JPH05327397A - Saw device - Google Patents

Saw device

Info

Publication number
JPH05327397A
JPH05327397A JP4129023A JP12902392A JPH05327397A JP H05327397 A JPH05327397 A JP H05327397A JP 4129023 A JP4129023 A JP 4129023A JP 12902392 A JP12902392 A JP 12902392A JP H05327397 A JPH05327397 A JP H05327397A
Authority
JP
Japan
Prior art keywords
bgs
acoustic wave
piezoelectric substrate
surface acoustic
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4129023A
Other languages
Japanese (ja)
Other versions
JP3198613B2 (en
Inventor
Koichi Hayashi
宏一 林
Michio Kadota
道雄 門田
Toshihiko Kikko
敏彦 橘高
Akira Ando
陽 安藤
Toshiaki Kachi
敏晃 加地
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP12902392A priority Critical patent/JP3198613B2/en
Publication of JPH05327397A publication Critical patent/JPH05327397A/en
Application granted granted Critical
Publication of JP3198613B2 publication Critical patent/JP3198613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To provide a device, which enlarges an electric/mechanical coupling coefficient, peak/bottom ratio and maximum phase angle, improves heat resistance and reduces the temperature dependency, concerning the surface acoustic wave (SAW) device utilizing SH type SAW. CONSTITUTION:This is a SAW device utilizing the SH type SAW and a piezoelectric board 1 is expressed by the general formula of (Pb1-xMex)[(Mn1/3Nb2/3)aTibZrc]O3. However, this is established on the condition of 0. 005<=x<=0.10, 0.01<=a<=0.14, 0.40<=b<=0.60, 0.26<=c<=0.59 and a+b+c=1.00, and this device is composed of piezoelectric ceramics for which Me is one kind selected out of a group composed of Ca, Ba and Sr at least.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、BGS波やラブ波等の
ように変位が表面波伝播方向と垂直な方向の変位を主体
とするSHタイプの表面波を利用した表面波装置に関
し、特に、圧電基板を構成する材料を改良することによ
り共振特性及び耐熱性が高められた表面波装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device using an SH type surface acoustic wave whose displacement is mainly in a direction perpendicular to the surface acoustic wave propagation direction such as BGS wave and Love wave. The present invention relates to a surface acoustic wave device having improved resonance characteristics and heat resistance by improving a material forming a piezoelectric substrate.

【0002】[0002]

【従来の技術】圧電基板を伝播する表面波のうち、変位
が伝播方向と垂直な方向の変位を主体とするSHタイプ
の表面波としてBGS波が知られている。図1は、従来
より公知のBGS波を利用した表面波共振子を示す。図
1において、1は圧電基板を示し、圧電セラミックス等
の圧電材料により構成されている。圧電基板1の上面に
は、くし歯電極2,3が形成されている。くし歯電極
2,3は、互いに間挿し合う複数の電極指2a,3aを
有する。なお、矢印Pは分極方向を示す。
2. Description of the Related Art Among surface waves propagating in a piezoelectric substrate, a BGS wave is known as an SH type surface wave whose displacement is mainly a displacement in a direction perpendicular to the propagation direction. FIG. 1 shows a conventionally known surface wave resonator utilizing BGS waves. In FIG. 1, reference numeral 1 denotes a piezoelectric substrate, which is made of a piezoelectric material such as piezoelectric ceramics. Comb-shaped electrodes 2 and 3 are formed on the upper surface of the piezoelectric substrate 1. The comb-teeth electrodes 2 and 3 have a plurality of electrode fingers 2a and 3a which are mutually inserted. The arrow P indicates the polarization direction.

