JPH05325979A - Nickel electrode for alkaline secondary battery - Google Patents

Nickel electrode for alkaline secondary battery

Info

Publication number
JPH05325979A
JPH05325979A JP3108960A JP10896091A JPH05325979A JP H05325979 A JPH05325979 A JP H05325979A JP 3108960 A JP3108960 A JP 3108960A JP 10896091 A JP10896091 A JP 10896091A JP H05325979 A JPH05325979 A JP H05325979A
Authority
JP
Japan
Prior art keywords
nickel
electrode
metal
secondary battery
conductive core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3108960A
Other languages
Japanese (ja)
Inventor
Hirohito Teraoka
浩仁 寺岡
Koji Isawa
浩次 石和
Kunihiko Miyamoto
邦彦 宮本
Katsuyuki Hata
勝幸 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3108960A priority Critical patent/JPH05325979A/en
Publication of JPH05325979A publication Critical patent/JPH05325979A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline secondary battery which can be filled with a large amount of paste-state nickel active material to improve a large current discharge characteristic to further decrease generation of internal short-circuiting at the time of winding around a plate, since a metal fiber porous unit, tangled by curled or spiral fibers, is used for a conductive core unit. CONSTITUTION:Relating to a nickel positive electrode of filling a conductive core unit of a plate of an alkaline secondary battery with nickel hydroxide paste, the nickel electrode for the alkaline secondary battery is characterized by metal plating this conductive core unit with organic fiber-state nonwoven fabric conduction processed to further provide a metal fiber porous unit baked in the reducing atmosphere and by tangling fibers in curled or spiral shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ二次電池用ペー
スト式ニッケル極に関し、導電芯体の改良に係るもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type nickel electrode for an alkaline secondary battery and relates to an improvement of a conductive core.

【0002】[0002]

【従来の技術】従来のアルカリ二次電池用ニッケル極と
しては、焼結式、ペースト式、ポケット式等が挙げられ
る。これらの内で高容量密度でしかも低価格な電極とし
ては、ペースト式ニッケル電極がもっとも広く用いられ
ている。
2. Description of the Related Art Examples of conventional nickel electrodes for alkaline secondary batteries include a sintering type, a paste type and a pocket type. Among these, the paste nickel electrode is most widely used as an electrode having a high capacity density and a low cost.

【0003】このベースト式ニッケル極は、従来、エキ
スパンデットメタル、穿孔鋼板、ニッケルネット等の導
電芯体にペースト状ニッケル活物質を塗布し圧着したも
のであり、高容量密度で低価格は達成されるものの、導
電芯体とニッケル活物質との電子導電性が悪いため、焼
結式ニッケル極に比べて活物質の利用率が低く、特に、
大電流放電においては、その差が顕著に現れていた。
This basted nickel electrode has hitherto been obtained by applying a paste-like nickel active material onto a conductive core such as expanded metal, a perforated steel plate or a nickel net and press-bonding it, and has achieved a high capacity density and a low price. However, since the electronic conductivity between the conductive core and the nickel active material is poor, the utilization rate of the active material is lower than that of the sintered nickel electrode, and in particular,
The difference was remarkable in the large current discharge.

【0004】この欠点を改良する試みとして、導電芯体
に三次元的に連続した空間を有する発泡状ニッケル多孔
体(空隙率90〜95%)を用いたペースト式ニッケル
極が提案されている。しかし、この導電芯体はニッケル
骨格のばらつきによって電極特性にばらつきがあり、さ
らに、引張強度の弱さや巻回した際に亀裂が生じる等の
機械的な脆さがあり、製造上でも問題がある。
As an attempt to improve this drawback, a paste-type nickel electrode using a foamed nickel porous body (porosity 90 to 95%) having a three-dimensionally continuous space in a conductive core has been proposed. However, this conductive core has variations in electrode characteristics due to variations in the nickel skeleton, and further has mechanical weakness such as weak tensile strength and cracks when wound, which is a problem in manufacturing. ..

【0005】この他特公昭48−25149号公報、特
開昭61−208756号公報に見られるように、繊維
状の有機材料の表面に電着、蒸着方法で耐アルカリ性金
属を被覆したのち、加熱分解して得るフェルト状金属繊
維体がある。
In addition, as shown in Japanese Patent Publication No. 48-25149 and Japanese Patent Publication No. 61-208756, the surface of a fibrous organic material is coated with an alkali-resistant metal by electrodeposition or vapor deposition and then heated. There is a felt-like metal fiber body obtained by decomposition.

