JPH05325646A - Transparent conducting substrate and its manufacture - Google Patents

Transparent conducting substrate and its manufacture

Info

Publication number
JPH05325646A
JPH05325646A JP5032253A JP3225393A JPH05325646A JP H05325646 A JPH05325646 A JP H05325646A JP 5032253 A JP5032253 A JP 5032253A JP 3225393 A JP3225393 A JP 3225393A JP H05325646 A JPH05325646 A JP H05325646A
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
film
conductive film
substrate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5032253A
Other languages
Japanese (ja)
Inventor
Masaya Yukinobu
雅也 行延
Soichi Kawada
宗一 川田
Yasuo Chikui
泰夫 筑井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Tohoku Chemical Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5032253A priority Critical patent/JPH05325646A/en
Publication of JPH05325646A publication Critical patent/JPH05325646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To manufacture a transparent conducting substrate having low surface resistance and excellent in optical characteristics. CONSTITUTION:A transparent conducting substrate is constituted of a substrate member transmitting visible light, a transparent overcoat layer formed on the substrate member, and a transparent conducting film formed on the overcoat layer and containing conducting ultra-fine grains. Transparent conducting ink is printed or coated and hardened on a base material to form an overcoat layer, it is stuck to the substrate member with an adhesive, then the base material is peeled off to manufacture the transparent conducting substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タッチパネル,液晶装
置又はエレクトロルミネセント表示素子等における透明
電極等として用いられる透明導電性基板とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive substrate used as a transparent electrode or the like in a touch panel, a liquid crystal device, an electroluminescent display element or the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に透明導電膜は、インジウム−錫酸
化物(ITO)や錫−アンチモン酸化物(ATO)等の
酸化物をスパッター法やCVD法によりガラス又はプラ
スチックフィルム上に成膜して得られるが、これらの方
法は高価な装置を必要とし、生産性が低いため安価に得
ることは困難であり、又大面積の膜を得るのに適してい
ない。
2. Description of the Related Art Generally, a transparent conductive film is obtained by forming an oxide such as indium-tin oxide (ITO) or tin-antimony oxide (ATO) on a glass or plastic film by a sputtering method or a CVD method. However, these methods require expensive equipment, have low productivity, are difficult to obtain at low cost, and are not suitable for obtaining a large-area membrane.

【0003】そこで、従来これらの問題を解決するため
に、導電性の超微粉を含む透明導電インクを基材に印刷
し硬化させて透明導電回路を形成する方法が用いられて
来た。
In order to solve these problems, therefore, there has been used a method of forming a transparent conductive circuit by printing a transparent conductive ink containing a conductive ultrafine powder on a substrate and curing it.

【0004】[0004]

【発明が解決しようとする課題】ところで、この透明導
電インクは、導電性超微粉をフイラーとし、熱可塑性樹
脂,熱硬化性樹脂又は紫外線硬化性樹脂等の樹脂をバイ
ンダーとし、その他に溶剤及び少量の分散剤等の添加剤
を含んでいる。そして、この透明導電インクをガラスや
プラスチックフィルム上に印刷した後硬化(乾燥硬化,
熱硬化,紫外線硬化)させると、フイラーとしての導電
性超微粉がバインダーとしての樹脂により相互に接触し
た状態で固定されて、導電性塗膜となる。従って、バイ
ンダーとして用いられる樹脂の量が多過ぎると、フイラ
ー粒子間に樹脂が介在して粒子同志の接触を妨害するた
め、塗膜の表面抵抗が増大する。一方、樹脂の量が少な
いと、フイラー粒子の接触は良好で塗膜の表面抵抗は低
下するが、粒子間に空隙が生じ、この空隙が光の散乱因
子となって塗膜の光学特性である光の透過率が低下し、
塗膜のヘーズ値(くもりの度合)が増加すると同時に膜
強度や密着力が低下する。従って、バインダーとして用
いる樹脂量には最適値が存在するが、例えば、抵抗を重
視すれば塗膜のヘーズ値が増大して光学的には不十分な
膜となり、従来の印刷法では、塗膜の表面抵抗と光学特
性の双方を共に満足させることは不可能であった。
This transparent conductive ink uses conductive ultrafine powder as a filler, a resin such as a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin as a binder, and a solvent and a small amount. It contains additives such as a dispersant. Then, after printing this transparent conductive ink on a glass or plastic film, curing (dry curing,
When heat-cured or UV-cured), the conductive ultrafine powder as a filler is fixed by the resin as a binder in a state of being in contact with each other to form a conductive coating film. Therefore, when the amount of the resin used as the binder is too large, the resin intervenes between the filler particles and interferes with the contact between the particles, so that the surface resistance of the coating film increases. On the other hand, when the amount of the resin is small, the contact of the filler particles is good and the surface resistance of the coating film is reduced, but voids are generated between the particles, and this void becomes a light scattering factor and is an optical characteristic of the coating film. The light transmittance decreases,
At the same time as the haze value (degree of cloudiness) of the coating film increases, the film strength and adhesive force decrease. Therefore, although there is an optimum value for the amount of resin used as the binder, for example, if importance is attached to the resistance, the haze value of the coating film increases and the film becomes optically inadequate. It was impossible to satisfy both the surface resistance and the optical characteristics of the above.

【0005】又、ITO超微粒子を含むインクをガラス
等の基板に塗布した後500℃以上の高温で焼成するこ
とにより透明導電膜を形成する方法も知られているが、
この方法では、高温でITO超微粒子同志が緩やかに焼
結するために、常温で行う上記印刷法に較べて膜の表面
抵抗は著しく低下するが、基板部材としてポリエステル
等のプラスチックフィルムを用いることはできず、又I
TO超微粒子間に空隙が残るため透明導電膜の光学特性
については印刷法と同様に問題があった。
There is also known a method of forming a transparent conductive film by applying an ink containing ultrafine ITO particles on a substrate such as glass and baking it at a high temperature of 500 ° C. or higher.
In this method, since the ITO ultrafine particles are gently sintered at high temperature, the surface resistance of the film is remarkably reduced as compared with the above printing method performed at room temperature. However, it is not possible to use a plastic film such as polyester as a substrate member. I can't do it again
Since the voids remain between the TO ultrafine particles, there is a problem in the optical characteristics of the transparent conductive film as in the printing method.

【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、表面抵抗が低く且つ光学特性の優れた透明導電
性基板及びその製造方法を提供しようとするものであ
る。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a transparent conductive substrate having a low surface resistance and excellent optical characteristics and its manufacture. It is intended to provide a method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明による透明導電性基板は、可視光線を透過す
る基板部材と、基板部材上に形成された透明なオーバー
コート層と、このオーバーコート層上に形成された導電
性の超微粒子を含む透明導電膜とを備えている。導電性
の微粒子は好ましくは粒径が0.1μm以下のインジウ
ム−錫酸化物であり、透明導電膜の比抵抗は0.05Ω
・cm以下であるか、又は光透過率は70%以上で表面抵
抗は200Ω/□以下である。
In order to achieve the above object, a transparent conductive substrate according to the present invention comprises a substrate member that transmits visible light, a transparent overcoat layer formed on the substrate member, and And a transparent conductive film containing conductive ultrafine particles formed on the overcoat layer. The conductive fine particles are preferably indium-tin oxide having a particle size of 0.1 μm or less, and the specific resistance of the transparent conductive film is 0.05Ω.
-Cm or less, or the light transmittance is 70% or more and the surface resistance is 200Ω / □ or less.

【0008】又、本発明によれば、この透明導電性基板
は、基材上に透明導電インクを印刷又は塗布して乾燥す
ることにより透明導電膜を形成するか或いは乾燥後これ
に紫外線を照射するか又はこれを焼成し透明導電膜を形
成した後、この導電膜上にオーバーコート液を塗布する
ことによりオーバーコート層を形成せしめ、次に上記オ
ーバーコート液又は接着剤により上記オーバーコート層
を可視光線を透過する基板部材に対面させた状態で上記
基材と基板部材とを貼り合わせた後上記オーバーコート
層及び/又は接着剤を硬化せしめ、硬化後上記基材を剥
離することにより基板部材上に上記オーバーコート層と
透明導電膜を転写させて、製造される。
Further, according to the present invention, the transparent conductive substrate is formed by printing or applying a transparent conductive ink on a base material and drying the transparent conductive film to form a transparent conductive film, or after the transparent conductive substrate is irradiated with ultraviolet rays. Or after baking to form a transparent conductive film, an overcoat layer is formed by applying an overcoat solution on the conductive film, and then the overcoat layer is formed with the above overcoat solution or adhesive. A substrate member by bonding the substrate and the substrate member in a state of facing a substrate member that transmits visible light, curing the overcoat layer and / or the adhesive, and peeling the substrate after curing. It is manufactured by transferring the above-mentioned overcoat layer and the transparent conductive film on top.

【0009】更に本発明によれば、この透明導電性基板
は、基材上に樹脂又は不活性ガス中で熱処理された樹脂
から成る厚さ0.2μm以下か、又は導電性酸化物超微
粉を含む厚さ0.5μm以下の一次コーティング層を形
成した後、この一次コーティング層上に透明導電インク
を印刷又は塗布して乾燥した後、焼成することにより透
明導電膜を形成した後、この透明導電膜上にオーバーコ
ート液を塗布することによりオーバーコート層を形成せ
しめ、次にこのオーバーコート液又は接着剤により上記
オーバーコート層を可視光線が透過する基板部材に対面
させた状態で基材と基板部材とを貼り合わせた後、オー
バーコート層及び/又は接着剤を硬化せしめ、硬化後、
上記基材を剥離することにより基板部材上に上記オーバ
ーコート層と透明導電膜を転写させて、製造される。
Further, according to the present invention, this transparent conductive substrate has a thickness of 0.2 μm or less made of a resin or a resin heat-treated in an inert gas, or a conductive oxide ultrafine powder. After forming a primary coating layer having a thickness of 0.5 μm or less, a transparent conductive ink is printed or applied on the primary coating layer, dried, and baked to form a transparent conductive film, and then the transparent conductive film is formed. The overcoat layer is formed by applying an overcoat solution on the film, and then the overcoat layer or the adhesive is used to face the substrate member through which visible light is transmitted to the base material and the substrate. After bonding with the member, cure the overcoat layer and / or the adhesive, and after curing,
By peeling off the base material, the overcoat layer and the transparent conductive film are transferred onto the substrate member to be manufactured.