【0003】図1に示した表面波共振子4では、くし歯
電極2,3から交流電界を印加することにより、表面波
伝播方向Xと垂直な方向の変位のみ、すなわち横波成分
しか有しないBGS波が励振される。そして、励振され
たBGS波は、圧電基板1の自由端面1a,1b間にお
いて完全に反射される。従って、レーリー波を利用した
表面波共振子では、くし歯電極の側方に反射器を構成す
る必要があったのに対し、BGS波を利用した表面波共
振子4では、このような反射器を省略することができ
る。よって、レーリー波を利用した表面波共振子に比べ
て、チップサイズを1/10程度と大幅に小型化するこ
とができ、かつ自由端面1a,1bの精度を高めること
により、5MHz〜70MHzの高周波帯域で使用し得
るデバイスを提供することができるという大きな利点を
有する。
In the surface wave resonator 4 shown in FIG. 1, by applying an AC electric field from the comb-teeth electrodes 2 and 3, only the displacement in the direction perpendicular to the surface wave propagation direction X, that is, the BGS having only the transverse wave component. The waves are excited. The excited BGS wave is completely reflected between the free end faces 1a and 1b of the piezoelectric substrate 1. Therefore, in the surface wave resonator using the Rayleigh wave, it is necessary to form a reflector on the side of the comb electrode, whereas in the surface wave resonator 4 using the BGS wave, such a reflector is used. Can be omitted. Therefore, compared to a surface wave resonator using Rayleigh waves, the chip size can be significantly reduced to about 1/10, and the accuracy of the free end surfaces 1a and 1b can be improved, thereby increasing the high frequency of 5 MHz to 70 MHz. It has the great advantage of being able to provide a device that can be used in the band.

【0004】また、特願平2−131592号には、上
記のような構造を有する表面波共振子4において、イン
ピーダンス−周波数特性曲線上に現れるリップルや不要
応答を低減するためには、圧電基板1を構成するための
圧電材料として、弾性定数C 33 D の弾性定数C44 E に対
する比C33 D/44 E が4より大きな材料を用いればよい
ことが開示されている。
Japanese Patent Application No. Hei 2-131592 discloses that
In the surface acoustic wave resonator 4 having the structure described above,
Pedance-No ripple or unnecessary appearing on the frequency characteristic curve
In order to reduce the response, it is necessary to configure the piezoelectric substrate 1.
As a piezoelectric material, the elastic constant C 33 DElastic constant C44 EAgainst
Ratio C33 D /C44 EUse a material with a value greater than 4
It is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、BGS
波を利用した表面波共振子4を実際に作製した場合、自
由端面1a,1bの精度を高め、かつ上記先行技術に記
載の圧電材料を用いた場合、リップルや不要応答を低減
することは可能であるものの、共振の最大位相角が小さ
く、共振周波数におけるインピーダンス(Zr)と***
振周波数におけるインピーダンス(Za)の比である山
谷比=20log(Za/Zr)が比較的小さかった。
However, the BGS
When the surface wave resonator 4 utilizing waves is actually manufactured, the precision of the free end faces 1a and 1b can be improved, and when the piezoelectric material described in the above-mentioned prior art is used, ripples and unnecessary responses can be reduced. However, the maximum phase angle of resonance was small, and the peak-valley ratio = 20 log (Za / Zr), which is the ratio of the impedance (Zr) at the resonance frequency and the impedance (Za) at the anti-resonance frequency, was relatively small.

【0006】その結果、上記のような表面波共振子4
を、発振子として使用した場合、発振が生じなかった
り、発振が生じたとしても発振停止が生じやすいという
問題があった。また、BGS波を利用した表面波共振子
4では、共振周波数の温度依存性が比較的大きく、例え
ばはんだ付けの際の高温にさらされた場合、共振特性が
大きく変化するという問題があった。よって、チップサ
イズの小型化及び高周波域における応用が可能であると
いう大きな利点を有するものの、上記のような種々の問
題点を解決することが渇望されていた。
As a result, the surface wave resonator 4 as described above is used.
When used as an oscillator, there is a problem that oscillation does not occur, or even if oscillation occurs, oscillation is likely to stop. Further, in the surface wave resonator 4 using the BGS wave, the temperature dependence of the resonance frequency is relatively large, and there is a problem that the resonance characteristics change significantly when exposed to a high temperature during soldering, for example. Therefore, although there is a great advantage that the chip size can be reduced and application in a high frequency range is possible, it has been eagerly desired to solve the above various problems.

【0007】本発明の目的は、インピーダンス−周波数
特性における共振の最大位相角が十分に大きく、かつ上
記山谷比が大きく、さらに耐熱性に優れ、共振周波数の
温度依存性の小さい、SHタイプの表面波を利用した表
面波装置を提供することにある。
An object of the present invention is to provide an SH-type surface having a sufficiently large maximum phase angle of resonance in impedance-frequency characteristics, a large peak-valley ratio, excellent heat resistance, and small temperature dependence of resonance frequency. An object is to provide a surface wave device using waves.