【0006】[0006]

【発明が解決しようとする課題】上記フェルト状金属繊
維多孔体は、金属繊維の分布を比較的均一にでき電池特
性のばらつきを小さく、しかも引張強度、伸び率など電
極捲回時の機械的特性に優れる半面、電池特性の向上特
に大電流放電特性の向上に関しては、金属繊維多孔体の
金属格子の本数を多くし、充填された活物質との距離を
小さくすることが必要になるが、金属格子本数を増やす
ことは金属繊維体に充填する活物質量を減ずることにな
るため、金属格子の本数を増やさずに電池特性を向上さ
せることが望まれた。
The felt-like porous metal fiber body described above has a relatively uniform distribution of the metal fibers and a small variation in battery characteristics, and further has mechanical properties such as tensile strength and elongation rate when the electrode is wound. On the other hand, in order to improve the battery characteristics, in particular, to improve the large current discharge characteristics, it is necessary to increase the number of metal grids of the metal fiber porous body and reduce the distance from the filled active material. Since increasing the number of grids reduces the amount of active material filled in the metal fiber body, it has been desired to improve the battery characteristics without increasing the number of metal grids.

【0007】また金属繊維多孔体を電極基板として用い
たペースト式ニッケル正極においては、電極をスパイラ
ル状に捲回する際に構成する金属格子がセパレータを貫
通して、対極と接触して内部短絡不良を生ずる問題があ
った。
Further, in a paste type nickel positive electrode using a metal fiber porous body as an electrode substrate, a metal grid formed when the electrode is spirally wound penetrates the separator and comes into contact with the counter electrode to cause an internal short circuit failure. There was a problem that caused.

【0008】本発明は上記従来の課題を解決するために
なされたもので、金属繊維多孔体の金属格子を多くせず
に大電流放電特性を向上させ、かつ捲回時の内部短絡不
良の小さいペースト式ニッケル正極を提供しようとする
ものである。
The present invention has been made to solve the above-mentioned conventional problems, and improves the large-current discharge characteristics without increasing the number of metal grids of the metal fiber porous body, and has a small internal short circuit failure during winding. It is intended to provide a pasted nickel positive electrode.

【0009】[0009]

【課題を解決するための手段】本発明は導電芯体に水酸
化ニッケルを主成分とするペースト状活物質を充填して
なるニッケル極において、該導電芯体が、有機繊維状不
織布を導電処理した後金属メッキを施して還元性雰囲気
中で焼成してなる金属繊維多孔体で、かつ、該金属繊維
多孔体が、カール状又はスパイラル状に繊維が絡まった
ものであることを特徴とするアルカリ二次電池用ニッケ
ル極である。
The present invention provides a nickel electrode obtained by filling a conductive core material with a paste-like active material containing nickel hydroxide as a main component, wherein the conductive core material conducts a conductive treatment on an organic fibrous nonwoven fabric. And a metal fiber porous body obtained by metal plating and firing in a reducing atmosphere, wherein the metal fiber porous body is a curled or spirally entangled fiber. It is a nickel electrode for secondary batteries.

【0010】[0010]

【作用】本発明の金属繊維多孔体の母材となる有機繊維
状不織布は、例えばポリエチレン、ポリプロピレン、ポ
リエステル、ポリアミドなどの合成繊維、又はカーボン
繊維を適当なバインダーとともに不織布状に成形した繊
維を挙げることができる。又、有機繊維状不織布は2〜
10cmの繊維長を紡績カードで開繊するか、繊維を空
気流でランダムに集積する乾式不織布製造方法、又は1
cm以下の繊維を水中に分散後網で抄く湿式不織布製造
方法、溶融された樹脂を紡糸し、直接ランダムに支持体
に吹きつけるスパンボンド製造方法のすべてから構成で
きる。
The organic fibrous non-woven fabric which is the base material of the porous metal fiber body of the present invention includes synthetic fibers such as polyethylene, polypropylene, polyester, polyamide, etc. or carbon fibers formed into a non-woven fabric with a suitable binder. be able to. Also, the organic fibrous nonwoven fabric is 2 to
A method for producing a dry non-woven fabric in which a fiber length of 10 cm is opened with a spinning card or fibers are randomly collected by an air flow, or 1
It can be constituted by all of a method for producing a wet non-woven fabric in which fibers having a size of not more than cm are dispersed in water and then made with a net, and a method for producing a spun bond in which a melted resin is spun and sprayed directly and randomly on a support.

