JPH05325943A - Cylindrical secondary battery - Google Patents

Cylindrical secondary battery

Info

Publication number
JPH05325943A
JPH05325943A JP4157422A JP15742292A JPH05325943A JP H05325943 A JPH05325943 A JP H05325943A JP 4157422 A JP4157422 A JP 4157422A JP 15742292 A JP15742292 A JP 15742292A JP H05325943 A JPH05325943 A JP H05325943A
Authority
JP
Japan
Prior art keywords
battery
zener diode
thermal fuse
secondary battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4157422A
Other languages
Japanese (ja)
Inventor
Isamu Yoshimatsu
勇 吉松
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4157422A priority Critical patent/JPH05325943A/en
Publication of JPH05325943A publication Critical patent/JPH05325943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a cylindrical secondary battery equipped with an overcharge protection circuit of a device avoiding overcharge and saving its space. CONSTITUTION:In a secondary battery where a separator 2 lies between a sheet-like positive pole 1 and a sheet-like negative pole 3 and a group P of spirally wound electrodes and electrolyte are sealed in a container C, two thermal fuses 4, 5 connected in series and a Zener diode 7 are inserted into the cylindrical void portion at the center of a group of wound plates P, a charge- discharge current flows through the two thermal fuses, and the Zener diode 7 is connected between the connecting point of the thermal fuses and the negative terminal 8 of the battery. The battery itself is therefore never overcharged by the function of the Zener diode 7; even if an excessive charge current flows, the charge current is cut off by the function of the thermal fuse, and even if the Zener diode 7 is internally shorted, the battery is electrically cut off from the Zener diode by the function of the thermal fuse 5, so that the battery can be kept in a safe condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、円筒型二次電池の充
放電サイクル寿命、特に過充電に対する充放電サイクル
寿命の低下を防止することに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to preventing a charge / discharge cycle life of a cylindrical secondary battery, particularly a decrease in charge / discharge cycle life due to overcharge.

【0002】[0002]

【従来の技術】シート状の正極と負極およびセパレータ
を用いることができる円筒型の二次電池においては、大
電流での放電あるいは充電における電池特性の劣化を最
小限に抑制するために、正極と負極とをセパレータを介
して重ね、渦巻状に巻回して円筒状の電極群を構成し、
これを円筒状の容器に収納し、電解液を封入して電池が
作られる。
2. Description of the Related Art Cylindrical secondary batteries that can use a sheet-shaped positive electrode, negative electrode, and separator have a positive electrode and a positive electrode in order to minimize deterioration of battery characteristics due to discharge or charging with a large current. The negative electrode and the negative electrode are overlapped with each other via a separator and spirally wound to form a cylindrical electrode group,
This is housed in a cylindrical container and filled with an electrolytic solution to produce a battery.

【0003】電解液に非水溶媒を用いる非水電解液二次
電池では、過充電によって充放電サイクル寿命が低下す
ることがある。この原因としては、過充電によって電解
液の分解や正極の溶解等といった電池反応としては望ま
しくないような電気化学的反応が電池内で進行したため
であると考えられている。電解液に水溶液を用いる二次
電池でも、充電時に水の分解電圧以上の電圧が印加され
ると、電池反応としては望ましくない水の電気分解が発
生し、やはり非水電解液二次電池の場合と同じように電
池の特性が劣化していた。
In a non-aqueous electrolyte secondary battery in which a non-aqueous solvent is used as the electrolyte, overcharging may reduce the charge / discharge cycle life. It is considered that this is because an electrochemical reaction, which is not desirable as a battery reaction, such as decomposition of the electrolytic solution and dissolution of the positive electrode, progressed in the battery due to overcharge. Even in a secondary battery that uses an aqueous solution as the electrolyte, if a voltage higher than the decomposition voltage of water is applied during charging, electrolysis of water occurs, which is undesirable for a battery reaction. The battery characteristics were deteriorated in the same manner as in.

【0004】この対策として、例えば充電中、常に電池
の電圧を監視し続け、電池の電圧が規定値に到達する前
に、あるいは到達しても一定時間内に充電を停止するよ
うな充電装置または、充電回路が二次電池の充電に用い
られることがある。また、電解液の分解等の不可逆な電
池反応が発熱反応の場合には、その発熱を電池容器側面
または底面で検出し、充電を停止するような温度ヒュー
ズが用いられることもある。
As a countermeasure against this, for example, during charging, the battery voltage is constantly monitored, and charging is stopped before the battery voltage reaches a specified value, or even if the battery voltage reaches a specified value, within a certain time. , The charging circuit may be used to charge the secondary battery. Further, when an irreversible battery reaction such as decomposition of the electrolytic solution is an exothermic reaction, a temperature fuse may be used to detect the heat generation on the side surface or the bottom surface of the battery container and stop charging.

【0005】[0005]