【0008】[0008]

【課題を解決するための手段】本発明者らは、BGS波
を利用した表面波装置において、自由端面の精度を可能
な限り高めても上記のような問題が生じることに鑑み、
圧電基板を構成するための圧電材料を種々用意し、検討
した結果、下記の特定の圧電セラミックスを用いれば、
上記課題を達成し得ることを見出し、本発明をなすに至
った。すなわち、本発明は、圧電基板を伝播する表面波
のうち変位が表面波伝播方向と垂直な方向の変位を主体
とする表面波を利用し、分極軸が表面波伝播方向と垂直
方向でありかつ圧電基板表面と平行とされている表面波
装置において、圧電基板が、一般式(Pb1-x Mex
{(Mn1/3 Nb2/3 a Tib Zrc }O3で表され
る圧電セラミックスにより構成されていることを特徴と
する。
DISCLOSURE OF THE INVENTION The inventors of the present invention have considered that in a surface acoustic wave device using BGS waves, the above problems occur even if the accuracy of the free end surface is increased as much as possible.
As a result of examining various piezoelectric materials for forming the piezoelectric substrate and using the following specific piezoelectric ceramics,
The inventors have found that the above problems can be achieved, and have completed the present invention. That is, the present invention uses a surface wave whose displacement is mainly a displacement in a direction perpendicular to the surface wave propagation direction among surface waves propagating in the piezoelectric substrate, and the polarization axis is perpendicular to the surface wave propagation direction and In a surface acoustic wave device which is parallel to the surface of the piezoelectric substrate, the piezoelectric substrate has a general formula (Pb 1-x Me x )
It is characterized by being composed of a piezoelectric ceramic represented by {(Mn 1/3 Nb 2/3 ) a Ti b Zr c } O 3 .

【0009】なお、上記一般式において、Meは、C
a、Ba及びSrからなる群から選択した少なくとも一
種を示す。また、x及びa〜cは、それぞれ、下記の関
係を満足することが必要である。 0.005≦x≦0.10 0.01≦a≦0.14 0.40≦b≦0.60 0.26≦c≦0.59 a+b+c=1.00
In the above general formula, Me is C
At least one selected from the group consisting of a, Ba and Sr is shown. Further, x and a to c are required to satisfy the following relationships, respectively. 0.005 ≦ x ≦ 0.10 0.01 ≦ a ≦ 0.14 0.40 ≦ b ≦ 0.60 0.26 ≦ c ≦ 0.59 a + b + c = 1.00

【0010】[0010]

【作用】本発明では、圧電基板が上記特定の組成の圧電
セラミックスにより構成されているため、後述の実施例
から明らかなように、共振の最大位相角及び山谷比が十
分大きな値とされており、かつ耐熱性も高められてい
る。なお、上記特定の組成範囲を選択した理由は、以下
の通りである。 上記一般式において、aを0.005以上、0.1
以下としたのは、0.005未満では、共振周波数の温
度依存性が改善されず、0.1を越えると、キュリー温
度が低下し、耐熱性が低下するからである。 また、aを0.01以上、0.14以下としたの
は、0.01未満では、BGS波についての電気機械結
合係数を十分な大きさの値とすることができず、かつ山
谷比も小さくなるからであり、0.14を越えると、キ
ュリー温度が低下し、耐熱性が低下するからである。
In the present invention, since the piezoelectric substrate is composed of the piezoelectric ceramic having the above-mentioned specific composition, the maximum phase angle of resonance and the peak-to-valley ratio are set to sufficiently large values, as will be apparent from the examples described later. And, the heat resistance is also improved. The reason for selecting the above specific composition range is as follows. In the above general formula, a is 0.005 or more, 0.1
The reason for the above is that if it is less than 0.005, the temperature dependence of the resonance frequency is not improved, and if it exceeds 0.1, the Curie temperature is lowered and the heat resistance is lowered. Further, the reason that a is set to 0.01 or more and 0.14 or less is that if it is less than 0.01, the electromechanical coupling coefficient for the BGS wave cannot be a sufficiently large value, and the peak-to-valley ratio is also large. The reason is that if it exceeds 0.14, the Curie temperature is lowered and the heat resistance is lowered.

