JPH03190061A - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery

Info

Publication number
JPH03190061A
JPH03190061A JP1330110A JP33011089A JPH03190061A JP H03190061 A JPH03190061 A JP H03190061A JP 1330110 A JP1330110 A JP 1330110A JP 33011089 A JP33011089 A JP 33011089A JP H03190061 A JPH03190061 A JP H03190061A
Authority
JP
Japan
Prior art keywords
separator
electrodes
positive
battery
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330110A
Other languages
Japanese (ja)
Inventor
Takao Ogino
隆夫 荻野
Tadaaki Miyazaki
忠昭 宮崎
Yoshitomo Masuda
善友 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP1330110A priority Critical patent/JPH03190061A/en
Publication of JPH03190061A publication Critical patent/JPH03190061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain high discharge capacity, to enhance charge-discharge perfor mance and to ensure high safety by covering one end face of both electrodes with the projected part of a separator on the bottom side of a battery container, which separator is projected from both ends of a spiral electrodes. CONSTITUTION:A positive plate 1 and a negative plate 2 are stacked through a separator 3 so that both ends of the separator 3 are projected from upper and lower ends of the plates 1, 2, and they are spirally wound around a winding core 4. The separator 3 is projected from both ends of a spiral electrode 5 having the separator 3 in the positive and negative electrodes 1, 2. Of the project ed parts 6a, 6b of the separator 3, the projected part 6b on the bottom side of a battery container is bent toward the winding core 4 and each end of the positive and negative plates 1, 2 is covered with the projected part 6b of the separator 3. Both electrodes 1, 2 are accommodated without irregular collaps of the separator 3 and short-circuit between both electrodes 1, 2 is surely prevented. High discharge capacity is obtained, charge-discharge performance is enhanced, and high safety is ensured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極材料として使用した円筒形リ
チウム二次電池に関し、更に詳述すると高放電容量を示
し、充放電特性、安全性に優れたスパイラル構造電極を
有する円筒形リチウム二次電池に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cylindrical lithium secondary battery using lithium as a negative electrode material. This invention relates to a cylindrical lithium secondary battery having an excellent spiral structure electrode.

〔従来の技術〕[Conventional technology]

近年、リチウム等のアルカリ金属を負極活物質に用いた
非水電解質電池は、高電圧、高エネルギー密度で優れた
自己放電特性を示すことから注目されており、更にこれ
らを充放電可能とした二次電池、特に電極を円筒形とし
た高容量二次電池は、ポータプル機器等各種のエレクト
ロニクス機器の主電源用途として期待されている。
In recent years, nonaqueous electrolyte batteries that use alkali metals such as lithium as negative electrode active materials have attracted attention because they exhibit excellent self-discharge characteristics at high voltage and high energy density. Secondary batteries, especially high-capacity secondary batteries with cylindrical electrodes, are expected to be used as main power sources for various electronic devices such as portable devices.

従来、円筒形電池においては、大きな放電電流を取り出
せるように薄板状の正極板と負極板とをセパレーターを
介してスパイラル状に形成し、電池反応にあずかる電極
表面積を広くした構造が好ましく採用されており、特に
リチウム二次電池のように充放電に伴ってリチウムイオ
ンが可逆的に移動するような反応機構の場合、単位面積
当りの電流値、即ちイオンの移動量が少ない方がハイレ
ートな放電ができ、しかも充電時の電流密度を低減化で
きるので良好な充放電サイクル特性が得られる。このた
め、スパイラル構造を採ることば円筒形リチウム電池の
二次電池化を達成するためには欠くことのできない条件
の一つである。
Conventionally, cylindrical batteries have preferably adopted a structure in which a thin positive electrode plate and a negative electrode plate are formed in a spiral shape with a separator interposed between them so that a large discharge current can be extracted, thereby increasing the electrode surface area that participates in the battery reaction. In particular, in the case of a reaction mechanism such as a lithium secondary battery in which lithium ions move reversibly during charging and discharging, the smaller the current value per unit area, that is, the amount of ion movement, the higher the rate of discharge. Moreover, since the current density during charging can be reduced, good charge-discharge cycle characteristics can be obtained. Therefore, adopting a spiral structure is one of the indispensable conditions for converting a cylindrical lithium battery into a secondary battery.

ここで、電池に要求される基本的条件の一つとして、安
全性を確保するために内部短絡を確実に防止することが
挙げられる。特にスパイラル構造をもつ円筒形リチウム
電池においては、内部短絡が発生すると、急激に大電流
が流れ、電池内部の発熱により電解液の分解等の不都合
が生じ、電池性能を低下させるばかりでなく、電池破裂
の危険をも生じさせる。
Here, one of the basic conditions required of batteries is to reliably prevent internal short circuits in order to ensure safety. In particular, in cylindrical lithium batteries with a spiral structure, if an internal short circuit occurs, a large current will suddenly flow, causing problems such as decomposition of the electrolyte due to heat generation inside the battery, which not only reduces battery performance but also It also creates a risk of rupture.