【発明が解決しようとする問題点】電池の充電状態を常
に監視したり、温度ヒューズを用いたりすることによっ
て、過充電に起因する充放電サイクル寿命の低下等の電
池特性の劣化が防止されてきた。しかし、いまだに 多
くの問題が残されている。その一つには、電池を複数個
接続して充電する場合、充電中、常に一つ一つの電池の
電圧をそれぞれ別々に監視しなければならないことがあ
る。複数個の電池の電圧をまとめて監視している場合に
は、電池特性のバラツキに起因して、電池によっては過
充電状態になるものがでてくるからである。近年、携帯
電気機器の多機能化に伴って、そのような機器の消費電
力が大幅に増加してきている。これに対応するために電
池を複数個直列または並列に接続したものを電池バック
として機器内に内蔵する場合が多く見受けられるように
なってきた。このような場合には、事態はさらに深刻で
ある。携帯電気機器なので大きさは極力小さくかつその
取り扱いも簡単なものにする必要があるにも関わらず、
充電回路が大きく、複雑になり、さらには電池をバック
化した場合の利点である電池交換のしやすさといったこ
とも失われるからである。
By constantly monitoring the state of charge of the battery and using a thermal fuse, deterioration of battery characteristics such as a decrease in charge / discharge cycle life due to overcharge has been prevented. It was However, many problems still remain. One of them is that when a plurality of batteries are connected and charged, the voltage of each battery must be monitored separately during charging. This is because when the voltages of a plurality of batteries are collectively monitored, some batteries may be in an overcharged state due to variations in battery characteristics. 2. Description of the Related Art In recent years, with the multifunctionalization of portable electric devices, the power consumption of such devices has increased significantly. In order to deal with this, it has become common to use a battery bag in which a plurality of batteries are connected in series or in parallel as a battery bag. In such cases, the situation is even more serious. As it is a portable electric device, its size should be as small as possible and its handling should be easy.
This is because the charging circuit becomes large and complicated, and further, the ease of battery replacement, which is an advantage when the battery is replaced by a battery, is lost.

【0006】また、温度ヒューズを電池容器側面または
底面に張り付けておくことに対しては、次のような問題
が残されている。すなわち、過充電によって引き起こさ
れる電解液の分解等の反応が発熱反応であり、温度ヒュ
ーズの動作によって充電が停止されると期待できる場合
であっても、発生した熱が電極群と電池容器を伝搬し
て、容器の側面または底面にある温度ヒューズに届くま
でに時間的な遅れが生じてしまうことである。
Further, there are the following problems in attaching the thermal fuse to the side surface or the bottom surface of the battery container. That is, even if the reaction such as the decomposition of the electrolytic solution caused by overcharging is an exothermic reaction and the charging is expected to be stopped by the operation of the thermal fuse, the generated heat propagates through the electrode group and the battery container. Then, there is a time delay before reaching the thermal fuse on the side or bottom of the container.

【0007】そこで過充電を回避しつつ、場所をとらな
いような過充電保護回路または装置が求められていた。
Therefore, there is a demand for an overcharge protection circuit or device that avoids overcharge and saves space.

【0008】[0008]

【問題を解決するための手段】二次電池を過充電しない
ようにするために本発明者らは、鋭意研究を重ねた結
果、電圧を一定に保つ電気回路に用いられるツェナーダ
イオードが、電池電圧の一定化にも応用できるという知
見を見いだし、この知見に基づいて本発明をなすに至っ
た。
[Means for Solving the Problem] As a result of intensive studies by the present inventors in order to prevent overcharge of a secondary battery, as a result, a Zener diode used in an electric circuit for keeping a voltage constant has a The inventors have found that the present invention can be applied to the stabilization of, and have made the present invention based on this finding.

【0009】すなわち本発明は、シート状の正極と負極
とがセパレータを間に介在して、渦巻状に巻回された電
極群と電解液とが容器内に封入された円筒型二次電池に
おいて、巻回された極板群の中心に存在する円筒状の空
隙部分に2個の直列接続された温度ヒューズとツェナー
ダイオードを挿入し、この2個の温度ヒューズを介して
充放電電流が流れ、かつ温度ヒューズ同志の接続点と電
池の負極端子の間にツェナーダイオードが接続されたこ
とを特徴とする円筒型二次電池である。
That is, the present invention provides a cylindrical secondary battery in which a sheet-shaped positive electrode and a negative electrode are interposed between separators, and a spirally wound electrode group and an electrolytic solution are enclosed in a container. , Two series-connected thermal fuses and a Zener diode are inserted in a cylindrical void portion existing in the center of the wound electrode plate group, and a charging / discharging current flows through the two thermal fuses. A zener diode is connected between the connection points of the temperature fuses and the negative electrode terminal of the battery, and is a cylindrical secondary battery.

【0010】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0011】図1は、本発明の円筒型二次電池の一つの
構成例の断面図であるが、この図より明らかなように、
正極1はセパレータ2を介して負極3と積層されてお
り、これを渦巻状に巻回して極板群Pを作成している。
この極板群Pを円筒型電池容器Cに収納せしめている。
FIG. 1 is a cross-sectional view of one structural example of the cylindrical secondary battery of the present invention. As is clear from this figure,
The positive electrode 1 is laminated with the negative electrode 3 via the separator 2, and the positive electrode 1 is spirally wound to form the electrode plate group P.
The electrode plate group P is housed in a cylindrical battery container C.

【0012】前述の2個の温度ヒューズ4と温度ヒュー
ズ5は、渦巻状に巻回された電極群Pの中心の円筒状の
空隙部分に挿入されており、温度ヒューズ4の一端は、
電池の正極端子6に接続され、もう一端は温度ヒューズ
5に接続されている。温度ヒューズ5の残りの一端は電
極群Pの正極1に接続されている。これによって電池へ
の充放電電流は常に温度ヒューズ4と5を介して流れる
ことになる。
The above-mentioned two thermal fuses 4 and 5 are inserted in a cylindrical void portion at the center of the spirally wound electrode group P, and one end of the thermal fuse 4 is
It is connected to the positive electrode terminal 6 of the battery, and the other end is connected to the thermal fuse 5. The other end of the thermal fuse 5 is connected to the positive electrode 1 of the electrode group P. As a result, the charging / discharging current to the battery always flows through the thermal fuses 4 and 5.

【0013】前述のツェナーダイオード7の一端は、温
度ヒューズ4と温度ヒューズ5の接続点に接続され、も
う一端は負極端子8に接続されている。
One end of the Zener diode 7 is connected to the connection point between the thermal fuse 4 and the thermal fuse 5, and the other end is connected to the negative terminal 8.