【0011】 bを0.4以上、0.6以下としたの
は、0.4未満ではBGS波についての十分な大きさの
電気機械結合係数を得ることができず、山谷比も小さ
く、かつ共振周波数の温度依存性が大きくなるからであ
り、0.60を越えると、所望の大きさの電気機械結合
係数を実現することができないからである。cを0.2
6以上、0.59以下としたのは、0.26未満では、
所望の高いBGS波の電気機械結合係数を実現すること
ができず、かつ山谷比も小さくなるからであり、0.5
9以下としたのは、a及びbを上記の範囲に選択したこ
とによる。
B is set to be 0.4 or more and 0.6 or less because when it is less than 0.4, a sufficiently large electromechanical coupling coefficient for BGS waves cannot be obtained, and the peak-to-valley ratio is small, and This is because the temperature dependence of the resonance frequency becomes large, and if it exceeds 0.60, the electromechanical coupling coefficient of a desired size cannot be realized. c is 0.2
6 or more and 0.59 or less is less than 0.26,
This is because the desired high electromechanical coupling coefficient of BGS waves cannot be realized, and the peak-to-valley ratio becomes small.
The reason why it is set to 9 or less is that a and b are selected in the above range.

【0012】[0012]

【実施例】以下、本発明の実施例を説明することによ
り、本発明を明らかにする。主発原料として、PbO、
TiO2 、MnCO3 、Nb2 5 、CaO、BaO、
SrO及びZrO2 を用意した。これらの各粉末を秤量
し、下記の表1に示す組成を有する試料番号1〜20の
原料粉末を用意した。得られた各原料粉末をボールミル
により湿式混合及び粉砕し、しかる後700〜900℃
の温度で仮焼した。次に、仮焼された各原料粉末100
重量部に対し、有機バインダーとしてポリビニルアルコ
ール(PVA)を5重量部加え、湿式粉砕し、整粒し、
しかる後平板状の形状となるように成形した。
EXAMPLES The present invention will be clarified by describing examples of the present invention. As the main raw material, PbO,
TiO 2 , MnCO 3 , Nb 2 O 5 , CaO, BaO,
SrO and ZrO 2 were prepared. Each of these powders was weighed to prepare raw material powders of sample numbers 1 to 20 having the compositions shown in Table 1 below. Each raw material powder obtained is wet-mixed and pulverized by a ball mill, and then 700 to 900 ° C.
It was calcined at the temperature of. Next, each calcined raw material powder 100
5 parts by weight of polyvinyl alcohol (PVA) as an organic binder is added to the parts by weight, wet pulverized, and sized,
Then, it was molded into a flat plate shape.

【0013】得られた各成形体を、1000〜1300
℃の温度で焼成し、平板状の磁器基板を得た。焼成後、
得られた各磁器基板を研磨し、分極用の電極を形成し、
50〜200℃の絶縁油中において2〜3.5kV/m
mの電場に置き、30〜60分間分極処理することによ
り、磁器基板表面と平行な方向に分極した。次に、上記
のようにして分極処理された磁器基板の一方主面に、図
2に示したくし歯電極2,3を形成し、BGS波を利用
した表面波共振子を作製した。
[0013] Each of the resulting molded body, 1000 ~ 1300
Firing was performed at a temperature of ° C to obtain a flat porcelain substrate. After firing
Polishing each obtained porcelain substrate to form an electrode for polarization,
2 to 3.5 kV / m in insulating oil at 50 to 200 ° C
It was placed in an electric field of m and polarized for 30 to 60 minutes to polarize it in a direction parallel to the surface of the porcelain substrate. Next, the comb-teeth electrodes 2 and 3 shown in FIG. 2 were formed on one main surface of the porcelain substrate polarized as described above, and a surface wave resonator utilizing BGS waves was produced.