【0011】又本発明のカール状又はスパイラル状の繊
維は、有機繊維状不織布の繊維構造からなされるもの
で、本発明により例えば湿式不織布を構成する場合、主
体繊維とバインダー繊維の他に繊維同士を絡らませるス
パイラル状繊維を用いる。このカール状又はスパイラル
状繊維は、断面の半分が融点の低い樹脂で構成されてお
り、繊維の結合の際に熱が加わると、融点差でカール状
又はスパイラル状になり、繊維同士を絡ませるものであ
る。例えば、図2のようにPET(ポリエチレンテレフ
タレート)と変性して融点を低くしたPETの組合せな
どが用いられる。
The curled or spiral fiber of the present invention is made of a fibrous structure of an organic fibrous non-woven fabric. When a wet non-woven fabric is constructed according to the present invention, for example, the main fiber and the binder fiber are combined with each other. Using a spiral fiber that entangles. This curled or spiral fiber is made of a resin having a low melting point in one half of its cross section, and when heat is applied during binding of the fiber, it becomes curled or spiral due to the difference in melting point and entangles the fibers. It is a thing. For example, as shown in FIG. 2, a combination of PET (polyethylene terephthalate) and PET modified to have a low melting point is used.

【0012】したがって繊維シート(フリース)の結合
方式としては、繊維の融点又は可塑剤を用いて繊維を溶
融後フリースの繊維間を圧着させる繊維溶融結合方法、
又はエマルジョン接着樹脂をフリースに含浸、スプレ
ー、プリント方法で付着させて、フリースの繊維間を接
着させ、乾燥工程をもってなる接着樹脂結合法が使かわ
れる。
Therefore, as a method of bonding the fiber sheet (fleece), a fiber fusion bonding method in which the melting point of the fiber or the plasticizer is used to melt the fibers and then the fibers of the fleece are pressure-bonded to each other,
Alternatively, an adhesive resin bonding method is used in which an emulsion adhesive resin is impregnated into the fleece, sprayed, or printed to adhere the fibers of the fleece to each other, and a drying step is included.

【0013】上記によって得たカール状又はスパイラル
状繊維をもった有機繊維状不織布に導電処理を施した後
金属メッキをし、これを還元性雰囲気中で焼成すること
によって、本目的のカール状又はスパイラル状金属繊維
の絡まった金属繊維多孔体を得るものである。
The organic fibrous nonwoven fabric having the curled or spiral fibers obtained as described above is subjected to a conductive treatment, metal-plated, and then baked in a reducing atmosphere to obtain the curled or It is intended to obtain a metal fiber porous body in which spiral metal fibers are entangled.

【0014】この金属繊維多孔体を用いてペースト式ニ
ッケル極を構成した場合、カール状又はスパイラル状金
属繊維の絡まりにより、同一の金属繊維の目付量であり
ながら繊維同士の接続点が多くなるため、充填する活物
質量を減ずることなく充填された活物質と金属繊維との
距離を小さくすることができ、大電流放電特性を十分に
向上させうるものである。又繊維同士の接触点が多く強
度のある金属格子となるため、電極から遊離した金属繊
維が、電極捲回時セパレータを貫通して対極と接触して
内部短絡不良を起こすこともない。
When a paste-type nickel electrode is formed by using this porous metal fiber body, curl-shaped or spiral-shaped metal fibers are entangled with each other, but the number of connection points between the fibers increases even though the weight of the same metal fibers is the same. The distance between the filled active material and the metal fiber can be reduced without reducing the amount of the active material to be filled, and the large current discharge characteristics can be sufficiently improved. Further, since the metal grid has many contact points between fibers and has a high strength, the metal fibers released from the electrode do not penetrate through the separator during electrode winding and come into contact with the counter electrode to cause an internal short circuit failure.

【0015】尚導電芯体である金属繊維多孔体の目付量
は、300〜800g/mであることが好ましい。更
に空隙率は90〜98容積%、平均繊維径は20〜10
0μmの範囲が電池特性上好ましい。
The basis weight of the metal fiber porous body which is the conductive core is preferably 300 to 800 g / m 2 . Further, the porosity is 90 to 98% by volume and the average fiber diameter is 20 to 10
The range of 0 μm is preferable in terms of battery characteristics.