【0014】図2には、図1に示した本発明の一つの構
成例の電気回路を示した。
FIG. 2 shows an electric circuit of one configuration example of the present invention shown in FIG.

【0015】過充電状態を検出し電池を良好な状態に保
つのはツェナーダイオードである。充電装置の故障等に
よって電池が過充電される場合には、電池の電圧が規定
値を越えて高くなっている。電池電圧が過充電によって
規定値よりも高くなったときにツェナー降状が起こるよ
うなツェナーダイオードを電池に並列に接続している
と、過充電状態の発生と同時にツェナーダイオードに電
流が流れ始め、電池には規定値以上の電圧は印加されな
い。したがって、過充電による電解液の分解が回避でき
る。すなわち、電池の充放電サイクル寿命の低下や水の
電気分解を回避できる。
It is the Zener diode that detects the overcharged condition and keeps the battery in good condition. When the battery is overcharged due to a failure of the charging device or the like, the voltage of the battery exceeds the specified value and becomes high. If a zener diode that causes a zener breakdown when the battery voltage becomes higher than the specified value due to overcharge is connected in parallel to the battery, a current starts to flow in the zener diode at the same time when the overcharge state occurs. No voltage higher than the specified value is applied to the battery. Therefore, decomposition of the electrolytic solution due to overcharge can be avoided. That is, it is possible to avoid a decrease in charge / discharge cycle life of the battery and electrolysis of water.

【0016】次に本発明に用いるツェナーダイオードの
電気的定格について述べる。まずツェナー電圧について
は、充電電圧の規定最高電圧値よりもわずかに高いのが
理想的である。ツェナー電圧の公称値はE−24シリー
ズが採用されている場合が多いので、現実的には、充電
電圧の規定最高値よりも高く、かつ最もその電圧値に近
いツェナー電圧を有するツェナーダイオードを用いると
よい。許容損失については、充電電流が大きい電池の場
合には、許容損失も大きいツェナーダイオードを用いる
必要がある。しかしながら許容損失の大きいツェナーダ
イオードは、その形状も大きいものとなり、巻回された
電極群の中心に存在する空隙に収納できなくなる恐れが
ある。充電電圧の最高値が3〜4Vになるような単三型
電池における充電電流は、50〜200mA程度である
とすると100〜1000mW程度の許容損失を持つプ
レーナー形ツェナーダイオードを用いるのが現実的であ
ろう。
Next, the electrical rating of the Zener diode used in the present invention will be described. First, the Zener voltage is ideally slightly higher than the specified maximum voltage value of the charging voltage. Since the E-24 series is often adopted as the nominal value of the Zener voltage, a Zener diode having a Zener voltage higher than the specified maximum value of the charging voltage and closest to the voltage value is practically used. Good. Regarding the allowable loss, in the case of a battery with a large charging current, it is necessary to use a Zener diode with a large allowable loss. However, a Zener diode having a large allowable loss also has a large shape, and there is a possibility that it cannot be housed in the void existing in the center of the wound electrode group. If the charging current in an AA battery whose maximum charging voltage is 3 to 4 V is about 50 to 200 mA, it is realistic to use a planar zener diode having a permissible loss of about 100 to 1000 mW. Ah

【0017】次に2個の温度ヒューズ4と5について述
べる。それぞれの温度ヒューズは、異なった効果を現す
ために用いられている。
Next, the two thermal fuses 4 and 5 will be described. Each thermal fuse is used to exhibit a different effect.

【0018】まず温度ヒューズ4について述べる。過充
電状態が継続されてツェナーダイオードに電流が流れ続
ける場合には、流れる電流によってツェナーダイオード
自身が発熱してくる。このような状況下でも電池を良好
な状態に維持させるのがツェナーダイオードに隣接する
温度ヒューズ4である。ツェナーダイオードの発熱によ
って隣接した温度ヒューズ4が動作し、電池内で充電回
路が絶たれるつまり極板群Pと電池端子6間の電気的接
続が切れる。これら一連の機構によって電池の充電が停
止し、電池内での電解液の分解等を防止することができ
る。従って、温度ヒューズの動作温度は、ツェナーダイ
オードの発熱量を吟味して決定しなければならないが、
電池それ自体が熱せられた状態下では、充放電サイクル
寿命が極端に短くなることを考慮すると、温度ヒューズ
の動作温度は100℃以下、理想的には70〜80℃程
度とするのが現実的であろう。あるいは、本発明者らが
特願平3−216367号にかかる発明で開示したよう
に、セパレータの軟化点温度以下で動作するような温度
ヒューズ、またはセパレータの軟化点温度以下に沸点を
有するような電解液溶媒を用いている場合には、この沸
点以下で動作するような温度ヒューズを用いてもよい。
First, the thermal fuse 4 will be described. When the overcharged state is continued and the current continues to flow through the Zener diode, the Zener diode itself generates heat due to the flowing current. It is the thermal fuse 4 adjacent to the Zener diode that keeps the battery in a good state even under such a condition. The adjacent thermal fuse 4 operates due to the heat generated by the Zener diode, and the charging circuit is cut off in the battery. By the series of these mechanisms, charging of the battery is stopped, and decomposition of the electrolytic solution in the battery can be prevented. Therefore, the operating temperature of the thermal fuse must be determined by examining the amount of heat generated by the Zener diode.
Considering that the charging / discharging cycle life becomes extremely short when the battery itself is heated, it is realistic to set the operating temperature of the thermal fuse to 100 ° C. or lower, ideally about 70 to 80 ° C. Will. Alternatively, as disclosed by the inventors of the present invention in Japanese Patent Application No. 3-216167, a thermal fuse that operates below the softening point temperature of the separator or a boiling point below the softening point temperature of the separator. If an electrolyte solvent is used, a thermal fuse that operates below this boiling point may be used.