【0014】試料番号1〜20の各原料粉末を用いて得
られた各表面波共振子につき、それぞれ、BGS波の電
気機械結合係数(KBGS )、山谷比{20log(Za
/Zr)}及び共振の最大位相角及び耐熱温度を下記の
要領で測定した。結果を、下記の表2に示す。インピー
ダンス測定器を用いることにより、共振周波数、***振
周波数、並びに共振周波数及び***振周波数におけるイ
ンピーダンス値及び位相を測定し、計算により、上記K
BGS 、山谷比及び最大位相角を求めた。なお、耐熱温度
については、上記表面波共振子の圧電性の消失する温
度、すなわちキュリー温度を測定し、耐熱温度とした。
For each surface acoustic wave resonator obtained by using each raw material powder of sample Nos. 1 to 20, the electromechanical coupling coefficient ( KBGS ) of BGS wave and the mountain valley ratio {20log (Za
/ Zr)}, the maximum phase angle of resonance, and the heat resistant temperature were measured in the following manner. The results are shown in Table 2 below. By using an impedance measuring device, the resonance frequency, the anti-resonance frequency, and the impedance value and the phase at the resonance frequency and the anti-resonance frequency are measured, and the above K
BGS , mountain valley ratio and maximum phase angle were calculated. Regarding the heat resistant temperature, the temperature at which the piezoelectricity of the surface acoustic wave resonator disappears, that is, the Curie temperature was measured and set as the heat resistant temperature.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表1及び表2の結果から明らかなように、
試料番号4では、x=0.15と、0.1を越えるため
か、キュリー温度が280℃と低いことがわかる。ま
た、試料番号14では、b=0.23及びc=0.60
と、本発明の範囲外の組成であるため、BGS波の電気
機械結合係数KBGS が32.1と小さく、さらにキュリ
ー温度も260℃と低いことがわかる。試料番号16で
は、x=0.15と0.1を越えており、そのためかキ
ュリー温度が260℃と低いことがわかる。
As is clear from the results of Tables 1 and 2,
In Sample No. 4, it can be seen that the Curie temperature is low at 280 ° C., probably because x = 0.15, which exceeds 0.1. Further, in sample number 14, b = 0.23 and c = 0.60
It can be seen that, since the composition is out of the range of the present invention, the electromechanical coupling coefficient K BGS of the BGS wave is as small as 32.1 and the Curie temperature is as low as 260 ° C. In Sample No. 16, x = 0.15, which exceeds 0.1, and it is therefore understood that the Curie temperature is as low as 260 ° C.

【0018】試料番号19では、a=0.16と、0.
14を越えているためか、キュリー温度が260℃と低
いことがわかる。さらに、試料番号20では、x=0.
11であり、0.1を越えているためか、並びにc=
0.60と0.59を越えているためか、KBGS が3
8.9と低く、かつキュリー温度も240と低いことが
わかる。これに対して、試料番号1、試料番号8及び本
発明の範囲内にある組成を有する試料番号2,3,5〜
7,9〜13,15、17,18の各表面波共振子で
は、大きなKBGS 値、大きな山谷比、大きな最大位相角
及び高いキュリー温度を示した。
In sample number 19, a = 0.16 and 0.
It is understood that the Curie temperature is as low as 260 ° C. probably because it exceeds 14. Furthermore, in sample number 20, x = 0.
11 and because it exceeds 0.1, and c =
K BGS is 3 probably because it exceeds 0.60 and 0.59.
It can be seen that the Curie temperature is as low as 8.9 and 240. On the other hand, sample number 1, sample number 8 and sample numbers 2, 3, 5 having compositions within the scope of the present invention
Each surface acoustic wave resonator of 7,9~13,15,17,18, large K BGS value, large peak-to-valley ratio, showed a greater maximum phase angle and a high Curie temperature.

【0019】次に、表1に示した試料番号の内の幾つか
の試料番号の組成の圧電基板を用いた表面波共振子につ
き、共振周波数の温度係数(TC)を測定した。結果を
表3に示す。なお、TCは、次の式で定義される値であ
る。 TC=(Frmax-Frmin )/Fr20 但し、上記式において、Frmax 及びFrmin は、それ
ぞれ、−20℃〜+80℃の温度範囲における共振周波
数の最大値及び最小値を示し、Fr20は20℃における
共振周波数である。
Next, the temperature coefficient (TC) of the resonance frequency of the surface wave resonator using the piezoelectric substrate having the composition of some of the sample numbers shown in Table 1 was measured. The results are shown in Table 3. Note that TC is a value defined by the following equation. TC = (Fr max− Fr min ) / Fr 20 However, in the above formula, Fr max and Fr min respectively indicate the maximum value and the minimum value of the resonance frequency in the temperature range of −20 ° C. to + 80 ° C., and Fr 20 Is the resonance frequency at 20 ° C.