【0010】本発明によれば、基材としてプラスチック
フィルム,プラスチックロール,ゴムフィルム,ゴムロ
ール,セラミック板,金属板又は金属ロール等が用いら
れ、基板部材としてポリエステル又はポリエーテルサル
フォン等のプラスチックフィルム,硝子等が用いられ、
透明導電インクとしてインジウム−錫酸化物又は錫−ア
ンチモン酸化物等の酸化物系の超微粉を溶剤に分散させ
るか或いはこれに更に熱可塑性樹脂,熱硬化性樹脂又は
紫外線硬化性樹脂を加えて分散させて用いられ、オーバ
ーコート液又は接着剤として紫外線硬化性樹脂又は熱硬
化性樹脂が用いられ、焼成は先づ大気中300〜800
℃で次に不活性ガス中300〜800℃で行われる。
According to the present invention, a plastic film, a plastic roll, a rubber film, a rubber roll, a ceramic plate, a metal plate or a metal roll is used as a substrate, and a plastic film such as polyester or polyether sulfone is used as a substrate member. Glass etc. are used,
As a transparent conductive ink, oxide-based ultrafine powder such as indium-tin oxide or tin-antimony oxide is dispersed in a solvent, or a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin is further added to disperse it. The UV-curable resin or the thermosetting resin is used as the overcoat liquid or the adhesive.
C. and then in inert gas at 300-800.degree.

【0011】[0011]

【作用】基材の面の平滑度は、本発明によって得られる
透明導電膜の表面の平滑度となる。従って、好ましくは
基材には平滑な面を有する硝子,セラミック,ポリイミ
ド等の耐熱性プラスチック,金属等が用いられる。従来
の印刷法では、印刷は2〜5μmの膜厚を以て行われる
ため印刷部分と基材との間には2〜5μmの凹凸が生じ
るが、本発明方法では、平滑な基材を用いることで上記
凹凸を0.2μm以下に抑えることができる。基材の形
状は、平面でも曲面でもよく、例えばフィルム状,板
状,ロール状等が用いられる。
The smoothness of the surface of the base material is the smoothness of the surface of the transparent conductive film obtained by the present invention. Therefore, glass, ceramics, heat-resistant plastics such as polyimide, metal, etc. having a smooth surface are preferably used as the substrate. In the conventional printing method, since printing is performed with a film thickness of 2 to 5 μm, unevenness of 2 to 5 μm occurs between the printed portion and the base material, but in the method of the present invention, a smooth base material is used. The unevenness can be suppressed to 0.2 μm or less. The shape of the base material may be flat or curved, and for example, a film shape, a plate shape, a roll shape or the like is used.

【0012】基材上及び一次コーティング層上への透明
導電インクの印刷には、スクリーン印刷法,グラビア印
刷法等が用いられ、基材上への透明導電インクの塗布に
は、ワイヤーバーコーティング法,ドクターブレードコ
ーティング法,ロールコーティング法等が用いられる。
A screen printing method, a gravure printing method or the like is used for printing the transparent conductive ink on the base material and the primary coating layer, and a wire bar coating method is used for applying the transparent conductive ink on the base material. The doctor blade coating method, roll coating method, etc. are used.

【0013】透明導電インクは、フイラーとしての粒径
0.1μm以下のITO等の導電性超微粉と、バインダ
ーとしての熱可塑性樹脂,熱硬化性樹脂,紫外線硬化樹
脂と、溶剤と、分散剤等の添加剤とから成り、印刷又は
塗布後は乾燥,熱又は紫外線により硬化される。透明導
電インクでは、表面抵抗を小さくするためにフイラーを
多量に入れる。このため、印刷又は塗布された導電膜は
ポーラスになる傾向があり、そのため導電膜中の空隙が
光の散乱源となり、膜の光学特性を劣化させる。
The transparent conductive ink includes conductive ultrafine powder such as ITO having a particle size of 0.1 μm or less as a filler, thermoplastic resin, thermosetting resin, ultraviolet curing resin as a binder, solvent, dispersant, etc. After the printing or application, it is cured by drying, heat or ultraviolet rays. In transparent conductive ink, a large amount of filler is added to reduce the surface resistance. Therefore, the printed or applied conductive film tends to be porous, so that the voids in the conductive film serve as a light scattering source and deteriorate the optical characteristics of the film.

【0014】例えば、フイラーとしてITO超微粉を用
いる場合は、ITO超微粉を溶剤又はインクの粘度調節
のためにアクリル等の樹脂を溶解した溶剤に分散させて
透明導電インクとする。基材上にこの導電インクを印刷
又は塗布し乾燥した後、大気中で約400℃に加熱して
インク中の樹脂及び少量残留している溶剤を酸化燃焼さ
せる。更にこれを不活性ガス雰囲気中400℃〜500
℃で加熱し、ITO微粒子間の焼結を進めると同時にI
TOに酸素欠損を導入して、膜の低抵抗化を行う。透明
導電膜の膜特性はITO膜の厚さにより決まるが、例え
ば、400℃の焼成では約1μm膜厚で約100Ω/□
程度の抵抗値の膜が得られる。このようにして、例えば
ポリイミドフィルム上に低抵抗のITO透明導電膜を形
成することができるが、ポリイミドは褐色であり、又形
成されたITO膜も粒子間に空隙が存在して光を散乱さ
せるため、膜の光学特性にも問題があり、このままでは
透明導電膜として用いることはできない。
For example, when ITO ultra-fine powder is used as a filler, the ITO ultra-fine powder is dispersed in a solvent or a solvent in which a resin such as acrylic is dissolved to adjust the viscosity of the ink to obtain a transparent conductive ink. After printing or coating this conductive ink on a substrate and drying it, the resin and a small amount of solvent remaining in the ink are oxidized and burned by heating to 400 ° C. in the atmosphere. Furthermore, this is placed in an inert gas atmosphere at 400 ° C to 500 ° C.
At the same time by heating at ℃, promote the sintering between ITO particles.
Oxygen deficiency is introduced into TO to reduce the resistance of the film. The film characteristics of the transparent conductive film are determined by the thickness of the ITO film. For example, when baked at 400 ° C., the film thickness is about 100 Ω / □ at a film thickness of about 1 μm.
A film having a resistance value of the order of magnitude is obtained. In this way, for example, a low resistance ITO transparent conductive film can be formed on a polyimide film, but the polyimide is brown, and the formed ITO film also has a gap between particles to scatter light. Therefore, there is a problem in the optical characteristics of the film, and it cannot be used as a transparent conductive film as it is.

【0015】一次コーティング層を形成するインクは、
フイラーとしての粒径0.1μm以下のITO等の導電
性酸化物超微粉と、バインダーとしてのアクリル樹脂等
の熱可塑性樹脂と、溶剤及び分散剤等の添加剤とから成
る液、又はアクリル樹脂等の熱可塑性樹脂を溶剤等に溶
解した液である。透明導電インクは、一次コーティング
層を形成するインクと同様の構成でもよいし、バインダ
ーとしての樹脂を用いない導電性超微粉と溶剤及び分散
剤等からなるインクであってもよい。
The ink forming the primary coating layer is
A liquid comprising conductive oxide ultrafine powder such as ITO having a particle size of 0.1 μm or less as a filler, a thermoplastic resin such as an acrylic resin as a binder, and an additive such as a solvent and a dispersant, or an acrylic resin It is a liquid obtained by dissolving the thermoplastic resin of 1. The transparent conductive ink may have the same structure as the ink that forms the primary coating layer, or may be an ink composed of conductive ultrafine powder that does not use a resin as a binder, a solvent, a dispersant, and the like.

【0016】一次コーティング層を基材上に形成する理
由は、一次コーティング層を形成することなく、本発明
の製造工程に従って透明導電膜を作成しようとすると、
最後の転写工程で、転写がうまく行われないからであ
る。その原因は、500℃を超える高温の焼成では基材
と透明導電膜中の酸化物粒子との間に焼結が進み、基材
と透明導電膜との界面の密着力が強くなるからと推測さ
れる。そこで一次コーティング層を設ければ、基材と透
明導電膜との界面の密着力を弱めることができる。
The reason for forming the primary coating layer on the substrate is that when a transparent conductive film is prepared according to the manufacturing process of the present invention without forming the primary coating layer,
This is because the transfer is not successful in the final transfer step. It is presumed that the reason is that sintering at a high temperature of more than 500 ° C. promotes sintering between the base material and the oxide particles in the transparent conductive film, and the adhesion strength at the interface between the base material and the transparent conductive film becomes stronger. To be done. Therefore, if a primary coating layer is provided, the adhesion force at the interface between the base material and the transparent conductive film can be weakened.

【0017】一次コーティング層を形成するインクで
は、インク中の樹脂が少ないと、つまり導電性酸化物超
微粉が多いと、基材と一次コーティング層が強く密着す
る。したがって、インク中の樹脂の割合を多目にするこ
とで、基材と一次コーティング層との界面での酸化物粒
子の密度を、低下させることが必要である。一次コーテ
ィング層中の樹脂は、最終的には酸化除去されるので、
多少多くても抵抗に影響を与えない。一方、一次コーテ
ィング層は、酸化物粒子が粗に詰まっているので、光学
的にはよくない。そのため、一次コーティング層の膜厚
は、0.5μm以下が好ましい。
In the ink for forming the primary coating layer, when the amount of resin in the ink is small, that is, when the conductive oxide ultrafine powder is large, the base material and the primary coating layer adhere strongly. Therefore, it is necessary to reduce the density of oxide particles at the interface between the base material and the primary coating layer by increasing the proportion of the resin in the ink. Since the resin in the primary coating layer is finally oxidized and removed,
A little more does not affect resistance. On the other hand, the primary coating layer is not good in terms of optical properties because it is roughly filled with oxide particles. Therefore, the thickness of the primary coating layer is preferably 0.5 μm or less.

【0018】又、一次コーティング層を形成する塗布液
では、形成された一次コーティング層は最終的に完全に
消失するため、膜厚を0.2μm以下にする必要があ
る。その膜厚が0.2μmを超えると、透明導電膜は基
材に密着せず総て剥離してしまう。
Further, in the coating liquid for forming the primary coating layer, the formed primary coating layer will be completely disappeared finally, so that the film thickness must be 0.2 μm or less. If the film thickness exceeds 0.2 μm, the transparent conductive film does not adhere to the substrate and is entirely peeled off.