【0019】次に温度ヒューズ5について述べる。温度
ヒューズ5は、ツェナーダイオード7自身の発熱によっ
て、あるいは何等かの原因によってツェナーダイオード
が内部短絡した場合に、電池を安全な状態に保つ働きを
している。ツェナーダイオードが内部短絡を起こしてし
まった場合には、電池容器内において電池とツェナーダ
イオードで一つの閉回路が形成される。この状態では電
池からの電流が常にツェナーダイオードに流れ、この時
の電流はすべてツェナーダイオードからの発熱に変えら
れ、電池は非常に危険な状態に置かれることになる。し
かし、温度ヒューズ5がこの閉回路内にあることによっ
てツェナーダイオードの発熱で温度ヒューズ5が動作
し、電池からツェナーダイオードが電気的に切り放され
ることになり、電池からの電流が一切停止し、電池を安
全な状態に置くことができるようになる。温度ヒューズ
5の動作温度については、温度ヒューズ4と同じように
設定すればよい。
Next, the thermal fuse 5 will be described. The thermal fuse 5 has a function of keeping the battery in a safe state when the Zener diode 7 is internally short-circuited due to heat generation of the Zener diode 7 itself or for some reason. When the Zener diode causes an internal short circuit, one closed circuit is formed by the battery and the Zener diode in the battery container. In this state, the current from the battery always flows through the Zener diode, and all the current at this time is converted into heat generated by the Zener diode, which puts the battery in a very dangerous state. However, since the temperature fuse 5 is in this closed circuit, the heat generated by the Zener diode causes the temperature fuse 5 to operate, electrically disconnecting the Zener diode from the battery, and stopping the current from the battery at all. , Will be able to put the battery in a safe state. The operating temperature of the thermal fuse 5 may be set in the same manner as the thermal fuse 4.

【0020】2個の温度ヒューズとツェナーダイオード
の接続間隔や方法に関しては、以下のように決定するこ
とができる。過充電によるツェナーダイオードの発熱を
温度ヒューズが検出するわけであるから、温度ヒューズ
とツェナーダイオードの間隔は、できるだけ小さいほう
が望ましい。温度ヒューズとツェナーダイオードを一つ
の容器にモールド成形してもよいが、コスト等を考慮す
るとこれらの二つの素子を半田付け、または圧着して接
続するのが現実的であろう。
The connection interval and method of the two thermal fuses and the Zener diode can be determined as follows. Since the thermal fuse detects heat generation of the Zener diode due to overcharge, it is desirable that the distance between the thermal fuse and the Zener diode be as small as possible. The thermal fuse and the Zener diode may be molded in one container, but considering the cost and the like, it may be practical to connect these two elements by soldering or crimping.

【0021】温度ヒューズの形状は、特に限定はされな
いが、巻回された極板群の中心に存在する円筒状の空隙
よりも小さく、その空隙に収まるような円筒形であるほ
うが望ましい。
The shape of the thermal fuse is not particularly limited, but it is preferable that the thermal fuse has a cylindrical shape which is smaller than the cylindrical void existing in the center of the wound electrode plate group and fits in the void.

【0022】[0022]

【作用】シート状の正極と負極とがセパレータを間に介
在して、渦巻状に巻回された電極群と電解液とが容器内
に封入された二次電池において、容器の正極端子から、
2個の直列接続された温度ヒューズを介して電極群の正
極端子に充放電電流が流れ、かつ2個の温度ヒューズ同
志の接続点と電極群の負極端子の間にツェナーダイオー
ドが接続されていることによって過充電される状況下に
おいても充放電サイクル寿命が低下しないような、ある
いは電解液の電気分解が発生しないような優れた安全な
円筒型二次電池を得ることができる。また、ツェナーダ
イオードが何等かの原因で内部短絡した場合でもツェナ
ーダイオードの発熱によって温度ヒューズが動作して、
電池からツェナーダイオードを切り放すことができるの
で、電池を安全な状態に保つことができる。
In a secondary battery in which a sheet-shaped positive electrode and a negative electrode are interposed between separators and a spirally wound electrode group and an electrolytic solution are enclosed in a container,
A charging / discharging current flows to the positive electrode terminal of the electrode group via two temperature fuses connected in series, and a Zener diode is connected between the connection point of the two temperature fuses and the negative electrode terminal of the electrode group. As a result, it is possible to obtain an excellent and safe cylindrical secondary battery in which the charge / discharge cycle life does not decrease even under the condition of being overcharged, or the electrolysis of the electrolytic solution does not occur. Moreover, even if the Zener diode is internally short-circuited for some reason, the thermal fuse operates due to the heat generated by the Zener diode,
Since the Zener diode can be cut off from the battery, the battery can be kept in a safe state.

【0023】[0023]

【実施例】次に本発明を好適な実施例を用いて詳細に説
明する。
The present invention will be described in detail below with reference to preferred embodiments.

【0024】下記の試験においては、以下に示すような
図1に示した構成の円筒型リチウム二次電池を作製し、
試験に用いた。
In the following test, a cylindrical lithium secondary battery having the structure shown in FIG.
Used for the test.

【0025】正極:アモルファス化した五酸化バナジウ
ム粉末とエチレンプロピレンターポリマー(EPDM)
2.5wt%のシクロヘキサン溶液とアセチレンブラッ
クの混合物(重量比90:3:7)を金属集電体上に塗
布して乾燥したもの。
Positive electrode: Amorphized vanadium pentoxide powder and ethylene propylene terpolymer (EPDM)
A mixture of a 2.5 wt% cyclohexane solution and acetylene black (weight ratio 90: 3: 7) applied on a metal current collector and dried.