内部短絡は、正極と負極との接触により発生するもので
あるが、上述のようなスパイラル構造では、正極板と負
極板とを隔てているセパレーターの欠陥部から両極板が
接触したり、両極板のズレ等により両極板の端部がセパ
レーターよりはみ出し、このはみ出した両極板の端部同
士が互いに接触することなどにより、短絡が発生し易い
。特に、スパイラル構造に巻かれた後、電池容器に収納
するとき、電池容器底部においてセパレーターが不規則
につぶされ、セパレーターの開口部より両極板が接触し
たり、あるいはリチウム負極を用いた二次電池の場合は
、充電時にリチウム負極端部にデンドライト状の析出物
が発生し易い傾向にあり、これが上記セパレーターの開
口部を通して短絡を引き起こす可能性が高い。
Internal short circuits occur due to contact between the positive and negative electrodes, but in the spiral structure described above, the two electrode plates may come into contact through a defective part of the separator that separates the positive and negative electrode plates, or the two electrode plates may Due to misalignment or the like, the ends of the bipolar plates protrude from the separator, and the protruding ends of the bipolar plates come into contact with each other, thereby easily causing a short circuit. In particular, when stored in a battery container after being wound into a spiral structure, the separator may be crushed irregularly at the bottom of the battery container, causing the two electrode plates to come into contact through the opening of the separator, or secondary batteries using lithium negative electrodes. In this case, dendrite-like precipitates tend to form at the lithium negative end during charging, and this is likely to cause a short circuit through the openings of the separator.

このような現象による正・負極間の短絡を防ぐためには
、両極板より巾の広いセパレーターで一方の電極をはさ
み込み、該極板からはみ出した部分を熱融着して、一方
の電極を袋詰め状態とし、もう一方の極板と共にスパイ
ラル状に巻き上げることにより5両極の短絡を防止する
ことが考えられる。また、特開平1−122574号公
報に見るように渦巻状に巻回して、上下にはみ出したセ
パレータ一端面部を巻芯方向に折曲げ、かつ熱融着する
方法が提案されている。
In order to prevent short circuits between the positive and negative electrodes due to this phenomenon, one electrode is sandwiched between separators that are wider than the two electrode plates, and the protruding portion of the electrode is heat-sealed, and one electrode is placed in a bag. It is conceivable to prevent a short circuit between the five electrodes by placing them in a packed state and rolling them up in a spiral together with the other electrode plate. Furthermore, as seen in Japanese Patent Application Laid-Open No. 1-122574, a method has been proposed in which the separator is wound in a spiral shape, one end surface of the separator that protrudes upward and downward is bent in the direction of the winding core, and heat-sealed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述した改善法に本発明者らが検討を加えた
ところ、種々の問題点が存在することが明らかになった
However, when the present inventors investigated the above-mentioned improvement method, it became clear that there were various problems.

即ち、セパレーターで一方の電極板を予め袋詰めし、こ
れを他方の電極板と共にスパイラル構造に巻き上げると
、内側となるセパレーターに極板の長手方向に対し、円
弧状のしわが発生するという問題を生じる。これは、例
えば予め負極板をセパレーターで挾み、開口部を熱融着
したものを用いると、負極板は通常0.1〜0.3園の
厚みを持っているため、スパイラル状に巻き上げるとき
に負極板の内側と外側で局長に差異が生じ、このため内
側部では外側部に対して長さが過剰となり、しわを生じ
るものである。このようなしわを生じるとスパイラル状
に巻いた電極の充填率を下げ、放電容量の低下を招くと
共に、二次電池とした場合には、発生したしわが軟らか
いリチウム負極板上に転写され、該極板の厚みにバラツ
キが生じることになり、サイクル寿命を大きく減じる結
果となる。
That is, if one electrode plate is packed in a bag in advance with a separator and then rolled up together with the other electrode plate in a spiral structure, the problem of arc-shaped wrinkles occurring in the inner separator in the longitudinal direction of the electrode plate can be solved. arise. For example, if a negative electrode plate is sandwiched between separators and the opening is heat-sealed, the negative electrode plate usually has a thickness of 0.1 to 0.3 mm, so when it is rolled up in a spiral shape, There is a difference in the length between the inside and outside of the negative electrode plate, and as a result, the inside part is longer than the outside part, causing wrinkles. When such wrinkles occur, the filling rate of the spirally wound electrode decreases, leading to a decrease in discharge capacity, and when used as a secondary battery, the wrinkles are transferred onto the soft lithium negative electrode plate. This results in variations in the thickness of the electrode plates, resulting in a significant reduction in cycle life.