【0019】また、一次コーティング層上へ透明導電膜
を印刷又は塗布するため、一次コーティング層の樹脂
は、透明導電膜用の透明導電インクの溶剤に対し、溶解
しないものを用いるか、又は不活性ガス雰囲気下の熱処
理で樹脂を炭素化して、耐溶剤性を持たせる必要があ
る。上述のように、一次コーティング層を形成するイン
クは、樹脂を多目に入れるが、それに対し透明導電膜用
の透明導電インクでは、表面抵抗を小さくするためにフ
イラーを多量に入れる。このため、印刷又は塗布により
形成された透明導電膜は、ポーラスになる傾向があり、
導電膜中の空隙が光の散乱因子となって、透明導電膜の
光学特性を劣化させる。
Further, in order to print or apply the transparent conductive film on the primary coating layer, the resin of the primary coating layer should be one that does not dissolve in the solvent of the transparent conductive ink for the transparent conductive film, or it should be inert. It is necessary to carbonize the resin by heat treatment in a gas atmosphere so that it has solvent resistance. As described above, the ink for forming the primary coating layer contains a large amount of resin, whereas the transparent conductive ink for the transparent conductive film contains a large amount of filler to reduce the surface resistance. Therefore, the transparent conductive film formed by printing or coating tends to be porous,
The voids in the conductive film become a light scattering factor and deteriorate the optical characteristics of the transparent conductive film.

【0020】例えば、フイラーとしてITO超微粉を用
いる場合は、ITO超微粉をアクリル等の樹脂を溶解し
た溶剤に分散させて、一次コーティング層を形成するイ
ンクとしたものを、基材上に印刷又は塗布してから乾燥
させ、膜厚が0.5μm以下の一次コーティング層とす
る。アクリル系の樹脂を用いた場合であれば、耐溶剤性
が低いため、この一次コーティング層を窒素雰囲気中4
00℃で焼成し、樹脂を炭化して耐溶剤性を持たせた
後、その上に透明導電膜用の透明導電インクを印刷又は
塗布し乾燥する。その後大気中で300℃以上に加熱し
て、一次コーティング層中及び透明導電膜中の樹脂及び
少量残留している溶剤を、酸化燃焼させる。更に、これ
を不活性ガス雰囲気中300℃以上で加熱し、ITO微
粒子間の焼結を進めると同時にITOに酸素欠損を導入
して、膜の低抵抗化を行う。透明導電膜の膜特性は、焼
成温度,ITO膜の厚さにより決まるが、例えば、55
0℃の焼成では約2μm膜厚で約50Ω/□程度の抵抗
値の膜が得られる。このようにして、例えば、ガラスや
ポリイミドフィルム上に低抵抗のITO透明導電膜を形
成することができるが、形成されたITO膜には依然と
して粒子間に空隙が存在して光を散乱させるため、膜の
光学特性にも問題があり、このままでは透明導電膜とし
て用いることはできない。
For example, when ITO ultrafine powder is used as a filler, the ITO ultrafine powder is dispersed in a solvent in which a resin such as acrylic is dissolved to form an ink for forming a primary coating layer, which is printed or printed on a substrate. After coating, it is dried to form a primary coating layer having a film thickness of 0.5 μm or less. If an acrylic resin is used, the solvent resistance is low.
After baking at 00 ° C. to carbonize the resin to make it solvent resistant, a transparent conductive ink for a transparent conductive film is printed or applied thereon and dried. After that, the resin and the solvent remaining in a small amount in the primary coating layer and the transparent conductive film are oxidized and burned by heating to 300 ° C. or higher in the atmosphere. Furthermore, this is heated in an inert gas atmosphere at 300 ° C. or higher to promote sintering between ITO fine particles and at the same time introduce oxygen vacancies into ITO to lower the resistance of the film. The film characteristics of the transparent conductive film are determined by the baking temperature and the thickness of the ITO film, for example, 55
By baking at 0 ° C., a film having a film thickness of about 2 μm and a resistance value of about 50 Ω / □ can be obtained. In this way, for example, a low resistance ITO transparent conductive film can be formed on glass or a polyimide film, but since the formed ITO film still has voids between particles to scatter light, There is also a problem with the optical properties of the film, and it cannot be used as a transparent conductive film as it is.

【0021】そこで、基材上に透明導電インクを印刷又
は塗布するか、又は基材上に上記インクと透明導電イン
クを用いて一次コーティング層と透明導電膜を形成して
焼成した後、その上から樹脂と溶剤から成るオーバーコ
ート液でオーバーコートすると、膜中の空隙はオーバー
コート液中の樹脂で埋められて光の散乱が防止され、膜
の光学特性が著しく改善される。例えば、このオーバー
コートにより光の透過率が、78%〜81%程度から8
0%〜83%程度まで増加し、ヘーズ値は5%〜10%
のものが5%〜2%程度まで低下する。オーバーコート
液には熱硬化性樹脂又は紫外線硬化樹脂を用いるが、膜
によく浸透して膜中の空隙を埋めるように、樹脂に溶剤
を混ぜてオーバーコート液の粘度を低下させることが好
ましい。
Therefore, a transparent conductive ink is printed or applied on the base material, or a primary coating layer and a transparent conductive film are formed on the base material by using the above-mentioned ink and the transparent conductive ink, and after baking, When overcoating with an overcoat liquid containing a resin and a solvent, the voids in the film are filled with the resin in the overcoat liquid, light scattering is prevented, and the optical properties of the film are significantly improved. For example, with this overcoat, the light transmittance is increased from about 78% to 81% to 8%.
Increased from 0% to 83% and haze value is 5% to 10%
The content of the above-mentioned products decreases to about 5% to 2%. Although a thermosetting resin or an ultraviolet curable resin is used as the overcoat liquid, it is preferable to mix the solvent with the resin to reduce the viscosity of the overcoat liquid so that the resin can be well permeated into the film to fill the voids in the film.

【0022】このように、オーバーコートにより透明導
電膜の光学特性は著しく改善されるが、逆にその表面抵
抗は犠牲になるため、次に述べる転写法によりその問題
を解決した。バインダー用樹脂として熱可塑性樹脂を用
いる場合は、基材上に印刷又は塗布されオーバーコート
された透明導電膜を、オーバーコート液及び/又は接着
剤で基板部材と貼り合わせた後、オーバーコート層、接
着剤層を硬化させる。接着剤には熱硬化性樹脂又は紫外
線硬化性樹脂を用い、基板部材は可視光線を透過するポ
リエステル(PET)、ポリエーテルサルフォン(PE
S)等のプラスチックや硝子等を用いる。透明導電イン
クのバインダーとして用いる樹脂として熱硬化性樹脂や
紫外線硬化性樹脂を用いた場合には、オーバーコート液
の溶剤によるバインダー樹脂の溶解がないので、オーバ
ーコート層を厚くすることで接着剤層の塗布を省略する
ことができる。
As described above, the optical characteristics of the transparent conductive film are remarkably improved by the overcoat, but on the contrary, the surface resistance is sacrificed. Therefore, the problem is solved by the transfer method described below. When a thermoplastic resin is used as the binder resin, a transparent conductive film printed or applied on a base material and overcoated is bonded to a substrate member with an overcoat liquid and / or an adhesive, and then an overcoat layer, Cure the adhesive layer. A thermosetting resin or an ultraviolet curable resin is used as the adhesive, and the substrate member is polyester (PET) or polyether sulfone (PE) that transmits visible light.
Plastic such as S) or glass is used. When a thermosetting resin or an ultraviolet curable resin is used as the resin used as the binder of the transparent conductive ink, since the binder resin is not dissolved by the solvent of the overcoat liquid, the adhesive layer should be thickened by increasing the thickness of the overcoat layer. Can be omitted.

【0023】基材と基板部材との貼り合わせは、基材の
オーバーコート層上又は基板部材上に接着剤又はオーバ
ーコート液を塗布した後スチールロール又はゴムロール
等で1〜3Kg f/cm程度の線圧力を掛けながら行う。基
材と基板部材を貼り合わせた後の接着剤層及びオーバー
コート層の硬化は、熱硬化性樹脂を用いた場合は加熱に
より行うが、紫外線硬化樹脂を用いた場合には基材又は
基板部材側から紫外線照射を行うため、基材又は基板部
材の何れか一方は紫外線を透過する材質のものでなけれ
ばならない。以上は、オーバーコート層と接着剤を一緒
に硬化させる場合であるが、これらを別々に硬化させる
こともできることは勿論である。即ち、オーバーコート
層を硬化させた後接着剤を用いて貼り合わせ、その接着
剤を硬化させる方法である。このようにして、基材と基
板部材を貼り合わせ硬化させた後、基材を剥離すると透
明導電膜は基板部材上へ転写される。この時基材が中間
にあるオーバーコート層に基板部材よりも強力に密着し
ていると、基材剥離の際にオーバーコート層の一部又は
全部が基材上に残り転写が完全に行われないので、基板
部材がプラスチックの場合にはコロナ放電処理,プライ
マー処理,短波長紫外線照射処理等を行い、基板部材と
オーバーコート層との密着力向上処理を行うことが望ま
しい。基板部材としてガラスを用いる場合も同様にシリ
コンカップリング処理等の密着力向上処理を行うことが
好ましい。基板部材とオーバーコート層との密着力向上
処理を行う代りに、基板部材とオーバーコート層が強力
に接着するような接着剤を用いることもできる。例え
ば、基板部材としてガラスを用い、接着剤に紫外線硬化
性樹脂を用いる場合、接着剤にシリコーン系のモノマー
を少量添加することによりガラスとの密着力を向上させ
ることができる。
The substrate and the substrate member are bonded together by applying an adhesive or an overcoat liquid on the overcoat layer of the substrate or the substrate member, and then applying a steel roll or a rubber roll or the like to about 1 to 3 kgf / cm. Perform while applying linear pressure. When the thermosetting resin is used, the adhesive layer and the overcoat layer after the base material and the substrate member are bonded are cured by heating, but when the ultraviolet curing resin is used, the base material or the substrate member is cured. Since UV irradiation is performed from the side, either the substrate or the substrate member must be made of a material that transmits UV. The above is the case where the overcoat layer and the adhesive are cured together, but it goes without saying that these can be cured separately. That is, it is a method in which the overcoat layer is cured and then bonded using an adhesive to cure the adhesive. In this way, the transparent conductive film is transferred onto the substrate member when the substrate is peeled off after the substrate and the substrate member are bonded and cured. At this time, if the base material adheres more strongly to the overcoat layer in the middle than the substrate member, part or all of the overcoat layer remains on the base material when the base material is peeled off, and the transfer is completely performed. Therefore, when the substrate member is made of plastic, it is desirable to perform a corona discharge treatment, a primer treatment, a short wavelength ultraviolet ray irradiation treatment, etc. to improve the adhesion between the substrate member and the overcoat layer. Similarly, when glass is used as the substrate member, it is preferable to carry out adhesion improving treatment such as silicon coupling treatment. Instead of performing the adhesion improving process between the substrate member and the overcoat layer, an adhesive that strongly bonds the substrate member and the overcoat layer can be used. For example, when glass is used as the substrate member and an ultraviolet curable resin is used as the adhesive, the adhesion with the glass can be improved by adding a small amount of a silicone-based monomer to the adhesive.