【0016】又金属メッキは通常カーボン、導電性樹
脂、金属粉またはこれらの任意の混合物からなる導電性
材を塗布あるいは含浸する方法で導電性付与するか、あ
るいは無電解メッキのように化学的に金属を基材表面に
還元析出させる方法で導電処理を行いこの後電解メッキ
又は無電解メッキによってニッケルメッキを行う。しか
も銀メッキ、コバルトメッキなど多様な金属メッキにも
適用できる。
The metal plating is usually conducted by applying or impregnating a conductive material made of carbon, a conductive resin, metal powder or an arbitrary mixture thereof, or chemically such as electroless plating. Conductive treatment is performed by a method of reducing and depositing metal on the surface of the substrate, and then nickel plating is performed by electrolytic plating or electroless plating. Moreover, it can be applied to various metal plating such as silver plating and cobalt plating.

【0017】[0017]

【実施例】本発明実施例の有機繊維状不織布は、線径7
μmのPET(ポリエチレンフタレート)を主体とする
繊維を湿式法により不織布化し、これを繊維溶融混合物
と接着樹脂結合を併用して目的のスパイラル状繊維を有
する不織布成形体にした。カール状又はスパイラル状繊
維の断面は、PETと変性PETを組み合わせたもの
で、溶融結合の際に融点の差によりカール状又はスパイ
ラル状に絡み合うものである。このカール状又はスパイ
ラル状繊維はPET繊維の20〜50重量%の範囲にな
るように設定した。形成した有機繊維状不織布の目付量
は55g/mのものを使用した。
EXAMPLE An organic fibrous nonwoven fabric according to an example of the present invention has a wire diameter of 7
A fiber mainly composed of PET (polyethylene phthalate) having a thickness of μm was made into a non-woven fabric by a wet method, and this was used in combination with a melted fiber mixture and an adhesive resin bond to obtain a non-woven fabric molded product having a desired spiral fiber. The cross section of the curled or spiral fiber is a combination of PET and modified PET and is entangled in a curled or spiral shape due to the difference in melting point during melt bonding. This curled or spiral fiber was set to be in the range of 20 to 50% by weight of the PET fiber. The organic fibrous nonwoven fabric formed had a basis weight of 55 g / m 2 .

【0018】この有機繊維状不織布の単繊維表面に無電
解ニッケルメッキにより導電性処理を施した後、電解ニ
ッケルメッキを行い、これを還元性雰囲気で加熱焼鈍す
ることで、目的のカール状又はスパイラル状繊維を有す
る金属繊維多孔体を得た。
The surface of the monofilament of the organic fibrous nonwoven fabric is subjected to a conductive treatment by electroless nickel plating, then electrolytic nickel plating is performed, and this is annealed by heating in a reducing atmosphere to obtain a desired curled or spiral shape. A metal fiber porous body having a filamentous fiber was obtained.

【0019】この金属繊維多孔体の目付量は、500g
/m、空隙率95容積%であった。この金属繊維多孔
体の空隙に、水酸化ニッケル90重量部、一酸化コバル
ト(CoO)粉10重量部からなる混合粉体に、水酸化
ニッケルに対しカルボキシメチルセルロース0.5重量
%、テトラフルオロエチレン(PTFE)3.0重量%
を添加し、これらに純水45重量%を添加して混練した
ペーストを、充填した。この電極を乾燥しローラープレ
スによって圧延し、0.5mmに調厚した状態で電極単
位体積当りの電気容量が650mAh/ccとなるよう
に本発明のペースト式ニッケル正極を作製した。
The basis weight of this metal fiber porous body is 500 g.
/ M 2 , and the porosity was 95% by volume. In the voids of the metal fiber porous material, a mixed powder of 90 parts by weight of nickel hydroxide and 10 parts by weight of cobalt monoxide (CoO) powder was added, and 0.5% by weight of carboxymethyl cellulose and tetrafluoroethylene ( PTFE) 3.0% by weight
Was added, and 45% by weight of pure water was added thereto and kneaded to fill a paste. This electrode was dried and rolled by a roller press to prepare a paste-type nickel positive electrode of the present invention such that the electric capacity per unit volume of the electrode was 650 mAh / cc while the thickness was adjusted to 0.5 mm.