【0026】負極:金属リチウムNegative electrode: metallic lithium

【0027】電解液:1.5M濃度の六フッ化ひ酸リチ
ウム(LiAsF6)のエチレンカーボネート(EC)
/2メチルテトラヒドロフラン(2MeTHF)(体積
比1/1)溶液
Electrolyte solution: 1.5M concentration of lithium hexafluoroarsenate (LiAsF 6 ) ethylene carbonate (EC)
/ 2 methyltetrahydrofuran (2MeTHF) (volume ratio 1/1) solution

【0028】セパレータ:厚み25μmのポリプロピレ
ン製多孔性膜(軟化点141℃)
Separator: 25 μm-thick polypropylene porous film (softening point 141 ° C.)

【0029】電池の充放電と過充電:充電電流0.5m
A/cm2、放電電流3.0mA/cm2の定電流とし、
1.8〜3.3Vの電圧範囲で充放電を5回繰り返し、
5回目の放電後、電池の充放電電圧範囲を1.8〜4.
1Vに設定変更して充放電サイクルを続けた。充電を続
けても電池電圧が増加しなくなった場合には、増加しな
くなった時点で充電を中止し、次サイクルの放電を開始
した。
Charging / discharging and overcharging of battery: charging current 0.5 m
Constant current of A / cm 2 and discharge current of 3.0 mA / cm 2 ,
Charge and discharge are repeated 5 times in the voltage range of 1.8 to 3.3V,
After the fifth discharge, the charge / discharge voltage range of the battery was set to 1.8 to 4.
The setting was changed to 1 V and the charging / discharging cycle was continued. When the battery voltage did not increase even after continuing the charging, the charging was stopped at the time when the voltage did not increase, and the discharging in the next cycle was started.

【0030】[0030]

【実施例1】正極1と負極3をポリプロピレン製の多孔
性膜2を間に介在して重ね合わせ直径3.5mmの巻き
取り棒の溝に挟み込み、電極の巻回を行なった。巻回終
了後、巻き取り棒を引き抜くと巻回した電極群Pの中心
に直径約3mmの円筒状の空隙ができた。
Example 1 The positive electrode 1 and the negative electrode 3 were superposed with a porous film 2 made of polypropylene interposed therebetween and sandwiched in a groove of a winding rod having a diameter of 3.5 mm to wind the electrode. After the completion of winding, when the winding rod was pulled out, a cylindrical void having a diameter of about 3 mm was formed at the center of the wound electrode group P.

【0031】直径約2.3mmの温度ヒューズ4(商品
名ELCUT.No.320、内橋エステック株式会社
製、温度ヒューズ動作温度76℃)の一端に直径約2m
mのプレーナ形ガラス封止ツェナーダイオード7(RD
3.9E、許容損失500mW)のカソード側リード線
を接続した。接続点にもう一つの温度ヒューズ5(商品
名ELCUT.No.320、内橋エステック株式会社
製、温度ヒューズ動作温度76℃)を接続し、この温度
ヒューズ5をツェナーダイオード7の方に折り曲げて、
電極群Pの中心にある円筒状の空隙に挿入した。温度ヒ
ューズ5の残りの一端を電極群Pの正極に接続し、電極
群Pを電池容器Cに収納した。この時、ツェナーダイオ
ード7のアノード側リード線が電極群Pから5mm程度
はみでるようにしておき、このはみでた部分が電極群P
を容器Cに収納するときの押し込み力で容器Cの負極端
子8に押しつけられて、ツェナーダイオードのアノード
側と負極端子8の電気的な接続が得られるようにした。
容器Cに正極端子6のついたふたを被せるときに温度ヒ
ューズ4の残りの一端を正極端子6に接続した後、ふた
を容器Cに被せた。容器Cに電解液を注液した後密閉し
て円筒型非水電解液二次電池(A)を完成させた。
A thermal fuse 4 having a diameter of about 2.3 mm (trade name ELCUT. No. 320, manufactured by Uchihashi STEC Co., Ltd., thermal fuse operating temperature of 76 ° C.) has a diameter of about 2 m at one end.
Planar type glass sealed Zener diode 7 (RD
A cathode-side lead wire with 3.9E and an allowable loss of 500 mW) was connected. Another thermal fuse 5 (trade name ELCUT. No. 320, manufactured by Uchihashi STEC Co., Ltd., thermal fuse operating temperature 76 ° C.) is connected to the connection point, and this thermal fuse 5 is bent toward the Zener diode 7,
The electrode group P was inserted into a cylindrical void in the center. The other end of the thermal fuse 5 was connected to the positive electrode of the electrode group P, and the electrode group P was housed in the battery container C. At this time, the anode-side lead wire of the Zener diode 7 is set to protrude from the electrode group P by about 5 mm, and the protruding portion is the electrode group P.
Was pressed against the negative electrode terminal 8 of the container C by the pushing force when the was stored in the container C, so that the anode side of the Zener diode and the negative electrode terminal 8 were electrically connected.
When the container C was covered with the lid having the positive electrode terminal 6, the other end of the thermal fuse 4 was connected to the positive electrode terminal 6, and then the container C was covered with the lid. The container C was filled with the electrolytic solution and then sealed to complete the cylindrical non-aqueous electrolytic solution secondary battery (A).

【0032】できあがった電池(A)に充放電試験を行
なった。
A charge / discharge test was conducted on the completed battery (A).