【0024】基板部材に転写された透明導電膜は、オー
バーコートによりその光学特性が著しく改善され、又転
写により導電性超微粒子の導電面が表面に表われるため
膜の表面抵抗も転写前と変わらない。かくして、光学特
性と抵抗特性の双方を満足する透明導電膜が得られる。
The transparent conductive film transferred to the substrate member has its optical characteristics remarkably improved by the overcoating, and the conductive surface of the conductive ultrafine particles appears on the surface by the transfer, so that the surface resistance of the film is the same as that before the transfer. Absent. Thus, a transparent conductive film satisfying both optical characteristics and resistance characteristics can be obtained.

【0025】[0025]

【実施例】実施例1 フイラーとして粒径0.03μmのITO超微粉を、バ
インダーとして熱可塑性樹脂を用いた透明導電インク
(東北化工(株)製X−101)をスクリーン印刷法で
基材としてのPETフィルム(東レ(株)製ルミラーT
タイプ,厚さ100μm)上に厚さ3μmとなるように
印刷し、乾燥した。次に、この透明導電膜上を紫外線硬
化性樹脂を用いたオーバーコート液1(表1参照)で線
径0.3mmのワイヤーバーによりオーバーコートし、室
温で5分間,50℃で10分間夫々乾燥した。かくして
透明導電膜とオーバーコート層の形成された基材を、基
板部材としての別のPETフィルム(プライマー処理
品,帝人(株)製テトロンHP−7,厚さ100μm)
と、紫外線硬化性の接着剤1(表1参照)で貼り合わせ
た。貼り合わせは、接着剤1を基板部材上にドクターブ
レードコート法によりウエット膜厚で50μmとなるよ
うに塗布し、室温で5分間,50℃で10分間夫々乾燥
した後、これを接着剤層とオーバーコート層が面接する
ように基材と重ね、スチールロールで2Kg f/cmの線圧
を掛けながら行った。貼り合わされた基材と基板部材を
石英板(厚さ2mm)とアルミ板(厚さ3mm)とで挾み込
んでから、石英板上方からメタルハライドランプで紫外
線硬化を行った。硬化条件は、硬化時間10秒間,紫外
線照度150mw/cm2 であった。硬化後基材を剥離する
ことにより、透明導電膜とオーバーコート層を基板部材
上に転写した。紫外線照射装置としては、アイグラフイ
ック(株)製のメタルハランドランプM01−L21
2,照射器(コールドミラー型)UE011−201
C,電源装置UB01.51−3A/BM−E2及び熱
線カットフィルターを用いた。
Example 1 A transparent conductive ink (X-101 manufactured by Tohoku Kako Co., Ltd.) using ITO ultrafine powder having a particle size of 0.03 μm as a filler and a thermoplastic resin as a binder was used as a substrate by a screen printing method. PET film (Lumirror T manufactured by Toray Industries, Inc.)
Type, thickness 100 μm) and printed to a thickness of 3 μm and dried. Next, the transparent conductive film was overcoated with an overcoat liquid 1 (see Table 1) using an ultraviolet curable resin with a wire bar having a wire diameter of 0.3 mm, at room temperature for 5 minutes and at 50 ° C. for 10 minutes, respectively. Dried. Thus, the base material on which the transparent conductive film and the overcoat layer were formed was used as another PET film as a substrate member (primer-treated product, Tetoron HP-7 manufactured by Teijin Ltd., thickness 100 μm).
And an ultraviolet curable adhesive 1 (see Table 1). For the bonding, the adhesive 1 is applied onto the substrate member by a doctor blade coating method so that the wet film thickness is 50 μm, and dried at room temperature for 5 minutes and at 50 ° C. for 10 minutes, respectively, and then used as an adhesive layer. The overcoat layer was overlaid on the substrate so as to be in face-to-face contact, and a linear pressure of 2 kgf / cm was applied with a steel roll. The bonded base material and substrate member were sandwiched between a quartz plate (thickness 2 mm) and an aluminum plate (thickness 3 mm), and then ultraviolet curing was performed from above the quartz plate with a metal halide lamp. The curing conditions were a curing time of 10 seconds and an ultraviolet illuminance of 150 mw / cm 2 . After the curing, the base material was peeled off to transfer the transparent conductive film and the overcoat layer onto the substrate member. As an ultraviolet irradiation device, a metal haland lamp M01-L21 manufactured by Eye Graphic Co., Ltd.
2, illuminator (cold mirror type) UE011-201
C, power supply device UB01.53-3A / BM-E2 and heat ray cut filter were used.

【0026】転写によって得られた透明導電基板と、比
較として透明導電インクを基材上に印刷し乾燥硬化した
だけのオーバーコートしていない透明導電膜とについ
て、光線透過率,ヘーズ値及び表面抵抗を夫々測定し
た。その結果は表2に示されている。又、上記透明導電
基板の表面粗さを測定したところ、表面の凹凸は0.2
μm以下であった。尚、これらの測定を行うに際して、
透明導電基板及び透明導電膜の光線透過率及びヘーズ値
は、基材或いは基板部材であるPETフィルムと一緒に
スガ試験機械(株)製の直読ヘーズコンピュータHGM
−ZDPにより、又表面抵抗は、三菱油化(株)製のロ
ーレスタMCP−T400により、夫々測定した。又透
明導電性基板及び透明導電膜の表面粗さは、東京精密
(株)製の表面粗さ測定機サーフコム900Aを用いて
測定した。又、本実施例と比較例として用いた従来の透
明導電性基板の構成を図1(a),(b)に示した。
The light transmittance, the haze value and the surface resistance of the transparent conductive substrate obtained by transfer and a transparent conductive film obtained by printing a transparent conductive ink on a substrate and drying and curing the same as a comparison are not compared. Was measured respectively. The results are shown in Table 2. Further, when the surface roughness of the transparent conductive substrate was measured, the surface irregularities were 0.2
It was less than μm. When performing these measurements,
The light transmittance and haze value of the transparent conductive substrate and the transparent conductive film are the same as those of the PET film which is the base material or the substrate member, and the direct reading haze computer HGM manufactured by Suga Test Machine Co., Ltd.
The surface resistance was measured by -ZDP, and the surface resistance was measured by Loresta MCP-T400 manufactured by Mitsubishi Petrochemical Co., Ltd., respectively. The surface roughness of the transparent conductive substrate and the transparent conductive film was measured using a surface roughness measuring device Surfcom 900A manufactured by Tokyo Seimitsu Co., Ltd. The structure of a conventional transparent conductive substrate used in this example and a comparative example is shown in FIGS. 1 (a) and 1 (b).

【0027】実施例2 基板部材としてガラス板(旭硝子(株)製ソーダライム
AS,厚1mm)を、接着剤として表1に示された紫外線
硬化性接着剤2を夫々用い、基材と基板部材との貼り合
わせをゴムロールを用いて行い、貼り合わせ後の紫外線
照射を基材側から行って硬化させた点以外は、実施例1
と同様の方法で透明導電基板を製造した。又、光透過
率,ヘーズ値,表面抵抗の測定は、実施例1の場合と同
じ測定装置を用いて行い、その結果は表2に示す通りで
あった。
Example 2 A glass plate (soda lime AS manufactured by Asahi Glass Co., Ltd., thickness: 1 mm) was used as a substrate member, and the UV-curable adhesive 2 shown in Table 1 was used as an adhesive. Example 1 except that a rubber roll was used for the bonding with and the substrate was irradiated with ultraviolet rays after the bonding for curing.
A transparent conductive substrate was manufactured in the same manner as in. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0028】実施例3 基材としてバフ研摩したアルミニウム板を用い、線径
0.1mmのワイヤーバーでITO透明導電インクを塗布
し、80℃で10分間乾燥させた点以外は、実施例1と
同様の方法で透明導電基板を製造した。又、光透過率,
ヘーズ値,表面抵抗の測定は、実施例1の場合と同じ測
定装置を用いて行い、その結果は表2に示す通りであっ
た。
Example 3 Example 1 was repeated, except that a buff-polished aluminum plate was used as the substrate, the ITO transparent conductive ink was applied with a wire bar having a wire diameter of 0.1 mm, and dried at 80 ° C. for 10 minutes. A transparent conductive substrate was manufactured by the same method. Also, the light transmittance,
The haze value and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0029】実施例4 透明導電インクの材料として粒径0.03μmのATO
超微粉を用い、線径0.1mmのワイヤーバーで透明導電
インクを塗布した点以外は、実施例1と同様の方法で透
明導電基板を製造した。又、光透過率,ヘーズ値,表面
抵抗は、実施例1の場合と同じ測定装置を用いて行い、
その結果は表2に示す通りであった。
Example 4 ATO having a particle size of 0.03 μm as a material for transparent conductive ink
A transparent conductive substrate was produced in the same manner as in Example 1 except that ultrafine powder was used and the transparent conductive ink was applied with a wire bar having a wire diameter of 0.1 mm. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1,
The results are shown in Table 2.