【0020】このペースト式ニッケル正極に通常の方法
で得られたカドミウム極をセパレータを介して捲回し、
適量の電解液と共に理論容量約600mAhのニッケル
カドミウム電池50個を作製し、短絡試験と電池特性の
評価を行った。この電池の評価方法としては、0.2c
Aで150%充電を行い、0.2cAで1.0Vまで放
電を行なうサイクルを10サイクル行った後、0.2c
Aで150%充電を行い各レートで1.0Vまで放電
し、そのときの容量から理論容量に対する利用率を求め
た。短絡試験の評価を表1に、放電レート別の活物質の
利用率結果を図1に示す。
The paste type nickel positive electrode was wound with a cadmium electrode obtained by a usual method through a separator,
Fifty nickel cadmium batteries having a theoretical capacity of about 600 mAh were prepared together with an appropriate amount of electrolytic solution, and a short circuit test and battery characteristics were evaluated. The evaluation method of this battery is 0.2c
After charging 150% with A and discharging with 0.2c to 1.0V for 10 cycles, 0.2c
The battery was charged at 150% with A, discharged to 1.0 V at each rate, and the utilization rate to the theoretical capacity was determined from the capacity at that time. Table 1 shows the evaluation of the short-circuit test, and FIG. 1 shows the results of the utilization rate of the active material for each discharge rate.

【0021】[0021]

【表1】 [Table 1]

【0022】(比較例1)比較例1として、カール状又
はスパイラル状繊維が存在しない以外まったく同様の方
法で作成した金属繊維多孔体を導電芯体に用いたペース
ト式ニッケル極を電極として実施例と同様の試験と評価
を行った。
COMPARATIVE EXAMPLE 1 As Comparative Example 1, a paste type nickel electrode using a porous metal fiber body prepared by the same method except that curled or spiral fibers were not used as a conductive core was used as an electrode. The same test and evaluation were performed.

【0023】(比較例2)比較例2として、導電芯体に
発泡性ニッケル多孔体(空隙率95%)を用いる以外ま
ったく同様の方法で作成したペースト式ニッケル極を電
極として実施例と同様の試験と評価を行った。
(Comparative Example 2) As Comparative Example 2, a paste type nickel electrode prepared by exactly the same method except that a foamable nickel porous body (porosity 95%) is used for the conductive core is used as an electrode, and is similar to the example. Tested and evaluated.

【0024】本発明に用いる金属繊維多孔体の平均線径
は20〜100μmが好ましい。これは20μm以下で
あると機械的強度が弱くなること、100μm以上では
コストアップにつながる。金属繊維多孔体の孔径は、水
酸化ニッケル粉体が5〜150μmであるので50μm
以上が必要であり、600μm以上になると電極からの
活物質の脱落、集電性の低下につながる。金属繊維多孔
体の空隙率が90%以下であると活物質充填量が低下し
コストアップにもなる。また98%以上では機械的強度
が小さく単独では使用しがたい。金属繊維多孔体の目付
量は300g/m〜800g/mが好ましい。30
0g/m以下では機械的強度に欠ける。一方800g
/m以上では活物質充填量の低下が大きくなる。
The average wire diameter of the metal fiber porous material used in the present invention is preferably 20 to 100 μm. If it is 20 μm or less, the mechanical strength will be weakened, and if it is 100 μm or more, the cost will increase. The pore diameter of the metal fiber porous body is 50 μm because the nickel hydroxide powder is 5 to 150 μm.
The above is required, and when it is 600 μm or more, the active material falls off from the electrode and the current collecting property is deteriorated. When the porosity of the metal fiber porous body is 90% or less, the amount of the active material filled is reduced, which leads to an increase in cost. Further, if 98% or more, the mechanical strength is small and it is difficult to use it alone. Basis weight of the metal fiber porous body 300g / m 2 ~800g / m 2 is preferred. Thirty
If it is 0 g / m 2 or less, the mechanical strength is insufficient. 800g on the other hand
If it is / m 2 or more, the decrease in the active material filling amount becomes large.