【0033】図3のAに充放電サイクル数と初期容量1
00%としたときの正極の利用率との関係を示した。充
放電に伴う放電容量の低下が少なく、順調に充放電サイ
クルを続けているのがわかる。これは、充電装置側で
は、4.1Vまで充電を行なうように設定してあったに
もかかわらず、実際には本発明によって電池の電圧は、
最高でも3.9Vであり、電解液の分解等の電池特性の
劣化が起こらなかったためと考えられた。
In FIG. 3A, the number of charge / discharge cycles and the initial capacity 1
The relationship with the utilization factor of the positive electrode when it is set to 00% is shown. It can be seen that the decrease in discharge capacity due to charge / discharge is small and that the charge / discharge cycle continues smoothly. This is because the battery voltage is actually set by the present invention, although the charging device is set to charge up to 4.1V.
The maximum voltage was 3.9 V, which was considered to be because deterioration of battery characteristics such as decomposition of the electrolytic solution did not occur.

【0034】[0034]

【比較例1】ツェナーダイオードと2個の温度ヒューズ
を用いないこと以外は、実施例1と同様に図4に示す電
池(B)を作製した。すなわち、正極1は、セパレータ
2を介して負極3と積層されており、これを渦巻状に巻
回して電極群Pを作製する。そしてこの極板群Pを円筒
型の電池容器Cに収納せしめている。この場合は、正極
1から直接に正極端子にリード線を接続した。
Comparative Example 1 A battery (B) shown in FIG. 4 was produced in the same manner as in Example 1 except that the Zener diode and the two temperature fuses were not used. That is, the positive electrode 1 is laminated with the negative electrode 3 via the separator 2, and is spirally wound to form the electrode group P. The electrode plate group P is housed in a cylindrical battery container C. In this case, the lead wire was directly connected to the positive electrode terminal from the positive electrode 1.

【0035】この電池(B)も実施例と同様に充放電試
験を行なった。
This battery (B) was also subjected to the charge / discharge test in the same manner as in the example.

【0036】図2のBに充放電サイクル数と初期容量を
100%としたときの正極の利用率との関係を示した。
充放電サイクルに伴う放電容量の低下が著しい。これ
は、4.1Vまで充電が行なわれたために電解液の分解
等が引き起こされたためと考えられた。
FIG. 2B shows the relationship between the number of charge / discharge cycles and the utilization factor of the positive electrode when the initial capacity is 100%.
The discharge capacity significantly decreases with the charge / discharge cycle. It is considered that this was because the electrolyte was decomposed because the battery was charged up to 4.1V.

【0037】[0037]

【発明の効果】以上の結果から明らかなように、本発明
の実施によって、たとえ円筒型の非水電解液二次電池が
過充電されるような状況下に置かれてもツェナーダイオ
ードの働きで電池自身は過充電されることなく、充放電
サイクル寿命の劣化のしないような、耐過充電性に優れ
た電池を得ることができる。
As is clear from the above results, by the practice of the present invention, the Zener diode works even if the cylindrical non-aqueous electrolyte secondary battery is placed under the condition of being overcharged. The battery itself is not overcharged, and a battery excellent in overcharge resistance, which does not deteriorate the charge / discharge cycle life, can be obtained.

【0038】また、過充電を防止するため常に充電電圧
を監視しなければならないという必要がなくなり、電気
機器の電源部分の小型化に貢献できる。
Further, it is not necessary to constantly monitor the charging voltage in order to prevent overcharging, which contributes to downsizing of the power source portion of the electric equipment.

【0039】もし万が一、充電器の故障等で過大な充電
電流が流れても温度ヒューズ4の働きで充電電流が遮断
され、電池は安全な状態を保つことができる。あるいは
ツェナーダイオードが内部短絡しても温度ヒューズ5の
働きによって電池がツェナーダイオードから電気的に切
り放され、電池は安全な状態を保つことができる。すな
わちツェナーダイオードと2個の温度ヒューズによっ
て、ツェナーダイオードの内部短絡や過充電に対する電
池の安全性が高められることも期待できる。
Even if an excessive charging current flows due to a charger failure or the like, the thermal fuse 4 works to interrupt the charging current and keep the battery in a safe state. Alternatively, even if the Zener diode is internally short-circuited, the function of the temperature fuse 5 electrically disconnects the battery from the Zener diode, and the battery can be kept in a safe state. That is, it can be expected that the Zener diode and the two temperature fuses improve the safety of the battery against an internal short circuit of the Zener diode and overcharge.

【0040】以上に述べたように、本発明の実施によっ
て耐過充電性能に優れ、安全な円筒型二次電池を場所を
取らずに作製することができ、本発明の工業的価値は、
極めて大である。
As described above, by carrying out the present invention, it is possible to manufacture a cylindrical secondary battery which is excellent in overcharge resistance and safe and does not take up space. The industrial value of the present invention is as follows.
It is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の関わる非水電解液二次電池の一例の概
略的な縦断面図。
FIG. 1 is a schematic vertical sectional view of an example of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】図1に示した本発明の一つの構成例の電気回路
を示した。
FIG. 2 shows an electric circuit of one configuration example of the present invention shown in FIG.

【図3】本発明の実施例および比較例に関わる非水電解
液二次電池において、充放電サイクル数と初期容量を1
00%としたときの正極の利用率との関係を示す図。
FIG. 3 shows the number of charge / discharge cycles and the initial capacity in the non-aqueous electrolyte secondary batteries according to Examples and Comparative Examples of the present invention.
The figure which shows the relationship with the utilization factor of a positive electrode when it is set to 00%.