【0020】[0020]

【表3】 [Table 3]

【0021】表3から明らかなように、試料No.8の
表面波共振子では、x=0と、xが0.005未満であ
るためか、共振周波数の温度係数TCが146ppm/
℃と非常に大きい。これに対して、試料番号9、10及
び11の各表面波共振子では、いずれも、TCが48、
40または−55ppm/℃と非常に小さいことがわか
る。よって、上記表2及び表3の結果から明らかなよう
に、上記実施例によれば、KBGS >40%、山谷比>4
0dB、及び最大位相角>80(度)と共振特性に優れ
た表面波装置の得られることがわかる。また、さらに組
成を選択すれば、K BGS >70%、山谷比>60dB及
び最大位相角>90(度)でキュリー温度の高い表面波
装置も実現し得る。
As is clear from Table 3, the sample No. 8's
In the surface wave resonator, x = 0 and x is less than 0.005.
Perhaps because of this, the temperature coefficient TC of the resonance frequency is 146 ppm /
Very high at ℃. On the other hand, sample numbers 9, 10 and
In each of the surface wave resonators 11 and 11, TC is 48,
It was found to be very small at 40 or -55 ppm / ° C.
It Therefore, as is clear from the results of Tables 2 and 3 above.
According to the above embodiment, KBGS> 40%, Yamatani ratio> 4
Excellent resonance characteristics with 0 dB and maximum phase angle> 80 (degrees)
It can be seen that a surface acoustic wave device can be obtained. In addition, further group
If you choose to BGS> 70%, Yamatani ratio> 60 dB
And the maximum phase angle> 90 (degrees) surface waves with high Curie temperature
A device may also be realized.

【0022】すなわち、上記実施例の結果を言い換えれ
ば、図2に示す、Pb(Mn1/3 Nb2/3 )O3 、Pb
TiO3 及びPbZrO3 の三元系組成図中の点A〜D
で囲まれた領域内の組成を選ぶことにより、共振特性及
び耐熱性の双方において優れた表面波共振子の得られる
ことがわかる。なお、本発明が適用される表面波装置と
しては、図1に示した表面波共振子4に限定されるもの
ではなく、トランスバーサルフィルタや二重モードフィ
ルタ等にも本発明を適用することができる。例えば、図
3(a)に示すように、格子状の反射器を用いた二重モ
ードフィルタ30は、フィルタを構成するためのインタ
ーデジタルトランスデューサ部分32の側方に反射器3
3,34を設けたものであるが、このようなフィルタ3
0にも本発明を適用し得る。同様に、図3(b)に示す
ように、格子状の反射器を用いずに、図1に示した端面
反射型の表面波共振子と同様に端面を反射器として利用
するようにすれば、圧電基板41の表面波伝播方向の長
さを比較的短くすることができる。
That is, in other words, in other words, the results of the above-mentioned embodiment are shown in FIG. 2, where Pb (Mn 1/3 Nb 2/3 ) O 3 and Pb
Points A to D in the ternary composition diagram of TiO 3 and PbZrO 3 .
It is understood that by selecting the composition in the region surrounded by, a surface wave resonator excellent in both resonance characteristics and heat resistance can be obtained. The surface acoustic wave device to which the present invention is applied is not limited to the surface acoustic wave resonator 4 shown in FIG. 1, and the present invention can also be applied to a transversal filter, a dual mode filter, or the like. it can. For example, as shown in FIG. 3 (a), a dual mode filter 30 using a grid-shaped reflector has a reflector 3 on the side of an interdigital transducer portion 32 for forming a filter.
3 and 34 are provided, but such a filter 3
The present invention can be applied to 0. Similarly, as shown in FIG. 3B, if the end face is used as a reflector like the end face reflection type surface wave resonator shown in FIG. The length of the piezoelectric substrate 41 in the surface wave propagation direction can be made relatively short.

【0023】[0023]

【発明の効果】以上のように、本発明では、上記特定の
組成の圧電基板を用いてSHタイプの表面波を利用した
表面波装置が構成されているため、SHタイプの表面波
の電気機械結合係数、前述した山谷比及び共振の最大位
相角のいずれもが充分大きく、共振特性に優れており、
さらにキュリー点が高く、耐熱性に優れており、しかも
共振周波数の温度依存性の小さな特性の安定な表面波装
置を提供することが可能となる。従って、本発明を利用
することにより、BGS波のような自由端面において完
全に反射されるSHタイプの表面波を利用した表面波装
置において、共振特性及び共振特性の温度依存性及び耐
熱性が改善されるため、従来のレーリー波を利用した表
面波装置に比べてはるかに小型であり、かつ特性に優れ
た表面波装置を提供することが可能となる。
As described above, according to the present invention, since the surface acoustic wave device utilizing the SH type surface wave is constituted by using the piezoelectric substrate having the above-mentioned specific composition, the electric machine of the SH type surface wave is formed. The coupling coefficient, the above-mentioned peak-valley ratio, and the maximum phase angle of resonance are sufficiently large, and the resonance characteristics are excellent.
Further, it is possible to provide a surface acoustic wave device having a high Curie point, excellent heat resistance, and stable characteristics with small temperature dependence of resonance frequency. Therefore, the use of the present invention improves the resonance characteristics, the temperature dependence of the resonance characteristics, and the heat resistance in the surface wave device using the SH type surface wave that is completely reflected on the free end surface such as the BGS wave. Therefore, it is possible to provide a surface acoustic wave device that is much smaller than the conventional surface acoustic wave device using Rayleigh waves and has excellent characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】BGS波を利用した表面波共振子を示す斜視
図。
FIG. 1 is a perspective view showing a surface acoustic wave resonator using BGS waves.

