 1992-06-03 1992-06-03 Method and apparatus for measuring position where absorption component in scattering substance is present

Publications (1)

Publication Number Publication Date
JPH05332919A true JPH05332919A (en) 1993-12-17

Family

ID=15871808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16864192A Pending JPH05332919A (en) 1992-06-03 1992-06-03 Method and apparatus for measuring position where absorption component in scattering substance is present

Country Status (1)

Country Link
JP (1) JPH05332919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352067A (en) * 1998-05-19 1999-12-24 Agrovision Ab Component concentration determining apparatus and component uniformity determining apparatus
WO2003012412A3 (en) * 2001-07-25 2003-10-30 Univ Bristol Infra-red photometric stereo
JP2010012076A (en) * 2008-07-04 2010-01-21 Kao Corp Method of measuring dermal moisture quantity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352067A (en) * 1998-05-19 1999-12-24 Agrovision Ab Component concentration determining apparatus and component uniformity determining apparatus
JP4647046B2 (en) * 1998-05-19 2011-03-09 マルバーン インストゥルメンツ リミテッド Component concentration determination apparatus, component concentration determination method, and pharmaceutical preparation method
WO2003012412A3 (en) * 2001-07-25 2003-10-30 Univ Bristol Infra-red photometric stereo
JP2010012076A (en) * 2008-07-04 2010-01-21 Kao Corp Method of measuring dermal moisture quantity

Similar Documents

Publication Publication Date Title
CA1312377C (en) Process for optical quality determination of flat glass or flat glass articles
Tyo et al. Target detection in optically scattering media by polarization-difference imaging
Foschum et al. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media
JP4824017B2 (en) Apparatus and method for inspecting material flow by light scattering inside the material
US20060239547A1 (en) Use of optical skin measurements to determine cosmetic skin properties
KR101002564B1 (en) Bio-Photonic-Scanning Calibration Method
Berntsson et al. Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry
DE69113806D1 (en) DEVICE FOR DETERMINING SURFACE CHARACTERISTICS WITH THE AID OF EVALUATING OPTICAL REFLECTIONS.
JP2000028544A (en) Near-infrared ray type foreign material inspection device
JP3255370B2 (en) Method and apparatus for detecting location of water in skin
US20030047135A1 (en) Method and apparatus for measuring coating
JP2007178407A (en) Foreign matter intrusion inspection method for inspection object, and device used therefor
JP2003501623A (en) Method and apparatus for detecting foreign matter in a fiber composite moved in a longitudinal direction
JP7239595B2 (en) Method for measuring the transmittance of superabsorbents
Awais et al. Quantitative prediction of moisture content distribution in acetylated wood using near-infrared hyperspectral imaging
JP3246209B2 (en) Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance
US6355931B1 (en) System and method for 100% moisture and basis weight measurement of moving paper
JPH05332919A (en) Method and apparatus for measuring position where absorption component in scattering substance is present
DE3204146C2 (en) Infrared thermography reflection method
JPH06123700A (en) Method and device for measuring infrared-ray absorption
JPH09113245A (en) Device for detecting abnormality of belt-shaped surface on web material
JPH07143967A (en) Method and apparatus for measuring light transmissivity of skin
Gowen et al. Influence of polymer packaging films on hyperspectral imaging data in the visible–near-infrared (450–950 nm) wavelength range
JPH0235338A (en) Method for monitoring and controlling holding of chemical component in water/cellulose slurry to be treated
Qin et al. Measurement of the optical properties of apples using hyperspectral diffuse reflectance imaging