【図4】本発明の比較例に関わる電池の一例の概略的な
縦断面図。
FIG. 4 is a schematic vertical sectional view of an example of a battery according to a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 セパレータ 3 負極 4 温度ヒューズ 5 温度ヒューズ 6 正極端子 7 ツェナーダイオード 8 負極端子 P 電極群 C 電池容器 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Separator 3 Negative electrode 4 Thermal fuse 5 Thermal fuse 6 Positive electrode terminal 7 Zener diode 8 Negative electrode terminal P Electrode group C Battery container

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月13日[Submission date] July 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする問題点】電池の充電状態を常
に監視したり、温度ヒューズを用いたりすることによっ
て、過充電に起因する充放電サイクル寿命の低下等の電
池特性の劣化が防止されてきた。しかし、いまだに 多
くの問題が残されている。その一つには、電池を複数個
接続して充電する場合、充電中、常に一つ一つの電池の
電圧をそれぞれ別々に監視しなければならないことがあ
る。複数個の電池の電圧をまとめて監視している場合に
は、電池特性のバラツキに起因して、電池によっては過
充電状態になるものがでてくるからである。近年、携帯
電気機器の多機能化に伴って、そのような機器の消費電
力が大幅に増加してきている。これに対応するために電
池を複数個直列または並列に接続したものを電池パック
として機器内に内蔵する場合が多く見受けられるように
なってきた。このような場合には、事態はさらに深刻で
ある。携帯電気機器なので大きさは極力小さくかつその
取り扱いも簡単なものにする必要があるにも関わらず、
充電回路が大きく、複雑になり、さらには電池をパック
化した場合の利点である電池交換のしやすさといったこ
とも失われるからである。
By constantly monitoring the state of charge of the battery and using a thermal fuse, deterioration of battery characteristics such as a decrease in charge / discharge cycle life due to overcharge has been prevented. It was However, many problems still remain. One of them is that when a plurality of batteries are connected and charged, the voltage of each battery must be monitored separately during charging. This is because when the voltages of a plurality of batteries are collectively monitored, some batteries may be in an overcharged state due to variations in battery characteristics. 2. Description of the Related Art In recent years, with the multifunctionalization of portable electric devices, the power consumption of such devices has increased significantly. In order to deal with this, it is often found that a plurality of batteries connected in series or in parallel are built in a device as a battery pack . In such cases, the situation is even more serious. As it is a portable electric device, its size should be as small as possible and its handling should be easy.
This is because the charging circuit is large and complicated, and further, the ease of battery replacement, which is an advantage when the battery is packed , is lost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シート状の正極と負極とがセパレータを間
に介在して、渦巻状に巻回された電極群と電解液とが容
器内に封入された円筒型二次電池において、容器の正極
端子から2個の直列接続された温度ヒューズを介して電
極群の正極端子に充放電電流が流れ、かつ2個の温度ヒ
ューズ同志の接続点と電極群の負極端子の間にツェナー
ダイオードが接続されており、これらの温度ヒューズと
ツェナーダイオードが隣接して、電極群の中心に存在す
る円筒状の空隙に挿入されていることを特徴とする円筒
型二次電池。
1. A cylindrical secondary battery in which a sheet-shaped positive electrode and a negative electrode have a separator interposed therebetween, and a spirally wound electrode group and an electrolytic solution are enclosed in a container. A charging / discharging current flows from the positive electrode terminal to the positive electrode terminal of the electrode group through two temperature fuses connected in series, and a Zener diode is connected between the connection point of the two temperature fuses and the negative electrode terminal of the electrode group. A cylindrical secondary battery, in which the thermal fuse and the Zener diode are adjacent to each other and are inserted into a cylindrical void existing in the center of the electrode group.
JP4157422A 1992-05-25 1992-05-25 Cylindrical secondary battery Pending JPH05325943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157422A JPH05325943A (en) 1992-05-25 1992-05-25 Cylindrical secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157422A JPH05325943A (en) 1992-05-25 1992-05-25 Cylindrical secondary battery

Publications (1)

Publication Number Publication Date
JPH05325943A true JPH05325943A (en) 1993-12-10

Family

ID=15649292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157422A Pending JPH05325943A (en) 1992-05-25 1992-05-25 Cylindrical secondary battery

Country Status (1)