また、はみ出したセパレーターの上下端部を折込み、か
つ熱融着すると確かに短絡を防止でき。
Additionally, folding the upper and lower ends of the protruding separator and heat-sealing it will certainly prevent short circuits.

かつ袋詰め状態における問題点は解決できる。ところが
、この電池を約60℃以上で長期間保存したり、その温
度で充放電を行った場合や、大電流放電、外部短絡耐久
テストなどで電池の温度が上昇する場合には、セパレー
ターは熱に反応し、幅方向へも収縮しようとする力が働
く。そのときにセパレーターの両端部は折曲げ融着され
ているために拘束され、セパレーターの微孔が大きくな
ったり、また極板のエッチ等でセパレーターが傷つけら
れて亀裂が生じる場合があり、ミクロ的な短絡が発生し
易くなる。その結果、例えば高温保存下での容量の保持
率が低下するという結果を招く。
In addition, problems associated with bagging can be solved. However, if this battery is stored for a long period of time at temperatures above approximately 60°C, or if it is charged or discharged at that temperature, or if the temperature of the battery rises due to high current discharge or external short circuit durability tests, the separator will heat up. In response to this, a force that tries to contract in the width direction also acts. At that time, both ends of the separator are bent and fused, so they are restrained, and the micropores in the separator may become larger, or the separator may be damaged by etching of the electrode plate, causing cracks. Short circuits are more likely to occur. As a result, for example, the capacity retention rate under high temperature storage is reduced.

本発明は、上記事情に鑑みなされたもので、高放電容量
を示し、充放電特性に優れると共に、内部短絡を生じる
ことのない安全性の高いスパイラル構造を有する円筒形
リチウム二次電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a cylindrical lithium secondary battery that exhibits high discharge capacity, excellent charge and discharge characteristics, and has a highly safe spiral structure that does not cause internal short circuits. The purpose is to

〔課題を解決するための手段〕 本発明は上記目的を達成するため、正極とリチウムを含
む負極とがセパレーターを介して渦巻き状に巻かれたス
パイラル構造電極が電池容器内に充填され、非水電解液
が上記正負極間に介在されてなる円筒形リチウム二次電
池において、上記セパレーターが上記スパイラル構造電
極の両端からそれぞれはみ出し、かつ該セパレーターの
電池容器底面側はみ出し部が、両電極の片端面を覆うよ
うに折り曲げられていることを特徴とする円筒形リチウ
ム二次電池を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a spiral structure electrode in which a positive electrode and a negative electrode containing lithium are spirally wound with a separator interposed therebetween. In a cylindrical lithium secondary battery in which an electrolyte is interposed between the positive and negative electrodes, the separator protrudes from both ends of the spiral structure electrode, and the protruding portion of the separator on the bottom side of the battery container is located on one end surface of both electrodes. To provide a cylindrical lithium secondary battery characterized by being bent to cover the cylindrical lithium secondary battery.

〔作 用〕[For production]

本発明の円筒形リチウム二次電池は、上記構成としたこ
とにより、高放電容量、充放電特性の向上及び高い安全
性を達成したものである。
The cylindrical lithium secondary battery of the present invention achieves high discharge capacity, improved charge/discharge characteristics, and high safety by having the above structure.

即ち、本発明電池のスパイラル構造電極は、電池容器底
部に当たる部分のセパレーターが画電極端部からはみ呂
していると共に、折曲げられており、両電極の電池容器
底面側端面が該セパレーターのはみ出し部で覆われてい
るため、セパレーターの不規則なつぶれが生じることな
く両電極を収容でき、このためこの部分での短絡が完全
に防止できる。また電極がセパレーターで袋詰め状とさ
れていないので、スパイラル構造へ巻き上げるときに生
じる極板の内側と外側との局長差にセパレーターが追随
し、セパレーターにしわを生じることなくスパイラル構
造を形成することができ、かつセパレーターが折り曲げ
られている端面ば短絡を起こし易い電池容器底面側に限
られているため、高温下に置かれてもセパレーターは十
分巾方向に収縮が可能であり、前述したような両端面の
折曲げ、融着によるセパレーターの拘束に基づく微孔の
拡大や損傷の発生を抑制できるものである。
That is, in the spiral structure electrode of the battery of the present invention, the separator at the bottom of the battery container protrudes from the end of the picture electrode and is bent, and the end surfaces of both electrodes on the bottom side of the battery container are aligned with the separator. Since the separator is covered with protruding parts, both electrodes can be accommodated without irregular collapse of the separator, thereby completely preventing short circuits in this part. In addition, since the electrodes are not packed in a bag with separators, the separators follow the difference in the length between the inside and outside of the electrode plate that occurs when it is rolled up into a spiral structure, and the spiral structure can be formed without wrinkles in the separators. However, since the bent end face of the separator is limited to the bottom side of the battery container where short circuits are likely to occur, the separator can sufficiently shrink in the width direction even when placed under high temperatures, and the It is possible to suppress the expansion of micropores and the occurrence of damage due to the restraint of the separator due to bending and fusing of both end faces.