【0030】実施例5 実施例1の方法において、透明導電膜が印刷されオーバ
ーコート液が塗布されて基材を乾燥した後、メタルハラ
イドランプで窒素雰囲気下照度150mw/cm2を以て1
0秒間紫外線照射することにより、透明導電膜とオーバ
ーコート層を硬化させた。硬化後基板部材としてプライ
マー処理してないPETフィルムを用い、基材と基板部
材とを熱硬化性の接着剤3(表1参照)で貼り合わせ
た。この貼り合わせは、接着剤3を基板部材上にドクタ
ーブレートコート法によりウエット膜厚で150μmと
なるように塗布し、室温で5分間,80℃で10分間乾
燥後、オーバーコート層が基板部材に面接するように基
材を基板部材と重ね、線圧力を掛けながら温度80℃で
熱圧着した。貼り合わされた基材と基板部材を120℃
3時間で熱硬化させた後、基材を剥離して転写し、透明
導電性基板を製造した。又、光透過率,ヘーズ値,表面
抵抗の測定は、実施例1の場合と同じ測定装置を用いて
行い、その結果は表2に示す通りであった。
Example 5 In the method of Example 1, after the transparent conductive film was printed, the overcoat liquid was applied, and the substrate was dried, a metal halide lamp was used under a nitrogen atmosphere and an illuminance of 150 mw / cm 2 was applied.
The transparent conductive film and the overcoat layer were cured by irradiating ultraviolet rays for 0 seconds. After curing, a PET film that had not been treated with a primer was used as the substrate member, and the base material and the substrate member were bonded together with a thermosetting adhesive 3 (see Table 1). In this bonding, the adhesive 3 is applied on the substrate member by the doctor plate coating method so as to have a wet film thickness of 150 μm, dried at room temperature for 5 minutes and at 80 ° C. for 10 minutes, and then the overcoat layer is applied to the substrate member. The base material was overlaid on the substrate member so as to be in face-to-face contact, and thermocompression bonded at a temperature of 80 ° C. while applying a linear pressure. The bonded base material and substrate member at 120 ° C
After thermosetting for 3 hours, the base material was peeled off and transferred to manufacture a transparent conductive substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0031】実施例6 ITO透明導電インク(X−101)をハードクロムメ
ッキされたスチールロール(直径10cm)上に線径0.
1mmのワイヤーバーで塗布し、約80℃で10分間乾燥
した。この上にオーバーコート液1を線径0.3mmのワ
イヤーバーでオーバーコートし、室温で5分間,50℃
で10分間乾燥した。このスチールロールと対向する別
のスチールロールとの間に図2に示す如く基板部材とし
てのプライマー処理したPETフィルムを挾み、線圧力
2Kg f/cmでこの基板部材を透明導電インクとオーバー
コート液とを塗布されたスチールロールに貼り合わせ、
その後メタルハライドランプで照度約150mw/cm2
以て硬化させ、ITO透明導電膜をスチールロールから
基板部材へ転写させた。かくして得られた透明導電基板
について実施例1の場合と同じ測定装置を用い光透過
率,ヘーズ値,表面抵抗の測定を行った。その結果は表
2に示す通りであった。
Example 6 An ITO transparent conductive ink (X-101) was applied onto a hard chrome-plated steel roll (diameter: 10 cm) to have a wire diameter of 0.
It was applied with a 1 mm wire bar and dried at about 80 ° C. for 10 minutes. Overcoat solution 1 is overcoated on this with a wire bar with a wire diameter of 0.3 mm, and at room temperature for 5 minutes at 50 ° C.
And dried for 10 minutes. As shown in FIG. 2, a primer-treated PET film as a substrate member is sandwiched between this steel roll and another opposing steel roll, and the substrate member is transparent conductive ink and overcoat liquid at a linear pressure of 2 Kg f / cm. Laminated with the coated steel roll,
After that, it was cured with a metal halide lamp with an illuminance of about 150 mw / cm 2 , and the ITO transparent conductive film was transferred from the steel roll to the substrate member. The transparent conductive substrate thus obtained was measured for light transmittance, haze value, and surface resistance using the same measuring device as in Example 1. The results are shown in Table 2.

【0032】実施例7 ITO超微粉をフイラーとし紫外線硬化樹脂をバインダ
ーとして用いた透明導電インクを、線径0.1mmのワイ
ヤーバーで基材としてのPETフィルム上に塗布した
後、乾燥した。このITO透明導電膜をハードクロムメ
ッキされたスチールロールを用い200Kg f/cmの線圧
力でロールプレス処理を行い、その後窒素雰囲気中にて
メタルハライドランプにより照度150mw/cm2 を以て
20秒間紫外線硬化させた。かくして得られた透明導電
膜上にドクターブレードでオーバーコート液1をウエッ
ト膜厚150μmとなるようにオーバーコートし、50
℃で10分間乾燥した。乾燥後、基板部材としてのプラ
イマー処理されたPETフィルムと貼り合わせた。この
貼り合わせに接着剤を用いない点を除いては実施例1と
同様の方法で透明導電性基板を製造した。又、光の透過
率,ヘーズ値,表面抵抗は、実施例1の場合と同じ測定
装置を用いて行い、その結果は表2に示す通りであっ
た。
Example 7 A transparent conductive ink using ITO ultrafine powder as a filler and an ultraviolet curable resin as a binder was coated on a PET film as a substrate with a wire bar having a wire diameter of 0.1 mm, and then dried. This ITO transparent conductive film was roll-pressed with a hard chrome-plated steel roll at a linear pressure of 200 kg f / cm, and then UV-cured for 20 seconds in a nitrogen atmosphere with a metal halide lamp at an illuminance of 150 mw / cm 2 . .. On the transparent conductive film thus obtained, an overcoat liquid 1 was overcoated with a doctor blade to a wet film thickness of 150 μm, and 50
It was dried at 0 ° C for 10 minutes. After drying, it was attached to a PET film that had been treated with a primer as a substrate member. A transparent conductive substrate was manufactured in the same manner as in Example 1 except that no adhesive was used for this bonding. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0033】実施例8 透明導電インクを270メッシュスクリーンで基材とし
てのPETフィルム上に3μmの厚さに塗布した後乾燥
し、ロールプレス処理し、紫外線硬化させて透明導電膜
を得た以外は実施例7と同様の方法で透明導電性基板を
製造した。又、光透過率,ヘーズ値,表面抵抗は、実施
例1の場合と同じ測定装置を用いて行い、その結果は表
2に示す通りであった。
Example 8 A transparent conductive ink was obtained by applying a transparent conductive ink with a 270 mesh screen on a PET film as a substrate to a thickness of 3 μm, followed by drying, roll pressing and UV curing. A transparent conductive substrate was manufactured in the same manner as in Example 7. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0034】実施例9 ロールプレス処理を300Kg f/cmの線圧力で行った点
を除いて、実施例8と同様の方法で透明導電性基板を製
造した。光透過率,ヘーズ値,表面抵抗は、実施例1の
場合と同じ測定装置を用いて行い、その結果は表2に示
す通りであった。
Example 9 A transparent conductive substrate was produced in the same manner as in Example 8 except that the roll press treatment was performed at a linear pressure of 300 Kg f / cm. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0035】実施例10 粒径0.03μmのITO超微粉を有機溶剤に分散させ
た透明導電インク(東北化工(株)製DX−101)
を、基材としてのポリイミドフィルム(東レデュポン
(株)製カプトンKタイプ,厚さ75μm)上に、線径
0.1mmのワイヤーバーで塗布し、乾燥した。これを大
気中400℃で30分間加熱した後窒素雰囲気中にて2
5分間焼成した。次にこの上に紫外線硬化性樹脂を用い
たオーバーコート液2(表1参照)をドクターブレード
コート法でウエット膜厚が50μmになるようにオーバ
ーコートし、遠赤外線により約80℃で10分間加熱
し、溶剤を揮発させた。これを基板部材としてのPET
フィルム(帝人(株)製テトロンHP−7,プライマー
処理品)と貼り合わせた。貼り合わせは、スチールロー
ルを用い線圧力2Kg f/cmで行った。貼り合わせ後メタ
ルハライドランプを用い照度150mw/cm2 を以て硬化
時間15秒で紫外線硬化させ、基板部材としてのプライ
マー処理されたPETフィルムを接着させた後、基材を
剥離して基板部材上にITO導電膜を転写して、透明導
電性基板を製造した。光透過率,ヘーズ値,表面抵抗は
実施例1の場合と同じ測定装置を用いて行い、その結果
は表3に示す通りであった。
Example 10 Transparent conductive ink in which ultrafine ITO powder having a particle size of 0.03 μm was dispersed in an organic solvent (DX-101 manufactured by Tohoku Kako Co., Ltd.)
Was coated on a polyimide film (Kapton K type manufactured by Toray DuPont Co., Ltd., thickness: 75 μm) as a substrate with a wire bar having a wire diameter of 0.1 mm and dried. This is heated in the air at 400 ° C for 30 minutes and then in a nitrogen atmosphere for 2 minutes.
Baking for 5 minutes. Next, an overcoat liquid 2 using an ultraviolet curable resin (see Table 1) was overcoated thereon by a doctor blade coating method to a wet film thickness of 50 μm and heated by far infrared rays at about 80 ° C. for 10 minutes. Then, the solvent was volatilized. PET as a substrate member
It was attached to a film (Tetoron HP-7 manufactured by Teijin Ltd., a primer-treated product). The lamination was performed using a steel roll at a linear pressure of 2 Kg f / cm. After bonding, UV curing was performed using a metal halide lamp with an illuminance of 150 mw / cm 2 for a curing time of 15 seconds, and a primer-treated PET film as a substrate member was adhered, and then the base material was peeled off to make ITO conductive on the substrate member The film was transferred to produce a transparent conductive substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0036】実施例11 粒径0.03μmのITO超微粉を有機溶剤にアクリル
系樹脂を溶解した液に分散させて得た透明導電インク
(東北化工(株)製X−101)を、基材としてのポリ
イミドフィルム上に、スクリーン印刷法により、5cm×
5cmの大きさで膜厚が3μmになるように印刷した点を
除いては、実施例10と同様の方法で透明導電性基板を
製造した。光透過率,ヘーズ値,表面抵抗の測定は、実
施例1の場合と同じ測定装置を用いて行い、その結果は
表3に示す通りであった。この場合、表面抵抗の測定値
は40Ω/□であるので、透明導電膜の比抵抗は、40
Ω/□×3×10-4cm=1.2×10-2Ω・cmとなる。
Example 11 A transparent conductive ink (X-101 manufactured by Tohoku Kako Co., Ltd.) obtained by dispersing ultrafine ITO powder having a particle size of 0.03 μm in a liquid prepared by dissolving an acrylic resin in an organic solvent was used as a base material. 5cm × on the polyimide film as
A transparent conductive substrate was produced in the same manner as in Example 10 except that the size was 5 cm and the film thickness was 3 μm. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3. In this case, since the measured value of the surface resistance is 40Ω / □, the specific resistance of the transparent conductive film is 40
Ω / □ × 3 × 10 −4 cm = 1.2 × 10 −2 Ω · cm.