【0025】従って金属繊維多孔体の平均線径は20〜
100μm、空間部の孔径は50〜600μm、基板の
多孔度は90〜98%、金属繊維多孔体の目付量300
g/m〜800g/mの範囲であることが、本発明
において最適である。
Therefore, the average wire diameter of the metal fiber porous body is 20 to
100 μm, pore size of space is 50 to 600 μm, porosity of substrate is 90 to 98%, and basis weight of metal fiber porous body is 300
It is optimal in the present invention is in the range of g / m 2 ~800g / m 2 .

【0026】[0026]

【発明の効果】以上詳述したように、本発明のカール状
又はスパイラル状繊維で絡まった金属繊維多孔体を使用
することで、充填活物質を減ずることなく大電流放電特
性を向上させ、かつ捲回時の内部短絡不良の少ないアル
カリ二次電池用ニッケル極を提供するもので、工業的価
値は大である。
As described above in detail, by using the porous metal fiber body entangled with the curled or spiral fiber of the present invention, the large current discharge characteristic is improved without reducing the filling active material, and It provides a nickel electrode for an alkaline secondary battery with few internal short-circuit defects during winding, and has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と比較例電池の放電レートによる活物質
の利用率の変化図である。
FIG. 1 is a graph showing changes in utilization rate of an active material according to discharge rates of the present invention and a comparative example battery.

【図1】本発明の金属繊維多孔体の拡大図である。FIG. 1 is an enlarged view of a metal fiber porous body of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月20日[Submission date] May 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief explanation of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と比較例電池の放電レートによる活物質
の利用率の変化図である。
FIG. 1 is a graph showing changes in utilization rate of an active material according to discharge rates of the present invention and a comparative example battery.

【図2】本発明の金属繊維多孔体の拡大図である。FIG. 2 is an enlarged view of the metal fiber porous body of the present invention.

フロントページの続き (72)発明者 秦 勝幸 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内Front page continued (72) Inventor Katsuyuki Hata 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電芯体に水酸化ニッケルを主成分とす
るペースト状活物質を充填してなるニッケル極におい
て、該導電芯体が、有機繊維状不織布を導電処理した後
金属メッキをして還元性雰囲気中で焼成してなる金属繊
維多孔体で、かつ、該金属繊維多孔体が、カール状又は
スパイラル状に繊維が絡まったものであることを特徴と
するアルカリ二次電池用ニッケル極。
1. A nickel electrode comprising a conductive core filled with a paste-like active material containing nickel hydroxide as a main component, the conductive core being metal-plated after conductive treatment of an organic fibrous nonwoven fabric. A nickel electrode for an alkaline secondary battery, which is a porous metal fiber body obtained by firing in a reducing atmosphere, and the porous metal fiber body is one in which fibers are entangled in a curled or spiral shape.
JP3108960A 1991-02-18 1991-02-18 Nickel electrode for alkaline secondary battery Pending JPH05325979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108960A JPH05325979A (en) 1991-02-18 1991-02-18 Nickel electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108960A JPH05325979A (en) 1991-02-18 1991-02-18 Nickel electrode for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH05325979A true JPH05325979A (en) 1993-12-10

Family

ID=14498022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108960A Pending JPH05325979A (en) 1991-02-18 1991-02-18 Nickel electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH05325979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108835A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Non-sintering type nickel electrode, and alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108835A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Non-sintering type nickel electrode, and alkaline storage battery

Similar Documents

Publication Publication Date Title
JP2673078B2 (en) Paste type electrode for alkaline secondary battery
JP4425544B2 (en) Battery current collector and battery using the same
JPH05325979A (en) Nickel electrode for alkaline secondary battery
JP2000215873A (en) Alkaline storage battery and its manufacture
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JPH04284360A (en) Nickel electrode for alkaline secondary battery
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JPS61208756A (en) Electrode for alkaline secondary battery
JPH04223055A (en) Nickel electrode for alkaline secondary battery
JPH09102317A (en) Alkaline secondary battery and its manufacture
JPH04264364A (en) Nickel electrode for alkaline secondary battery
JPH0869801A (en) Manufacture of electrode support body
JP3095235B2 (en) Paste nickel positive electrode
JPS61110966A (en) Electrode for cell
JP4140993B2 (en) Non-sintered cadmium negative electrode and method for producing the same
JPH10162815A (en) Sealed nickel hydrogen battery
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH10261408A (en) Nickel-cadmium storage battery
JPH044560A (en) Alkaline storage battery ni electrode and its manufacture
JPS588555B2 (en) Manufacturing method of electrode plates for alkaline batteries