以上の如く、本発明の円筒形リチウム二次電池は正負両
極間の短絡を確実に防止することができ、従って高放電
容量、優れた充放電特性及び高い安全性を確保し得るも
のである。
As described above, the cylindrical lithium secondary battery of the present invention can reliably prevent short circuits between the positive and negative electrodes, thereby ensuring high discharge capacity, excellent charge/discharge characteristics, and high safety.

以下、本発明の一実施例につき図面を参照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

〔実施例〕〔Example〕

第1図は、本発明に係る円筒形リチウム二次電池の一実
施例を示すもので、この円筒形リチウム二次電池は、正
極板1と負極板2とをこれら正負極板1,2の図中上下
方向両端部よりはみ出するように巾広のセパレーター3
を介して重ね合わせると共に、これを巻き芯4に渦巻き
状に巻いて正負極1,2内にセパレーター3が介装され
たスパイラル構造電極5の両端からはみ出したセパレー
ター3のはみ出し部6a、6bの電池容器底面側はみ出
し部6bを巻き芯4側(中心側)に向けて折り曲げ、こ
れらはみ出し部6bで正負極板の1.2片端面を被覆し
、これを円筒形電池容器7に収容してなるもので、正極
板1と負極板2との間には非水電解液が介在されている
。なお、図中8は電池蓋、9は絶縁板、10は正極端子
、11はリード線であり、上記電池容器7と電池蓋8は
負極端子を構成し、正極端子10は特に図示していない
が絶縁パツキン等により電池蓋8とMlされた状態にな
っている。
FIG. 1 shows an embodiment of a cylindrical lithium secondary battery according to the present invention. This cylindrical lithium secondary battery has a positive electrode plate 1 and a negative electrode plate 2. A wide separator 3 protrudes from both ends in the vertical direction in the figure.
The protruding portions 6a and 6b of the separator 3 protrude from both ends of the spiral structure electrode 5, in which the separator 3 is interposed in the positive and negative electrodes 1 and 2 by spirally winding this around the winding core 4. The protruding parts 6b on the bottom side of the battery container are bent toward the winding core 4 side (center side), and these protruding parts 6b cover 1.2 end faces of the positive and negative electrode plates, and this is housed in the cylindrical battery container 7. A non-aqueous electrolyte is interposed between the positive electrode plate 1 and the negative electrode plate 2. In the figure, 8 is a battery cover, 9 is an insulating plate, 10 is a positive terminal, and 11 is a lead wire, the battery container 7 and the battery cover 8 constitute a negative terminal, and the positive terminal 10 is not particularly shown. is in a state where it is connected to the battery cover 8 by an insulating gasket or the like.

ここで、上記正極(板)1としては、薄板状に形成され
たv20.、VGO,、、LiV、O,、MnO2゜M
nO1等の金属酸化物、TiS2.Mo82等の金属硫
化物、ポリアニリン等の導電性ポリマーなどを使用する
ことができる。
Here, as the positive electrode (plate) 1, v20. ,VGO,,,LiV,O,,MnO2゜M
Metal oxides such as nO1, TiS2. Metal sulfides such as Mo82, conductive polymers such as polyaniline, etc. can be used.

また、負極(板)2としては、リチウムを含むものであ
るが、具体的には、リチウム金属、リチウムとアルミニ
ウム、インジウム、錫、鉛、ビスマス、カドミウム、亜
鉛等との合金などを挙げることができる。これらの中で
は特にリチウム金属。
The negative electrode (plate) 2 contains lithium, and specifically includes lithium metal, alloys of lithium with aluminum, indium, tin, lead, bismuth, cadmium, zinc, and the like. Among these, especially lithium metal.

リチウム−アルミニウム合金が好適に使用される。Lithium-aluminum alloys are preferably used.