Country Link
JP (1) JPH05325943A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840325A (en) * 1986-04-02 1989-06-20 Honda Giken Kogyo Kabushiki Kaisha Seat belt tightening device
WO1998045888A1 (en) * 1997-04-10 1998-10-15 Duracell Inc. Current interrupter for electrochemical cells
WO1999052167A1 (en) * 1998-04-02 1999-10-14 The Procter & Gamble Company Battery having a built-in controller to extend battery service run time
KR100659835B1 (en) * 2005-03-30 2006-12-19 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery having center pin builted-in overcharge protection circuit
KR100659836B1 (en) * 2005-03-30 2006-12-19 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery having functional center pin
US7195840B2 (en) * 2001-07-13 2007-03-27 Kaun Thomas D Cell structure for electrochemical devices and method of making same
EP1805829A1 (en) * 2004-08-20 2007-07-11 LG Chemical, Ltd. Secondary battery having constant-voltage
US8021775B2 (en) 2001-07-13 2011-09-20 Inventek Corporation Cell structure for electrochemical devices and method of making same
EP2515363A1 (en) * 2011-04-18 2012-10-24 SB LiMotive Co., Ltd. Secondary battery
US20130136961A1 (en) * 2011-11-30 2013-05-30 Minyeol Han Secondary battery
WO2013103402A1 (en) * 2011-11-30 2013-07-11 Johnson Controls Technology Company Electrochemical cell having a safety device
EP2835847A1 (en) * 2013-08-09 2015-02-11 Samsung SDI Co., Ltd. Rechargeable battery
US9225002B2 (en) 2013-10-24 2015-12-29 Samsung Sdi Co., Ltd. Rechargeable battery having fuse unit
US9397370B2 (en) 1999-06-25 2016-07-19 The Board Of Trustees Of The University Of Illinois Single and multiple cell battery with built-in controller
US9490470B2 (en) 2013-02-20 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
KR20200050031A (en) * 2018-10-31 2020-05-11 주식회사 비츠로셀 Lithium primary battery with safety element having inner fuse and outer fuse
CN111902994A (en) * 2018-07-04 2020-11-06 株式会社Lg化学 Method and apparatus for testing internal short circuit of secondary battery and secondary battery for testing internal short circuit
KR20210034882A (en) * 2019-09-23 2021-03-31 주식회사 비츠로셀 Lithium primary battery having safety element with improved safety
CN112736279A (en) * 2021-01-12 2021-04-30 广东维都利新能源有限公司 Button cell with safety device and manufacturing method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840325A (en) * 1986-04-02 1989-06-20 Honda Giken Kogyo Kabushiki Kaisha Seat belt tightening device
WO1998045888A1 (en) * 1997-04-10 1998-10-15 Duracell Inc. Current interrupter for electrochemical cells
JP2001519086A (en) * 1997-04-10 2001-10-16 デュラセル、インコーポレーテッド Current interrupter for electrochemical cells
WO1999052167A1 (en) * 1998-04-02 1999-10-14 The Procter & Gamble Company Battery having a built-in controller to extend battery service run time
US9397370B2 (en) 1999-06-25 2016-07-19 The Board Of Trustees Of The University Of Illinois Single and multiple cell battery with built-in controller
US7195840B2 (en) * 2001-07-13 2007-03-27 Kaun Thomas D Cell structure for electrochemical devices and method of making same
US8021775B2 (en) 2001-07-13 2011-09-20 Inventek Corporation Cell structure for electrochemical devices and method of making same
US8263248B2 (en) 2001-07-13 2012-09-11 Inventek Corporation Cell structure for electrochemical devices and method of making same
EP1805829A1 (en) * 2004-08-20 2007-07-11 LG Chemical, Ltd. Secondary battery having constant-voltage
EP1805829A4 (en) * 2004-08-20 2008-05-14 Lg Chemical Ltd Secondary battery having constant-voltage device
US7737661B2 (en) 2004-08-20 2010-06-15 Lg Chem, Ltd. Secondary battery having constant-voltage device
KR100659835B1 (en) * 2005-03-30 2006-12-19 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery having center pin builted-in overcharge protection circuit
KR100659836B1 (en) * 2005-03-30 2006-12-19 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery having functional center pin
EP2515363A1 (en) * 2011-04-18 2012-10-24 SB LiMotive Co., Ltd. Secondary battery
US8758929B2 (en) 2011-04-18 2014-06-24 Samsung Sdi Co., Ltd. Secondary battery
US20130136961A1 (en) * 2011-11-30 2013-05-30 Minyeol Han Secondary battery
WO2013103402A1 (en) * 2011-11-30 2013-07-11 Johnson Controls Technology Company Electrochemical cell having a safety device
US9490470B2 (en) 2013-02-20 2016-11-08 Samsung Sdi Co., Ltd. Secondary battery
EP2835847A1 (en) * 2013-08-09 2015-02-11 Samsung SDI Co., Ltd. Rechargeable battery
US9768437B2 (en) 2013-08-09 2017-09-19 Samsung Sdi Co., Ltd. Rechargeable battery
US9225002B2 (en) 2013-10-24 2015-12-29 Samsung Sdi Co., Ltd. Rechargeable battery having fuse unit
CN111902994A (en) * 2018-07-04 2020-11-06 株式会社Lg化学 Method and apparatus for testing internal short circuit of secondary battery and secondary battery for testing internal short circuit
CN111902994B (en) * 2018-07-04 2024-04-16 株式会社Lg新能源 Method and apparatus for testing internal short circuit of secondary battery, and secondary battery for testing internal short circuit
KR20200050031A (en) * 2018-10-31 2020-05-11 주식회사 비츠로셀 Lithium primary battery with safety element having inner fuse and outer fuse
KR20210034882A (en) * 2019-09-23 2021-03-31 주식회사 비츠로셀 Lithium primary battery having safety element with improved safety
CN112736279A (en) * 2021-01-12 2021-04-30 广东维都利新能源有限公司 Button cell with safety device and manufacturing method thereof
WO2022152126A1 (en) * 2021-01-12 2022-07-21 广东维都利新能源有限公司 Button cell having safety device and manufacturing method for button cell

Similar Documents

Publication Publication Date Title
US6074777A (en) Additives for overcharge protection in non-aqueous rechargeable lithium batteries
US8610408B2 (en) Lithium ion secondary battery charging method and battery pack
CA2163187C (en) Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
JPH05325943A (en) Cylindrical secondary battery
US8912762B2 (en) Charging method for non-aqueous electrolyte secondary battery by repeating a set of constant current charge and constant voltage charge and battery pack implementing the charging method
JPH04328278A (en) Nonaqueous electrolyte secondary battery
JP2006527467A (en) Stacked lithium-ion rechargeable battery
US20140002942A1 (en) Secondary Lithium Ion Battery With Mixed Nickelate Cathodes
US7402360B2 (en) Non-aqueous electrolyte battery
KR100358224B1 (en) Lithium secondary battery
TW517405B (en) Nonaqueous electrolyte secondary cell and method of producing the same
US6660433B2 (en) Lithium secondary battery and battery device comprising same
JP4329326B2 (en) Secondary battery and secondary battery pack with temperature protection element unit
JP2011076888A (en) Battery pack constituted of nonaqueous electrolyte secondary batteries
JPH05266878A (en) Cylindrical secondary battery
JP2004152579A (en) Lithium ion battery and lithium ion battery pack
JPH05234614A (en) Cylindrical battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
JP2009054296A (en) Nonaqueous electrolyte battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP3457462B2 (en) Non-aqueous electrolyte secondary battery
JPH03190061A (en) Cylindrical lithium secondary battery
JPH07272764A (en) Nonaqueous electrolytic secondary battery
JPH11121040A (en) Lithium secondary battery