【図2】本発明に用いられる圧電基板の組成の基礎成分
となるPb(Mn1/3 Nb2/3)O3 −PbTiO3
PbZrO3 の三元系組成図。
FIG. 2 shows Pb (Mn 1/3 Nb 2/3 ) O 3 —PbTiO 3 — which is a basic component of the composition of the piezoelectric substrate used in the present invention.
A ternary composition diagram of PbZrO 3 .

【図3】(a)及び(b)は、それぞれ、本発明が適用
される二重モードフィルタを説明するための各略図的平
面図。
3A and 3B are schematic plan views for explaining a dual mode filter to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…圧電基板 1a,1b…自由端面 2,3…くし歯電極 4…BGS波を利用した表面波共振子 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate 1a, 1b ... Free end surface 2, 3 ... Comb-shaped electrode 4 ... Surface wave resonator using BGS wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 陽 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 加地 敏晃 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 米田 康信 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yo Ando, 2-10-10 Tenjin, Nagaokakyo, Kyoto Prefecture Murata Manufacturing Co., Ltd. (72) Toshiaki Kaji 2-26-10, Tenjin, Nagaokakyo, Kyoto Murata Manufacturing (72) Inventor Yasunobu Yoneda 26-10 Tenjin, Nagaokakyo, Kyoto Prefecture Murata Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板を伝播する表面波のうち変位が
表面波伝播方向と垂直な方向の変位を主体とする表面波
を利用し、分極軸が表面波の伝播方向と垂直方向であ
り、かつ圧電基板表面と平行にされている表面波装置に
おいて、 前記圧電基板が、一般式(Pb1-x Mex ){(Mn
1/3 Nb2/3 a TibZrc }O3 で表され、但し、
Meが、Ca、Ba及びSrからなる群から選択した少
なくとも一種であり、x、a、b及びcが、 0.005≦x≦0.10 0.01≦a≦0.14 0.40≦b≦0.60 0.26≦c≦0.59 a+b+c=1.00 の関係を満たす圧電セラミックスにより構成されている
ことを特徴とする、表面波装置。
1. A surface wave having a displacement mainly composed of a displacement in a direction perpendicular to a surface wave propagation direction among surface waves propagating through a piezoelectric substrate is used, and a polarization axis is a direction perpendicular to the surface wave propagation direction. In the surface acoustic wave device which is parallel to the surface of the piezoelectric substrate, the piezoelectric substrate has the general formula (Pb 1-x Me x ) {(Mn
1/3 Nb 2/3 ) a Ti b Zr c } O 3 provided that
Me is at least one selected from the group consisting of Ca, Ba and Sr, and x, a, b and c are 0.005 ≦ x ≦ 0.10 0.01 ≦ a ≦ 0.14 0.40 ≦ A surface acoustic wave device comprising a piezoelectric ceramic satisfying a relationship of b ≦ 0.60 0.26 ≦ c ≦ 0.59 a + b + c = 1.00.
JP12902392A 1992-05-21 1992-05-21 Surface wave device Expired - Lifetime JP3198613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12902392A JP3198613B2 (en) 1992-05-21 1992-05-21 Surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12902392A JP3198613B2 (en) 1992-05-21 1992-05-21 Surface wave device

Publications (2)

Publication Number Publication Date
JPH05327397A true JPH05327397A (en) 1993-12-10
JP3198613B2 JP3198613B2 (en) 2001-08-13

Family

ID=14999240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12902392A Expired - Lifetime JP3198613B2 (en) 1992-05-21 1992-05-21 Surface wave device

Country Status (1)