上記正・負極間に介装するセパレーターとしては、両極
の接触を確実に防止し得、かつ電解液を通したり含んだ
りすることのできる材料、例えばポリテトラフルオロエ
チレン、ポリプロピレンやポリエチレン等の合成樹脂製
の不織布、織布、多孔体や網などを挙げることができる
が、特に厚さ20〜5〇−程度のポリプロピレン又はポ
リエチレン製の微孔質フィルムが好ましく用いられる。
The separator interposed between the positive and negative electrodes is made of a material that can reliably prevent contact between the two electrodes and that can pass or contain the electrolyte, such as synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene. Examples include nonwoven fabrics, woven fabrics, porous bodies, and nets, but particularly preferred are microporous films made of polypropylene or polyethylene with a thickness of about 20 to 50 mm.

このセパレーターのはみ出し部の長さ(はみ出し巾)は
、上記正・負極の厚みにより適宜設定されるが、はみ出
し部の長さは正負極板1,2の電池容器底面側端面を完
全に被覆し得るようにすることが好適で、通常は1〜5
IIIlである。即ち、はみ出し部が短かすぎると、こ
れを折り曲げた際、正・負極板の端面を完全に被覆する
ことができず、デンドライト等による両極の短絡の危険
を生じる場合があり、一方長すぎると折り曲げられたセ
パレーターの重なりが厚くなり、電池内容積に対する電
池高さ方向の充填効率が低下し、電池性能を低下させる
場合がある。また、上記セパレーターのはみ出し部を折
り曲げる方法としては、特に制限されるものではないが
、熱板等によりスパイラル構造の中心へ向けて折り込ん
で行き、はみ出し部に完全な型付は処理を施す方法が好
適に採用される。この場合、熱板の温度は、ポリプロピ
レンの微孔性シートをセパレーターとして用いた場合は
150〜170℃程度とすることが好ましい。
The length of the protruding part (protruding width) of this separator is set appropriately depending on the thickness of the positive and negative electrodes, but the length of the protruding part is such that the protruding part completely covers the bottom side end surface of the battery container of the positive and negative electrode plates 1 and 2. It is preferable to obtain
It is III. In other words, if the protruding part is too short, when it is bent, it may not be able to completely cover the end faces of the positive and negative electrode plates, and there is a risk of a short circuit between the two poles due to dendrites, etc. On the other hand, if the protruding part is too long, The overlap of the folded separators becomes thick, and the filling efficiency in the battery height direction relative to the battery internal volume decreases, which may reduce battery performance. There are no particular restrictions on the method of folding the protruding portion of the separator, but a method of folding the protruding portion of the separator toward the center of the spiral structure using a hot plate, etc., and then applying a process to completely form the protruding portion is a method. Suitably adopted. In this case, the temperature of the hot plate is preferably about 150 to 170°C when a microporous polypropylene sheet is used as a separator.

また、折り曲げたセパレータ一部分はうまく型付けされ
ているだけでもよく、セパレーター同士の熱融着は特に
必要はない。
Furthermore, it is sufficient that a portion of the folded separator is well-shaped, and there is no particular need for heat-sealing the separators together.

上記正・負極間に介在させる非水電解液としては、リチ
ウムイオンを含むものであり、このリチウムイオン源と
しては、リチウム塩、特にLiCQO,、LiBF4.
LiPF、、LiCF、SO2及びL iA s F 
Gから選ばれた1種又は2種以上が好適であり、これら
の電解質は、通常溶媒により溶解された状態で使用され
る。この場合、溶媒としては特に限定されるものではな
いが、プロピレンカーボネート、テトラヒドロフラン、
エチレンカーボネート、ジメトキシエタン、ジエチルカ
ーボネート、γ−ブチロラクトン、ジオキソラン。
The nonaqueous electrolyte interposed between the positive and negative electrodes contains lithium ions, and the lithium ion source includes lithium salts, particularly LiCQO, LiBF4.
LiPF, , LiCF, SO2 and LiA s F
One or more electrolytes selected from G are suitable, and these electrolytes are usually used in a state dissolved in a solvent. In this case, the solvent is not particularly limited, but propylene carbonate, tetrahydrofuran,
Ethylene carbonate, dimethoxyethane, diethyl carbonate, γ-butyrolactone, dioxolane.

ブチレンカーボネート及びジメチルホルムアミドから選
ばれた1種又は2種以上の有機溶媒が好適である。
One or more organic solvents selected from butylene carbonate and dimethylformamide are suitable.

〔発明の効果〕〔Effect of the invention〕

なおまた、本発明の円筒形リチウム二次電池は、上記実
施例に限定されるものではなく、本発明の要旨の範囲内
で種々変更することができる。
Furthermore, the cylindrical lithium secondary battery of the present invention is not limited to the above-mentioned embodiments, and can be variously modified within the scope of the gist of the present invention.