【0037】実施例12 実施例10と同様の方法で焼成したITO導電膜をオー
バーコート液3(表1参照)を用いて基板部材としての
ガラス板(旭硝子(株)製ソーダライムAS,厚さ1m
m)に転写して、透明導電性基板を製造した。光透過
率,ヘーズ値,表面抵抗は実施例1の場合と同じ測定装
置を用いて行い、その結果は表3に示す通りであった。
Example 12 An ITO conductive film fired in the same manner as in Example 10 was used as a substrate member using Overcoat Liquid 3 (see Table 1) (Sodalime AS manufactured by Asahi Glass Co., Ltd., thickness). 1m
m) to produce a transparent conductive substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0038】実施例13 実施例10と同様の方法で焼成したITO導電膜をオー
バーコート液4を用いて、基板部材としてのPETフィ
ルムに転写し、透明導電性基板を製造した。光透過率,
ヘーズ値,表面抵抗は実施例1の場合と同じ測定装置を
用いて行い、その結果は表3に示す通りであった。
Example 13 An ITO conductive film fired in the same manner as in Example 10 was transferred to a PET film as a substrate member using Overcoat Liquid 4 to manufacture a transparent conductive substrate. Light transmittance,
The haze value and the surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0039】実施例14 予め窒素雰囲気中500℃で15分間熱処理した基材と
してのポリイミドフィルム上に、ITO分散液(DX−
101)を線径0.1mmのワイヤーバーでコーティング
し、乾燥後大気中400℃で30分間続いて窒素雰囲気
中500℃で15分間焼成した。これを実施例10と同
様の方法で、基板部材としてのプライマー処理したPE
Tフィルムに転写して、透明導電性基板を製造した。光
透過率,ヘーズ値,表面抵抗は実施例1と同じ測定装置
を用いて行い、その結果は表3に示す通りであった。
Example 14 An ITO dispersion liquid (DX-) was formed on a polyimide film as a base material which was previously heat-treated at 500 ° C. for 15 minutes in a nitrogen atmosphere.
101) was coated with a wire bar having a wire diameter of 0.1 mm, dried, and then baked in the air at 400 ° C. for 30 minutes and subsequently in a nitrogen atmosphere at 500 ° C. for 15 minutes. In the same manner as in Example 10, this was treated with a primer as a substrate member PE.
Transfer to a T film to produce a transparent conductive substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0040】実施例15 ITO分散液(DX−101)10gにイソホロン2.
5gを加え希釈した後、実施例13と同様の方法で透明
導電性基板を製造した。その光透過率,ヘーズ値,表面
抵抗は、実施例1と同じ測定装置を用いて行い、結果は
表3に示す通りであった。
Example 15 Isophorone (2) was added to 10 g of an ITO dispersion liquid (DX-101).
After adding 5 g and diluting, a transparent conductive substrate was manufactured in the same manner as in Example 13. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0041】比較例1 基板部材としてプライマー処理してないPETフィルム
を用いた点を除いて、実施例1と同様の方法で透明導電
性基板を製造した。製造された透明導電性基板は、導電
膜及びオーバーコート層が基材から基板部材へ完全に転
写されていない状態であった。この理由は、オーバーコ
ート層と基板部材との間の密着力がオーバーコート層と
基材との間の密着力と余り差がないためであると考えら
れる。尚、光透過率,ヘーズ値,表面抵抗は実施例1の
場合と同じ測定装置を用いて行い、その結果は表3に示
す通りであった。
Comparative Example 1 A transparent conductive substrate was manufactured in the same manner as in Example 1 except that a PET film which was not treated with a primer was used as a substrate member. The produced transparent conductive substrate was in a state where the conductive film and the overcoat layer were not completely transferred from the base material to the substrate member. It is considered that this is because the adhesive force between the overcoat layer and the substrate member is not so different from the adhesive force between the overcoat layer and the substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 3.

【0042】表1(オーバーコート液及び接着剤の組
成)
Table 1 (Composition of overcoat liquid and adhesive)

【0043】表2(印刷転写法で得られる透明導電膜の
塗膜物性)
Table 2 (Physical properties of transparent conductive film obtained by printing transfer method)

【0044】表3(印刷転写法で得られる透明導電膜の
塗膜物性)
Table 3 (Physical film properties of transparent conductive film obtained by print transfer method)

【0045】実施例16 表4に示す一次コーティング液1を基材であるソーダラ
イムガラス(60mm×120mm×3mm厚さ)に、線径
0.1mmのワイヤーバーで塗布した後、遠赤外線加熱で
50℃,5分間乾燥し、膜厚0.4μmの一次コーティ
ング層を形成した。次に、その上に平均粒径0.03μ
mのITO超微粉を有機溶剤に分散させた透明導電イン
ク(東北化工(株)製DX−101)を、線径0.07
5mmのワイヤーバーで塗布した後、遠赤外線加熱で50
℃,5分間乾燥して、膜厚2.0μmの透明導電層を形
成した。これを大気中550℃,1時間、続いて窒素ガ
ス中550℃,15分間加熱した。この上に表4に示す
オーバーコート液5を塗布した後、遠赤外線加熱で50
℃,5分間乾燥し、脱溶剤した後、基板部材であるプラ
イマー処理したポリエステルフィルム(帝人(株)製1
1P−7,100μm厚)と、線厚10Kgf/cmで貼
り合わせた。貼り合わせ後、メタルハライドランプによ
り、照度150mW/cm2 ,10秒間紫外線照射して、
オーバーコート層を硬化させた後、基材のソーダライム
硝子を剥がし、透明導電層を基板部材側へ転写して、透
明導電性基板を得た。紫外線照射装置としては、実施例
1の場合と同じものを用いた。
Example 16 The primary coating solution 1 shown in Table 4 was applied to a soda lime glass (60 mm × 120 mm × 3 mm thickness) as a base material with a wire bar having a wire diameter of 0.1 mm, followed by heating with far infrared rays. It was dried at 50 ° C. for 5 minutes to form a primary coating layer having a film thickness of 0.4 μm. Next, average particle size of 0.03μ
A transparent conductive ink (DX-101 manufactured by Tohoku Kako Co., Ltd.) in which ITO ultrafine powder of m was dispersed in an organic solvent was used, and the wire diameter was 0.07.
After coating with a 5 mm wire bar, heat by far infrared heating to 50
After drying at 5 ° C. for 5 minutes, a transparent conductive layer having a film thickness of 2.0 μm was formed. This was heated in the atmosphere at 550 ° C. for 1 hour and then in nitrogen gas at 550 ° C. for 15 minutes. After coating the overcoat liquid 5 shown in Table 4 on this, it is heated by far infrared rays to 50
After drying at ℃ for 5 minutes and removing the solvent, a primer-treated polyester film (Teijin Co., Ltd. 1
1P-7, 100 μm thick) and a wire thickness of 10 Kgf / cm. After the bonding, the metal halide lamp irradiates 150 mW / cm 2 , illuminance of ultraviolet rays for 10 seconds,
After curing the overcoat layer, the soda lime glass of the base material was peeled off, and the transparent conductive layer was transferred to the substrate member side to obtain a transparent conductive substrate. The same ultraviolet irradiation device as that used in Example 1 was used.

【0046】転写によって得られた透明導電性基板の光
線透過率,ヘーズ値及び表面抵抗を夫々測定した。その
結果は表5に示されている。又、実施例透明導電性基板
の表面粗さを測定したところ、表面の凹凸は0.2μm
以下であった。尚、これらの測定に際しては、実施例1
で用いたのと同じものを用いた。得られた透明導電膜の
厚さは、透過型電子顕微鏡により測定した。この結果、
表5から明らかなように、焼成によりコーティング層が
収縮していることが観察された。
The light transmittance, haze value and surface resistance of the transparent conductive substrate obtained by transfer were measured. The results are shown in Table 5. Further, when the surface roughness of the transparent conductive substrate of the example was measured, the surface irregularities were 0.2 μm.
It was below. In addition, in these measurements, Example 1
The same one was used in. The thickness of the obtained transparent conductive film was measured by a transmission electron microscope. As a result,
As is clear from Table 5, it was observed that the coating layer contracted due to firing.

【0047】実施例17 オーバーコート液として表4のオーバーコート液6を用
いた点以外は、実施例16と同じ材料,条件及び手順に
より透明透明導電性基板を製造した。その光透過率,ヘ
ーズ値及び表面抵抗は実施例1の場合と同じ測定装置を
用い、結果は表5に示す通りであった。
Example 17 A transparent transparent conductive substrate was produced by using the same materials, conditions and procedures as in Example 16, except that Overcoat Liquid 6 in Table 4 was used as the overcoat liquid. The light transmittance, haze value, and surface resistance were the same as those used in Example 1, and the results are shown in Table 5.

【0048】実施例18 表4に示す一次コーティング液2を基材としてのソーダ
ライムガラス(75mm×75mm×1mm厚さ)に、線径
0.1mmのワイヤーバーで塗布した後、遠赤外線加熱で
乾燥し、厚さ0.4μmの膜を形成した。この膜を窒素
雰囲気下400℃で10分間熱処理してアクリル樹脂を
炭化させ、一次コーティング層を形成した。次に、その
上に平均粒径0.03μmのITO超微粉を有機溶剤に
分散させた透明導電インク(東北化工(株)製DX−1
01)を、線径0.075mmのワイヤーバーで塗布した
後乾燥して、膜厚2.0μmの透明導電層を形成した。
これ以降は、実施例16と同じ材料,条件及び手順を用
いて透明導電性基板を得た。その光透過率,ヘーズ値及
び表面抵抗は実施例1の場合と同じ測定装置を用い、結
果は表5に示す通りであった。
Example 18 The primary coating liquid 2 shown in Table 4 was applied to soda lime glass (75 mm × 75 mm × 1 mm thickness) as a base material with a wire bar having a wire diameter of 0.1 mm, and then heated with far infrared rays. It was dried to form a film having a thickness of 0.4 μm. This film was heat-treated at 400 ° C. for 10 minutes in a nitrogen atmosphere to carbonize the acrylic resin and form a primary coating layer. Next, a transparent conductive ink (DX-1 manufactured by Tohoku Kako Co., Ltd.) in which an ultrafine ITO powder having an average particle diameter of 0.03 μm is dispersed in an organic solvent is formed thereon.
01) was applied with a wire bar having a wire diameter of 0.075 mm and then dried to form a transparent conductive layer having a film thickness of 2.0 μm.
After that, a transparent conductive substrate was obtained using the same materials, conditions and procedures as in Example 16. The light transmittance, haze value, and surface resistance were the same as those used in Example 1, and the results are shown in Table 5.

【0049】実施例19 表4に示す一次コーティング液3を基材としての低アル
カリガラス(75mm×75mm×1mm厚さ)に、線径0.
1mmのワイヤーバーで塗布した後乾燥し、厚さ約0.0
4μmの膜を形成した(測定膜厚が非常に薄いため、膜
厚は、一次コーティング液中の樹脂の濃度と、形成され
るべき膜の厚さとの関係を示すグラフを作成して、その
グラフから読み取った。)この膜に、平均粒径0.03
μmのITO超微粉を有機溶剤に分散させた透明導電イ
ンク(東北化工(株)製DX−101)を、線径0.0
75mmのワイヤーバーで塗布した後乾燥して、膜厚2.
0μmの透明導電層を形成した。これを大気中650
℃,30分間、続いて窒素ガス中650℃,10分間加
熱した。これ以降は、実施例16と同様の材料,条件及
び手順を用いて透明導電性基板を得た。その光透過率,
ヘーズ値及び表面抵抗は実施例1の場合と同じ測定装置
を用い、結果は表5に示す通りであった。
Example 19 A low alkali glass (75 mm × 75 mm × 1 mm thickness) having the primary coating liquid 3 shown in Table 4 as a base material was used to form a wire having a diameter of 0.
Apply with a 1mm wire bar and then dry to a thickness of about 0.0
A film having a thickness of 4 μm was formed (since the measured film thickness is very thin, the film thickness is a graph showing the relationship between the concentration of the resin in the primary coating liquid and the thickness of the film to be formed. The average particle size was 0.03.
A transparent conductive ink (DX-101 manufactured by Tohoku Kako Co., Ltd.) in which an ultrafine ITO powder of μm is dispersed in an organic solvent has a wire diameter of 0.0.
After coating with a 75 mm wire bar and drying, a film thickness of 2.
A 0 μm transparent conductive layer was formed. 650 in the atmosphere
C., 30 minutes, followed by heating in nitrogen gas at 650.degree. C. for 10 minutes. After that, the transparent conductive substrate was obtained using the same materials, conditions and procedures as in Example 16. Its light transmittance,
The haze value and the surface resistance were the same as those used in Example 1, and the results are shown in Table 5.

【0050】比較例2 一次コーティング層を形成しない点を除いて、実施例1
6と同様の材料,条件及び手順を用いて透明導電性基板
を得た。その光透過率,ヘーズ値及び表面抵抗は実施例
1の場合と同じ測定装置を用い、結果は表5に示す通り
であった。
Comparative Example 2 Example 1 except that no primary coating layer was formed.
A transparent conductive substrate was obtained by using the same materials, conditions and procedures as in No. 6. The light transmittance, haze value, and surface resistance were the same as those used in Example 1, and the results are shown in Table 5.

【0051】比較例3 一次コーティング層を形成しない点を除いて、実施例1
7と同様の材料,条件及び手順を用いて透明導電性基板
を得た。その光透過率,ヘーズ値及び表面抵抗は実施例
1の場合と同じ測定装置を用い、結果は表5に示す通り
であった。
Comparative Example 3 Example 1 except that the primary coating layer was not formed.
A transparent conductive substrate was obtained using the same materials, conditions and procedures as in 7. The light transmittance, haze value, and surface resistance were the same as those used in Example 1, and the results are shown in Table 5.

【0052】比較例4 表4に示す一次コーティング液4を基材としての低アル
カリガラス(75mm×75mm×1mm厚さ)に、線径0.
1mmのワイヤーバーで塗布した後乾燥し、厚さ0.4μ
mの膜を形成した。この膜に、平均粒径0.03μmの
ITO超微粉を有機溶剤に分散させた透明導電インク
(東北化工(株)製DX−101)を、線径0.075
mmのワイヤーバーで塗布した後乾燥して、膜厚約1.5
μmの透明導電層を形成した。これを大気中650℃,
30分間焼成したところ、透明導電層は基材から総て剥
離してしまった。
Comparative Example 4 A low alkali glass (75 mm × 75 mm × 1 mm thickness) having the primary coating liquid 4 shown in Table 4 as a base material was used to form a wire having a diameter of 0.
After coating with a 1mm wire bar, it is dried and the thickness is 0.4μ.
m film was formed. On this film, a transparent conductive ink (DX-101 manufactured by Tohoku Kako Co., Ltd.) in which ITO ultrafine powder having an average particle diameter of 0.03 μm was dispersed in an organic solvent was used.
After coating with a wire bar of mm, the film thickness is about 1.5.
A μm transparent conductive layer was formed. 650 ℃ in the atmosphere,
When baked for 30 minutes, the transparent conductive layer was completely peeled off from the substrate.

【0053】表4(一次コーティング液及びオーバーコ
ート液の組成)
Table 4 (Composition of primary coating liquid and overcoat liquid)

【0054】表5(印刷転写法で得られた透明導電膜の
塗膜物性)
Table 5 (Physical properties of transparent conductive film obtained by printing transfer method)

【0055】[0055]

【発明の効果】上述の如く本発明によれば、印刷法では
得られなかった30Ω/□程度の低い抵抗値と、優れた
光学特性とを有する透明導電性基板を提供することがで
きる。又、透明導電膜の平滑度も著しく向上するため、
液晶装置等の如く表面の平滑性を要求される用途にも適
した透明導電性基板を得ることができる。
As described above, according to the present invention, it is possible to provide a transparent conductive substrate having a low resistance value of about 30 Ω / □ which was not obtained by the printing method and excellent optical characteristics. Also, since the smoothness of the transparent conductive film is significantly improved,
It is possible to obtain a transparent conductive substrate that is suitable for applications where surface smoothness is required, such as liquid crystal devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明による透明導電性基板の一実施
例の構成図、(b)は従来の透明導電性基板の構成図で
ある。
FIG. 1A is a configuration diagram of an embodiment of a transparent conductive substrate according to the present invention, and FIG. 1B is a configuration diagram of a conventional transparent conductive substrate.

【図2】実施例6における転写の状態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a transfer state in Example 6.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05B 33/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display H05B 33/28

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 可視光線を透過する基板部材と、該基板
部材上に形成された透明なオーバーコート層と、該オー
バーコート層上に形成された導電性の超微粒子を含む透
明導電膜とを有する透明導電性基板。
1. A substrate member that transmits visible light, a transparent overcoat layer formed on the substrate member, and a transparent conductive film containing conductive ultrafine particles formed on the overcoat layer. Having a transparent conductive substrate.
【請求項2】 導電性の超微粒子は粒径が0.1μm以
下のインジウム−錫酸化物であり、透明導電膜の比抵抗
は0.05Ω・cm以下である請求項1に記載の透明導電
性基板。
2. The transparent conductive material according to claim 1, wherein the conductive ultrafine particles are indium-tin oxide having a particle diameter of 0.1 μm or less, and the specific resistance of the transparent conductive film is 0.05 Ω · cm or less. Substrate.
【請求項3】 導電性の超微粒子は粒径が0.1μm以
下のインジウム−錫酸化物であり、透明導電膜の光透過
率は70%以上で表面抵抗は200Ω/□以下である請
求項1に記載の透明導電性基板。
3. The conductive ultrafine particles are indium-tin oxide having a particle size of 0.1 μm or less, and the transparent conductive film has a light transmittance of 70% or more and a surface resistance of 200 Ω / □ or less. 1. The transparent conductive substrate according to 1.
【請求項4】 基材上に透明導電インクを印刷又は塗布
して乾燥することにより透明導電膜を形成するか或いは
乾燥後これに紫外線を照射するか又はこれを焼成し透明
導電膜を形成した後、該透明導電膜上にオーバーコート
液を塗布することによりオーバーコート層を形成せし
め、次に上記オーバーコート液又は接着剤により上記オ
ーバーコート層を可視光線を透過する基板部材に対面さ
せた状態で上記基材と該基板部材とを貼り合わせた後上
記オーバーコート層及び/又は接着剤を硬化せしめ、硬
化後上記基材を剥離することにより上記基板部材上に上
記オーバーコート層と透明導電膜を転写するようにした
透明導電性基板の製造方法。
4. A transparent conductive film is formed by printing or applying a transparent conductive ink on a substrate and drying the transparent conductive ink, or irradiating the transparent conductive film with ultraviolet rays after drying or baking the transparent conductive film. After that, an overcoat layer is formed by applying an overcoat solution on the transparent conductive film, and then the overcoat layer or the adhesive is used to face the overcoat layer to a substrate member that transmits visible light. After bonding the base material and the substrate member with each other, the overcoat layer and / or the adhesive is cured, and the base material is peeled off after curing, so that the overcoat layer and the transparent conductive film are formed on the substrate member. And a method for manufacturing a transparent conductive substrate, which is configured to transfer.
【請求項5】 基材上に一次コーティング層を形成した
後、該一次コーティング層上に透明導電インクを印刷又
は塗布して乾燥し、その後、焼成することにより透明導
電膜を形成した後、該透明導電膜上にオーバーコート液
を塗布することによりオーバーコート層を形成せしめ、
次に上記オーバーコート液又は接着剤により上記オーバ
ーコート層を可視光線が透過する基板部材に対面させた
状態で上記基材と該基板部材とを貼り合わせた後、上記
オーバーコート層及び/又は接着剤を硬化せしめ、硬化
後、上記基材を剥離することにより、上記基板部材上に
上記オーバーコート層と透明導電膜を転写するようにし
た透明導電性基板の製造方法。
5. After forming a primary coating layer on a substrate, a transparent conductive ink is printed or applied on the primary coating layer, dried and then baked to form a transparent conductive film. Form an overcoat layer by applying an overcoat liquid on the transparent conductive film,
Next, after bonding the base material and the substrate member with the overcoat liquid or the adhesive facing the substrate member that transmits visible light, the overcoat layer and / or the adhesive. A method for producing a transparent conductive substrate, wherein the agent is cured, and after curing, the base material is peeled off to transfer the overcoat layer and the transparent conductive film onto the substrate member.
【請求項6】 一次コーティング層が透明導電インクを
塗布するか、又は塗布後に不活性ガス雰囲気中で熱処理
して0.5μm以下の厚さに形成される請求項5に記載
の透明導電性基板の製造方法。
6. The transparent conductive substrate according to claim 5, wherein the primary coating layer is formed to have a thickness of 0.5 μm or less by applying a transparent conductive ink or performing a heat treatment in an inert gas atmosphere after the application. Manufacturing method.
【請求項7】 一次コーティング層が樹脂と溶剤から成
る塗布液を塗布するか、又は該塗布液の塗布後に不活性
ガス雰囲気中で熱処理して0.2μm以下の厚さに形成
される請求項5に記載の透明導電性基板の製造方法。
7. The primary coating layer is formed to have a thickness of 0.2 μm or less by applying a coating solution comprising a resin and a solvent, or by applying a heat treatment in an inert gas atmosphere after applying the coating solution. 5. The method for producing a transparent conductive substrate as described in 5.
【請求項8】 基材として、プラスチックフィルム,プ
ラスチックロール,硝子板,セラミック板,金属板又は
金属ロールを用いる請求項4乃至7の何れかに記載の製
造方法。
8. The manufacturing method according to claim 4, wherein a plastic film, a plastic roll, a glass plate, a ceramic plate, a metal plate or a metal roll is used as the substrate.
【請求項9】 基板部材として、ポリエステル又はポリ
エーテルサルフォンのフィルム又は硝子を用いる請求項
4乃至7の何れかに記載の製造方法。
9. The manufacturing method according to claim 4, wherein a polyester or polyether sulfone film or glass is used as the substrate member.
【請求項10】 透明導電インクとして、酸化物系超微
粉を溶剤に分散させて用いる請求項4乃至7の何れかに
記載の製造方法。
10. The manufacturing method according to claim 4, wherein the transparent conductive ink is used by dispersing ultrafine oxide powder in a solvent.
【請求項11】 透明導電インクとして、酸化物系超微
粉と熱可塑性樹脂,熱硬化性樹脂又は紫外線硬化性樹脂
とを溶剤に分散させて用いる請求項4乃至7の何れかに
記載の製造方法。
11. The production method according to claim 4, wherein the transparent conductive ink is used by dispersing oxide-based ultrafine powder and a thermoplastic resin, a thermosetting resin or an ultraviolet curable resin in a solvent. ..
【請求項12】 酸化物系超微粉として、インジウム−
錫酸化物又は錫−アンチモン酸化物の超微粉が用いられ
る請求項10又は11に記載の製造方法。
12. Indium-containing oxide-based ultrafine powder
The production method according to claim 10, wherein ultrafine powder of tin oxide or tin-antimony oxide is used.
【請求項13】 オーバーコート液及び接着剤として、
紫外線硬化性樹脂又は熱硬化性樹脂を用いる請求項4乃
至7の何れかに記載の製造方法。
13. An overcoat liquid and an adhesive,
The manufacturing method according to claim 4, wherein an ultraviolet curable resin or a thermosetting resin is used.
【請求項14】 焼成が、先ず大気中300℃〜800
℃、次に不活性ガス雰囲気中300℃〜800℃で行わ
れるようにした請求項4乃至7の何れかに記載の製造方
法。
14. Firing is first performed in the air at 300 ° C. to 800 ° C.
The manufacturing method according to any one of claims 4 to 7, wherein the method is carried out at 300C to 800C in an inert gas atmosphere.
JP5032253A 1992-02-27 1993-02-22 Transparent conducting substrate and its manufacture Pending JPH05325646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032253A JPH05325646A (en) 1992-02-27 1993-02-22 Transparent conducting substrate and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-41275 1992-02-27
JP4127592 1992-02-27
JP5032253A JPH05325646A (en) 1992-02-27 1993-02-22 Transparent conducting substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH05325646A true JPH05325646A (en) 1993-12-10

Family

ID=12603897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032253A Pending JPH05325646A (en) 1992-02-27 1993-02-22 Transparent conducting substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH05325646A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002119A1 (en) * 1998-07-06 2000-01-13 Nissha Printing Co., Ltd. Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
JP2002036411A (en) * 1999-12-28 2002-02-05 Tdk Corp Functional coating film and manufacturing method therefor
JP2003015286A (en) * 2001-06-28 2003-01-15 Tdk Corp Substrate where functional layer pattern is formed and method for forming functional layer pattern
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
KR100522035B1 (en) * 1999-12-28 2005-10-14 티디케이가부시기가이샤 Functional film and method for preparation thereof
JP2007005097A (en) * 2005-06-22 2007-01-11 Nippon Manufacturing Service Kk Cable and its manufacturing method
JP2007193992A (en) * 2006-01-17 2007-08-02 Osaka City Paste composition for forming transparent conductive film containing metal oxide ultrafine particle
JP2008091126A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Transparent conductive film and its manufacturing method
JP2009229975A (en) * 2008-03-25 2009-10-08 Shinyosha:Kk Electric bulletin display
JP2013544931A (en) * 2010-11-24 2013-12-19 エルジー・ハウシス・リミテッド Adhesive composition for touch panel, adhesive film and touch panel
JP2014514700A (en) * 2011-03-29 2014-06-19 エルジー・ケム・リミテッド Substrates for organic electronic devices
JP5880444B2 (en) * 2010-12-13 2016-03-09 コニカミノルタ株式会社 Transparent surface electrode, organic electronics element, and method of manufacturing transparent surface electrode
JP2016076362A (en) * 2014-10-06 2016-05-12 三菱マテリアル株式会社 Transparent conductive film and transparent conductor comprising said transparent conductive film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060320B1 (en) 1998-07-06 2006-06-13 Nissha Printing Co., Ltd. Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
WO2000002119A1 (en) * 1998-07-06 2000-01-13 Nissha Printing Co., Ltd. Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
JP2002036411A (en) * 1999-12-28 2002-02-05 Tdk Corp Functional coating film and manufacturing method therefor
KR100522035B1 (en) * 1999-12-28 2005-10-14 티디케이가부시기가이샤 Functional film and method for preparation thereof
JP2003015286A (en) * 2001-06-28 2003-01-15 Tdk Corp Substrate where functional layer pattern is formed and method for forming functional layer pattern
JPWO2005024853A1 (en) * 2003-09-08 2007-11-08 住友金属鉱山株式会社 Transparent conductive laminate, organic EL element using the same, and method for producing the same
US8040042B2 (en) 2003-09-08 2011-10-18 Sumitomo Metal Mining Co., Ltd. Transparent electroconductive layered structure, organic electroluminescent device using the same layered structure, method for producing the same layered structure, and method for producing the same device
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
JP4983021B2 (en) * 2003-09-08 2012-07-25 住友金属鉱山株式会社 Transparent conductive laminate, organic EL element using the same, and method for producing the same
JP2007005097A (en) * 2005-06-22 2007-01-11 Nippon Manufacturing Service Kk Cable and its manufacturing method
JP2007193992A (en) * 2006-01-17 2007-08-02 Osaka City Paste composition for forming transparent conductive film containing metal oxide ultrafine particle
JP2008091126A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Transparent conductive film and its manufacturing method
JP2009229975A (en) * 2008-03-25 2009-10-08 Shinyosha:Kk Electric bulletin display
JP2013544931A (en) * 2010-11-24 2013-12-19 エルジー・ハウシス・リミテッド Adhesive composition for touch panel, adhesive film and touch panel
JP5880444B2 (en) * 2010-12-13 2016-03-09 コニカミノルタ株式会社 Transparent surface electrode, organic electronics element, and method of manufacturing transparent surface electrode
JP2014514700A (en) * 2011-03-29 2014-06-19 エルジー・ケム・リミテッド Substrates for organic electronic devices
US9537098B2 (en) 2011-03-29 2017-01-03 Lg Display Co., Ltd. Substrate for organic electronic device
US9537097B2 (en) 2011-03-29 2017-01-03 Lg Display Co., Ltd. Substrate for organic electronic device
JP2016076362A (en) * 2014-10-06 2016-05-12 三菱マテリアル株式会社 Transparent conductive film and transparent conductor comprising said transparent conductive film

Similar Documents

Publication Publication Date Title
KR950014928B1 (en) Transparent electric conduction substrate and process for making the same
JP3103681B2 (en) Method for manufacturing transparent conductive substrate
TWI301798B (en) Functional film having functional layer and article provided with the functinal layer
JPH05325646A (en) Transparent conducting substrate and its manufacture
KR100669636B1 (en) Functional film for transfer having functional layer, object furnished with functional layer and process for producing the same
JP4779244B2 (en) Method for forming functional layer pattern
JP4635421B2 (en) Conductive film for transfer and method for forming transparent conductive film using the same
JPH0883515A (en) Transparent conductive sheet
JP4666961B2 (en) Object provided with transparent conductive layer, and conductive film for transfer
JPH0795165B2 (en) Microsphere, spherical spacer for liquid crystal display device, and liquid crystal display device using the same
JP2007012443A5 (en)
JPH08286812A (en) Transparent pointing tablet
JPH04237909A (en) Film forming method for transparent conductive film
JP3103682B2 (en) Method for manufacturing transparent conductive substrate
JP3190416B2 (en) Method for manufacturing transparent conductive substrate
JP4037066B2 (en) Functional film having functional layer and object provided with the functional layer
JP4679092B2 (en) Transparent sheet heating element and manufacturing method thereof
JP2002283462A (en) Method for manufacturing matter of which surface is coated with conductive layer and functional layer and surface coated matter
KR101330065B1 (en) Method for fabricating and coating ito ink
JP3140995B2 (en) Spherical spacer for liquid crystal display device and liquid crystal display device using the same
CN207958146U (en) Substrate with color explosion-proof membrane
JP2011171041A (en) Transparent conductor and conductive film for transfer
JP2011119042A (en) Transparent conductor and conductive film for transfer
JPH07153313A (en) Transparent conductive adhesive
JP4745261B2 (en) Display element