Country Link
JP (1) JP3198613B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798925A1 (en) 1999-09-29 2001-03-30 Murata Manufacturing Co New lead zirconate-titanate based piezoelectric ceramic, especially for h.f. surface wave devices e.g. filters and oscillators, has a high niobium-to-manganese ratio and a fine sintered grain diameter
US6299791B1 (en) * 1999-05-20 2001-10-09 Murata Manufacturing Co., Ltd. Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
KR100544091B1 (en) * 2002-12-05 2006-01-25 주식회사 스마텍 Piezoelectric Ceramic Composition
DE10140396B4 (en) * 2000-08-18 2007-02-01 Murata Manufacturing Co., Ltd., Nagaokakyo Sintered piezoelectric ceramic compact, process for its preparation and its use
JP2009096690A (en) * 2007-10-18 2009-05-07 Tdk Corp Piezoelectric ceramic composition, and oscillator
JP2009096688A (en) * 2007-10-18 2009-05-07 Tdk Corp Piezoelectric porcelain composition and resonator
JP2009242188A (en) * 2008-03-31 2009-10-22 Tdk Corp Piezoelectric ceramic composition, piezoelectric element and resonator
JP2009286660A (en) * 2008-05-29 2009-12-10 Tdk Corp Piezoelectric ceramic and resonator using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299791B1 (en) * 1999-05-20 2001-10-09 Murata Manufacturing Co., Ltd. Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
CN1102554C (en) * 1999-05-20 2003-03-05 株式会社村田制作所 Piezoelectric ceramic material and piezoelectric ceramic sintered body produced by the same
KR100487420B1 (en) * 1999-05-20 2005-05-03 가부시키가이샤 무라타 세이사쿠쇼 Piezoelectric ceramic sintered body
FR2798925A1 (en) 1999-09-29 2001-03-30 Murata Manufacturing Co New lead zirconate-titanate based piezoelectric ceramic, especially for h.f. surface wave devices e.g. filters and oscillators, has a high niobium-to-manganese ratio and a fine sintered grain diameter
DE10048373C2 (en) * 1999-09-29 2003-02-06 Murata Manufacturing Co Piezoelectric ceramics and use thereof as surface acoustic wave devices
DE10140396B4 (en) * 2000-08-18 2007-02-01 Murata Manufacturing Co., Ltd., Nagaokakyo Sintered piezoelectric ceramic compact, process for its preparation and its use
KR100544091B1 (en) * 2002-12-05 2006-01-25 주식회사 스마텍 Piezoelectric Ceramic Composition
JP2009096690A (en) * 2007-10-18 2009-05-07 Tdk Corp Piezoelectric ceramic composition, and oscillator
JP2009096688A (en) * 2007-10-18 2009-05-07 Tdk Corp Piezoelectric porcelain composition and resonator
JP2009242188A (en) * 2008-03-31 2009-10-22 Tdk Corp Piezoelectric ceramic composition, piezoelectric element and resonator
JP2009286660A (en) * 2008-05-29 2009-12-10 Tdk Corp Piezoelectric ceramic and resonator using the same

Also Published As

Publication number Publication date
JP3198613B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP2790178B2 (en) Electrostrictive resonance device
JP2000151351A (en) Surface acoustic wave element
KR960005381B1 (en) Surface wave device
JP3198613B2 (en) Surface wave device
KR100434419B1 (en) Piezoelectric ceramic composition and piezoelectric element
JP3562402B2 (en) Piezoelectric ceramic material and surface wave device using the same
US4605876A (en) Piezoelectric ceramic energy trapping electronic device
JP3791361B2 (en) Surface acoustic wave device and surface acoustic wave filter
JP3198589B2 (en) Surface wave device
JP3951379B2 (en) Surface wave device
JPH11349380A (en) Piezoelectric ceramic composition and piezoelectric element using the same
JPS61154211A (en) Ceramic resonator
JPH0993078A (en) Piezoelectric device
US6369488B1 (en) Piezoelectric device
JPH05183376A (en) Surface wave device
JP3587557B2 (en) High frequency piezoelectric filter porcelain composition
JPS6358782B2 (en)
JPH05145368A (en) Surface wave device
JPH0151072B2 (en)
JP2881251B2 (en) Piezoelectric resonator
JPS5943620A (en) Piezoelectric ceramic element
JP4578176B2 (en) Piezoelectric resonator and filter
JPH08333158A (en) Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP3111564B2 (en) Piezoelectric ceramic composition
JP2003192434A (en) Piezoelectric ceramic composition and piezoelectric element using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

EXPY Cancellation because of completion of term