以上説明したように、本発明の円筒形リチウム二次電池
は、高放電容量を示し、充放電特性に優れると共に、内
部短絡を生じることのない安全性の高いものである。
As explained above, the cylindrical lithium secondary battery of the present invention exhibits high discharge capacity, excellent charge and discharge characteristics, and is highly safe without causing internal short circuits.

次に、実験例を示し、本発明の効果を具体的に説明する
Next, experimental examples will be shown to specifically explain the effects of the present invention.

〔実験例〕[Experiment example]

下記の構造を有する3種類のスパイラル構造電極をそれ
ぞれ有底円筒形電池容器に収容し、この容器内に1mo
l/QのLiPF6を含むプロピレンカーボネート溶液
を注ぎ込み、封口して第1〜4図に示す如き4種類の単
3型電池を作製した。なお、第2.3.4図において第
1図と同一構成部材には第1図と同一の参照付帯を付し
、その説明を省略する。
Three types of spiral structure electrodes having the following structures are housed in a bottomed cylindrical battery container, and 1 mo.
A propylene carbonate solution containing 1/Q of LiPF6 was poured into the container, and the container was sealed to produce four types of AA batteries as shown in FIGS. 1 to 4. In addition, in FIG. 2.3.4, the same reference symbols as in FIG. 1 are given to the same constituent members as in FIG. 1, and the explanation thereof will be omitted.

電極A(第1図):実施例 負極2として厚み100 tm を巾40nmのリチウ
ムシートを、正極1として化学式L i V a Os
で示されるバナジウム酸化物(活物質)とアセチレンブ
ラック(導電剤)とポリテトラフルオロエチレン粉末(
結着剤)とを混合して厚さ100−y巾40rmの板状
に形成したものをそれぞれ用いた。
Electrode A (Figure 1): Example A lithium sheet with a thickness of 100 tm and a width of 40 nm was used as the negative electrode 2, and the chemical formula L i Va Os was used as the positive electrode 1.
vanadium oxide (active material), acetylene black (conductive agent), and polytetrafluoroethylene powder (
A plate-like material having a thickness of 100 mm and a width of 40 rms was used.

これら正負極間及び負極板2側にはそれぞれ厚さ25 
its +巾44■のポリプロピレン製微孔質フィルム
をセパレーター3として両極の巾方向両端縁から2mm
ずつはみ出すように配し、得られた一体化物を正極板1
が巻き芯4と接触するように巻き芯4を中心としてスパ
イラル状に形成し、画電極1.2の電池容器底面側の端
面よりはみ出したセパレーターのはみ出し部6bを中心
に向けて折り曲げ、他方のはみ出し部6aはそのままと
した。
There is a thickness of 25 mm between these positive and negative electrodes and on the negative electrode plate 2 side.
A microporous polypropylene film with a width of 44 cm is used as the separator 3 at a distance of 2 mm from both edges in the width direction of both poles.
Place the resulting integrated product on the positive electrode plate 1.
The separator is formed in a spiral shape around the winding core 4 so that it is in contact with the winding core 4, and the protruding part 6b of the separator that protrudes from the bottom end of the battery container of the picture electrode 1.2 is bent toward the center, and the other The protruding portion 6a was left as is.

!監l(第2図):比較例1 電極Aと同様の正、負極板及びセパレーターを用い、予
め負極板をセパレーター3で包み込み、はみ出し部6a
及び6bを熱融着して袋詰状態とした後、正極板ととも
に巻き上げた。
! Supervision (Figure 2): Comparative Example 1 Using the same positive and negative electrode plates and separators as electrode A, wrap the negative electrode plate in advance with separator 3, and remove the protruding part 6a.
and 6b were thermally fused to form a bag, and then rolled up together with the positive electrode plate.

l1旦(第3図):比較例2 電極Aと同様の正、負極板とセパレーターを同様にして
巻き上げたが、セパレーターのはみ出し部6a及び6b
は電池容器底面部及び上部とも折曲げて熱融着した。
11 (Figure 3): Comparative Example 2 The same positive and negative electrode plates and separator as electrode A were rolled up in the same manner, but the protruding parts 6a and 6b of the separator
Both the bottom and top of the battery container were bent and heat-sealed.

11旦(第4図):比較例3 電極Aと同様の正、負極板とセパレーターを同様にして
巻き上げたが、はみ出し部分6a及び・6bはそのまま
で折曲げず、上下方向に突出した状態とした。
11 (Figure 4): Comparative Example 3 The same positive and negative electrode plates and separator as electrode A were rolled up in the same manner, but the protruding parts 6a and 6b were left as they were and were not bent, so that they protruded in the vertical direction. did.

上記4種類の電池につき、下記方法により初期放電容量
、充放電サイクル性能及び衝撃時、高充電電流時におけ
る短絡性及び高温保存性を評価した。結果を第1表に示
す。
The above four types of batteries were evaluated for initial discharge capacity, charge/discharge cycle performance, short-circuit properties at impact, high charging current, and high temperature storage stability using the following methods. The results are shown in Table 1.

初期放電容量: 電流値150mAにおいて2.Ovを下限電圧として放
電したときの測定値を電池5本の平均値で示した。
Initial discharge capacity: 2 at a current value of 150 mA. The measured values when discharging with Ov as the lower limit voltage are shown as the average value of five batteries.

充放電サイクル性能: 上限電圧3.3V、下限電圧2.OV、放電電流150
mA、充電電流60mAの条件で充放電を繰り返し、放
電容量が初期容量の80%に低下するまでの充放電サイ
クル回数を調べ、電池5本の平均値を示した。
Charge/discharge cycle performance: Upper limit voltage 3.3V, lower limit voltage 2. OV, discharge current 150
Charging and discharging were repeated under the conditions of mA and charging current of 60 mA, and the number of charging and discharging cycles until the discharge capacity decreased to 80% of the initial capacity was determined, and the average value of the five batteries was shown.

衝撃時短絡性: 10個の電池について、それぞれ1.8mの高さからコ
ンクリート上に正極端子を上にして5回、正極端子を下
にして5回、計10回垂直に落下させ、極板のズレ等に
よる短絡を生じた電池の個数を調べた。
Short-circuit property upon impact: 10 batteries were vertically dropped onto concrete from a height of 1.8 m 5 times with the positive terminal facing up, and 5 times with the positive terminal facing down, for a total of 10 times. The number of batteries that suffered from short circuits due to misalignment, etc. was investigated.

高充電電流時短絡性: 5個の電池について、上記充放電サイクル性能試験にお
いて充電電流を120mAに上げ、100サイクルまで
充放電を繰り返し、その充放電曲線を測定し、該曲線に
異常が生じるか調べた。
Short-circuit property at high charging current: For 5 batteries, increase the charging current to 120 mA in the above charge-discharge cycle performance test, repeat charging and discharging up to 100 cycles, measure the charge-discharge curve, and check whether any abnormality occurs in the curve. Examined.

この場合異常が発生したときは、その発生サイクル数を
測定した。
In this case, when an abnormality occurred, the number of cycles in which it occurred was measured.

高温保存性: 60℃中に40日間保持した後の放電容量を初期放電容
量に対する保持率として調べ、電池5本の平均値で示し
た。
High-temperature storage stability: The discharge capacity after being kept at 60° C. for 40 days was examined as a retention rate with respect to the initial discharge capacity, and the average value of five batteries was shown.

第  1  表 第1表に示した如く、負極板をセパレーターで袋詰にし
た比較例1の電池は、短絡に関しては全く心配がないが
、予め負極板を袋詰にしているため充填率を高くできず
、また巻き上げ時にしわが生じるため、初期放電容量は
低く、またサイクル性能も低い。また、セパレーターの
上下面方向とも折曲げ熱融着した比較例2では、放電容
量、サイクル性能及び短絡性は良好なものの、高温保存
時の大きな低下が見られる。セパレーターを巻上げその
ままの状態である比較例3では、放電容量、サイクル性
能に関してはある程度の性能を示すが、短絡の危険性が
非常に高い。
Table 1 As shown in Table 1, the battery of Comparative Example 1, in which the negative plate was packed in a bag with a separator, had no concerns about short circuits, but since the negative plate was packed in a bag in advance, the filling rate was high. In addition, wrinkles occur during winding, resulting in low initial discharge capacity and poor cycle performance. In addition, in Comparative Example 2, in which the separator was bent and heat-sealed in both the upper and lower surface directions, the discharge capacity, cycle performance, and short circuit performance were good, but a large decrease was observed during high-temperature storage. Comparative Example 3, in which the separator was wound up as it was, showed a certain degree of performance in terms of discharge capacity and cycle performance, but the risk of short circuiting was extremely high.

これらの電池に比べ、実施例の電池はすべてに優れた性
能を示しており、本発明の優れた効果が確認された。
Compared to these batteries, the batteries of Examples exhibited superior performance in all respects, confirming the excellent effects of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明円筒形リチウ本二次電池の一実施例を
示す断面図、第2〜4図はそれぞれ比較例1,2及び3
の円筒形リチウム二次電池を示す断面図である。 1・・・正極(板)     2・・・負極(板)3・
・・セパレーター    4・・・巻き芯5・・・スパ
イラル構造電極 6a、6b・・・はみ出し部7・・・
電池容器      8・・・電池蓋9・・・絶縁板 
    10・・・正極端子11・・・リード線
FIG. 1 is a sectional view showing one embodiment of the cylindrical lithium secondary battery of the present invention, and FIGS. 2 to 4 are comparative examples 1, 2, and 3, respectively.
FIG. 2 is a cross-sectional view showing a cylindrical lithium secondary battery. 1...Positive electrode (plate) 2...Negative electrode (plate) 3.
... Separator 4 ... Winding core 5 ... Spiral structure electrode 6a, 6b ... Protrusion part 7 ...
Battery container 8...Battery cover 9...Insulating plate
10... Positive terminal 11... Lead wire

Claims (1)

【特許請求の範囲】[Claims] 1、正極とリチウムを含む負極とがセパレーターを介し
て渦巻き状に巻かれたスパイラル構造電極が電池容器内
に充填され、非水電解液が上記正負極間に介在されてな
る円筒形リチウム二次電池において、上記セパレーター
が上記スパイラル構造電極の両端からそれぞれはみ出し
、かつ該セパレーターの電池容器底面側はみ出し部が、
両電極の片端面を覆うように折り曲げられていることを
特徴とする円筒形リチウム二次電池。
1. A cylindrical lithium secondary battery in which a spiral structure electrode in which a positive electrode and a negative electrode containing lithium are spirally wound through a separator is filled in a battery container, and a non-aqueous electrolyte is interposed between the positive and negative electrodes. In the battery, the separator protrudes from both ends of the spiral structure electrode, and a protruding portion of the separator on the bottom side of the battery container,
A cylindrical lithium secondary battery characterized by having both electrodes bent to cover one end surface.
JP1330110A 1989-12-20 1989-12-20 Cylindrical lithium secondary battery Pending JPH03190061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330110A JPH03190061A (en) 1989-12-20 1989-12-20 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330110A JPH03190061A (en) 1989-12-20 1989-12-20 Cylindrical lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH03190061A true JPH03190061A (en) 1991-08-20

Family

ID=18228909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330110A Pending JPH03190061A (en) 1989-12-20 1989-12-20 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH03190061A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007938A (en) * 1997-03-24 1999-12-28 Alcatel Battery with spiral electrode assembly
KR20040042373A (en) * 2002-11-14 2004-05-20 삼성에스디아이 주식회사 Cylindrical secondary battery
JP2009522744A (en) * 2006-01-04 2009-06-11 エルジー・ケム・リミテッド Battery assembly for use with a sealed upper separator and secondary battery having the assembly
JP2011129299A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Lithium ion secondary battery, vehicle, and battery loading equipment
JP2012109102A (en) * 2010-11-17 2012-06-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US8257849B2 (en) 2008-05-29 2012-09-04 Sony Corporation Winding electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing winding electrode body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007938A (en) * 1997-03-24 1999-12-28 Alcatel Battery with spiral electrode assembly
KR20040042373A (en) * 2002-11-14 2004-05-20 삼성에스디아이 주식회사 Cylindrical secondary battery
JP2009522744A (en) * 2006-01-04 2009-06-11 エルジー・ケム・リミテッド Battery assembly for use with a sealed upper separator and secondary battery having the assembly
US8257849B2 (en) 2008-05-29 2012-09-04 Sony Corporation Winding electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing winding electrode body
JP2011129299A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Lithium ion secondary battery, vehicle, and battery loading equipment
JP2012109102A (en) * 2010-11-17 2012-06-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR101141867B1 (en) Secondary battery
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
KR100981473B1 (en) Nonaqueous electrolyte battery and battery pack
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JPH02265167A (en) Nonaqueous electrolyte secondary battery
US20130122349A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH05325943A (en) Cylindrical secondary battery
JP3422284B2 (en) Prismatic nonaqueous electrolyte secondary battery
US20160233504A1 (en) Non-aqueous electrolyte secondary battery and storage circuit using the same
JP2003036884A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP4218792B2 (en) Non-aqueous secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JPH03190061A (en) Cylindrical lithium secondary battery
JPH10255757A (en) Lithium secondary battery
JP4234940B2 (en) Lithium secondary battery
WO2022044628A1 (en) Secondary battery
JPH06243856A (en) Electricity accumulating element
JP2009231124A (en) Non-aqueous electrolyte battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH05266878A (en) Cylindrical secondary battery
JP4420484B2 (en) Sealed battery
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
JP2000277160A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP4626021B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof