JPH05322473A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH05322473A
JPH05322473A JP12448592A JP12448592A JPH05322473A JP H05322473 A JPH05322473 A JP H05322473A JP 12448592 A JP12448592 A JP 12448592A JP 12448592 A JP12448592 A JP 12448592A JP H05322473 A JPH05322473 A JP H05322473A
Authority
JP
Japan
Prior art keywords
heat transfer
inlet
transfer tube
plenum
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12448592A
Other languages
Japanese (ja)
Inventor
Yoshinori Saito
義則 齊藤
Shunji Nakao
俊次 中尾
Hisashi Soma
尚志 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12448592A priority Critical patent/JPH05322473A/en
Publication of JPH05322473A publication Critical patent/JPH05322473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To prevent deformation, vibration of a heat transfer tube due to drift of heat transfer fluid after passage of an inlet of an inner shell by providing a plate having many holes each having an opening area smaller than that of the inlet of the inner shell on an opening part of the inlet of the inner shell in a shell-and-tube heat exchanger. CONSTITUTION:First heat transfer fluid 8 is fed from an inlet 10 of an outer shell, passed through a guide passage 12 interposed between the outer shell 2 and an inner shell 6, guided to an inlet 14 of the inner shell, and discharged from an outlet 18 of the outer shell through a passage 16 of the inner shell. Second heat transfer fluid 20 is fed from an inlet 22 of an inlet plenum of a heat transfer tube, heat exchanged with the fluid 8 while flowing in many heat transfer tubes 26, and then discharged from an outlet 30 of an output plenum of the heat transfer tube. In such a heat exchanger, a porous plate 13 fixed to the inner shell 6 is provided on the entire periphery of the inlet 14. The fluid 8 passed through the passage 12 is guided into the passage 16 through a plurality of holes 15 each having a smaller opening area than that of the inlet 14 and formed at the plate 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシェルアンドチューブ型
の熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell-and-tube type heat exchanger.

【0002】[0002]

【従来の技術】従来、異なる2種類の流体間の熱交換に
は、図2に示すようなシェルアンドチューブ熱交換器を
用いていた。図2において、100はシェルアンドチュ
ーブ熱交換器本体、2は外胴、6は内胴、4は内胴6を
外胴2の内部に同心状に固定支持する内胴支持棒であ
る。第1の伝熱流体8は、外胴流入口10より流入し、
外胴2と内胴6に挟まれた案内流路12内を通過後に内
胴流入口14に導かれ、内胴6の内部である内胴流路1
6を通過して外胴流出口18より流出する。また、伝熱
流体Aとは別の第2の伝熱流体20は、伝熱管入口プレ
ナム流入口22より流入し、伝熱管入口プレナム24か
ら複数の伝熱管26内を流れて、伝熱流体8と熱交換を
行なった後、伝熱管出口プレナム28内を流れて、伝熱
管出口プレナム流出口30より流出する。40は伝熱管
入口プレナム24と伝熱管出口プレナム28と外胴内部
を仕切る仕切板、42は内胴6の軸に垂直の面で仕切っ
て伝熱管26を内胴に固定支持する伝熱管支持板、44
は伝熱管支持板42に設けられた支持板流路である。
2. Description of the Related Art Conventionally, a shell and tube heat exchanger as shown in FIG. 2 has been used for heat exchange between two different kinds of fluids. In FIG. 2, 100 is a shell-and-tube heat exchanger main body, 2 is an outer shell, 6 is an inner shell, and 4 is an inner shell support rod that concentrically supports the inner shell 6 inside the outer shell 2. The first heat transfer fluid 8 flows in through the outer barrel inlet 10,
After passing through the inside of the guide passage 12 sandwiched between the outer case 2 and the inner case 6, the inner case 6 is guided to the inner case inlet 14 and is located inside the inner case 6
It passes through 6 and flows out from the outer barrel outlet 18. The second heat transfer fluid 20 different from the heat transfer fluid A flows in from the heat transfer tube inlet plenum inlet 22 and flows from the heat transfer tube inlet plenum 24 into the plurality of heat transfer tubes 26 to generate the heat transfer fluid 8 After exchanging heat with the heat transfer tube, it flows through the heat transfer tube outlet plenum 28 and flows out from the heat transfer tube outlet plenum outlet 30. 40 is a partition plate for partitioning the heat transfer tube inlet plenum 24, the heat transfer tube outlet plenum 28, and the inside of the outer case, and 42 is a heat transfer tube support plate for partitioning the heat transfer tube 26 to the inner case by partitioning the heat transfer tube 26 by a plane perpendicular to the axis of the inner case 6. , 44
Is a support plate flow path provided in the heat transfer tube support plate 42.

【0003】図3は、図2の内胴流入口14の付近を拡
大して示したもので、46は案内流路12の通過直後の
第1の伝熱流体8の流れの流速分布である。この伝熱流
体8が、案内流路12内から内胴流入口14を通過する
際に、内胴流入口壁面との摩擦が流入口に接する流れに
作用するため、流入口壁面付近の伝熱流体8の流速は低
下するが、流入口壁面から離れた伝熱流体8の流れに作
用する摩擦は小さいので、流入口壁面付近の伝熱流体8
の流速は高く維持されている。従って、内胴流入口14
通過直後の伝熱流体8の流れは、図3に示されるように
偏った流速分布46を持つ流れ(偏流)となる。
FIG. 3 is an enlarged view showing the vicinity of the inner cylinder inlet 14 of FIG. 2, and 46 is the flow velocity distribution of the flow of the first heat transfer fluid 8 immediately after passing through the guide passage 12. .. When the heat transfer fluid 8 passes from the inside of the guide passage 12 through the inner barrel inlet 14, friction with the inner barrel inlet wall surface acts on the flow in contact with the inlet, so that heat transfer near the inlet wall surface Although the flow velocity of the fluid 8 decreases, the friction acting on the flow of the heat transfer fluid 8 away from the inlet wall surface is small, so the heat transfer fluid 8 near the inlet wall surface
The flow velocity of is maintained high. Therefore, the inner trunk inlet 14
The flow of the heat transfer fluid 8 immediately after passing is a flow (uneven flow) having an uneven flow velocity distribution 46 as shown in FIG.

【0004】この偏流は、内胴流路16内の異なる伝熱
管表面位置で、伝熱管26における伝熱流体8と伝熱流
体20との間の熱交換率が異なる原因となり、伝熱管に
不均一な温度分布が生じ、部分的に大きな熱応力が発生
するという欠点があったため、従来の技術では、伝熱管
26管束部における熱交換率を均一にするため案内流路
12内に整流板を設けたり、特開昭59−71996号公報,
同昭59−71997号公報に記載のように、内胴流路16内
の伝熱管26管束部分に流路案内板を設けて流れの整流
を行なう方法が採られていた。
This uneven flow causes a difference in heat exchange rate between the heat transfer fluid 8 and the heat transfer fluid 20 in the heat transfer tube 26 at different surface positions of the heat transfer tube in the inner shell flow passage 16, and thus the heat transfer tube is not affected. Since there is a drawback that a uniform temperature distribution is generated and a large thermal stress is partially generated, in the conventional technique, a straightening plate is provided in the guide passage 12 in order to make the heat exchange rate in the heat transfer tube 26 tube bundle portion uniform. Provided, JP-A-59-71996,
As described in Japanese Patent Laid-Open No. 59-71997, a method has been adopted in which a flow path guide plate is provided in the tube bundle portion of the heat transfer tube 26 in the inner shell flow path 16 to rectify the flow.

【0005】[0005]

【発明が解決しようとする課題】シェルアンドチューブ
熱交換器本体100の内胴流路16内で、偏流が伝熱管
26管束部に当たる時には、偏流の高い流速が当たる伝
熱管表面に作用する動圧力(流体力)は、低い流速が当
たる伝熱管表面に比べて大きくなるため局所的に大きな
伝熱管の変形が生じ、また、伝熱管の持つ弾性による復
元力と流体力との間の繰返しによって伝熱管の振動や、
伝熱管と伝熱管まわりの伝熱流体8との間に連成振動が
生じて、図2に示すようなシェルアンドチューブ熱交換
器の長期使用時の安全性が課題となる。しかし、従来の
技術では、内胴流入口14の直後の伝熱流体8の偏流が
原因となる前記伝熱管の変形や振動の課題を解決しては
いない。
In the inner shell flow passage 16 of the shell-and-tube heat exchanger body 100, when the uneven flow hits the tube bundle portion of the heat transfer pipe 26, the dynamic pressure acting on the surface of the heat transfer pipe to which the high flow velocity of the uneven flow hits. The (fluid force) becomes larger than that on the surface of the heat transfer tube where a low flow velocity hits, so a large deformation of the heat transfer tube occurs locally, and due to the repetition of the restoring force due to the elasticity of the heat transfer tube and the fluid force, Vibration of heat tubes,
Coupled vibration occurs between the heat transfer tube and the heat transfer fluid 8 around the heat transfer tube, and the safety of the shell and tube heat exchanger as shown in FIG. 2 during long-term use becomes a problem. However, the conventional techniques have not solved the problems of deformation and vibration of the heat transfer tube due to the uneven flow of the heat transfer fluid 8 immediately after the inner case inlet 14.

【0006】本発明の目的は、内胴流入口14通過直後
の伝熱流体8の偏流による、伝熱管26の変形や振動の
問題を解決したシェルアンドチューブ熱交換器を提供す
ることにある。
An object of the present invention is to provide a shell-and-tube heat exchanger that solves the problems of deformation and vibration of the heat transfer tube 26 due to the uneven flow of the heat transfer fluid 8 immediately after passing through the inner shell inlet 14.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成する第
1手段は、内胴流入口の開口面積に比べて開口面積が小
さく、その開口面積が各々等しい孔を複数配置した板
(多孔板)を内胴流入口の開口位置に内胴に固定して設
置する。この目的を達成する第2手段は、内胴流入口の
開口面積に比べて開口面積が小さく、その開口面積が各
々等しくない孔を複数配置した多孔板を内胴流入口の開
口位置に内胴に固定して設置する。
A first means for achieving the above object is a plate (a perforated plate) having a plurality of holes each having a smaller opening area than the opening area of the inner barrel inlet and having the same opening area. ) Is fixed to the inner shell at the opening position of the inner shell inlet. The second means for achieving this object is to provide an inner shell at the opening position of the inner shell inlet with a perforated plate having a smaller opening area than the opening area of the inner shell inlet and arranging a plurality of holes having different opening areas. Fixed and installed.

【0008】[0008]

【作用】第1手段による発明は、内胴流入口の開口位置
に設置された多孔板上の、複数の各々等しい開口面積の
個々の小さい孔を伝熱流体8が通過すると、孔周囲の固
体壁面に接する伝熱流体8の流体摩擦によって、この固
体壁面付近の流れは減速して、内胴流入口と同様に伝熱
流体8の流れには偏流が生じる。しかし、多孔板上の個
々の孔の開口面積は小さいため、従来の技術における内
胴流入口通過直後の流れの偏流に比べて、多孔板の個々
の孔を通過した流れの偏流の寸法は小さくなり、従来の
技術における内胴流入口通過直後の流れの偏流に比べ
て、この多孔板上の個々の孔を通過する流れを合成した
伝熱流体8の流れの偏流の偏りも小さくなる。従って第
1手段による発明では、内胴内の伝熱管の局所的に大き
な変形と振動が防止される。
In the invention according to the first means, when the heat transfer fluid 8 passes through a plurality of small holes each having the same opening area on the perforated plate installed at the opening position of the inner cylinder inlet, the solid around the holes is solidified. Due to the fluid friction of the heat transfer fluid 8 in contact with the wall surface, the flow in the vicinity of the solid wall surface is decelerated, so that the flow of the heat transfer fluid 8 becomes uneven as in the case of the inner cylinder inlet. However, since the opening area of each hole on the perforated plate is small, the size of the drift of the flow passing through each hole of the perforated plate is small compared to the drift of the flow immediately after passing through the inner barrel inlet in the prior art. Therefore, the deviation of the flow deviation of the flow of the heat transfer fluid 8 obtained by combining the flows passing through the individual holes on the perforated plate is smaller than the deviation of the flow immediately after passing through the inner cylinder inlet in the conventional technique. Therefore, in the invention by the first means, a large local deformation and vibration of the heat transfer tube in the inner case are prevented.

【0009】また、第2手段による発明は、従来の技術
における内胴流入口通過直後の流れの偏流において、流
速の小さい位置の開口面積を流速の大きい位置の開口面
積に比べて大きくするように、各々が異なる開口面積を
持つ穴を配置した多孔板を内胴流入口の開口位置に設置
することで、この多孔板の個々の孔を伝熱流体8が通過
すると、小さい開口面積の孔を通過する流れの単位体積
あたりの接触面積は、大きな開口面積の孔に比べて大き
いため、大きな開口面積の孔を通過する流れに比べて小
さい開口面積の孔を通過する流れの流速は小さくなるた
め、従来の技術における内胴流入口通過直後の流れの偏
流に比べて多孔板の個々の孔を通過した流れの偏流の度
合いは小さくなり、従来の技術における内胴流入口通過
直後の流れの偏流に比べて、多孔板上の個々の孔を通過
する流れを合成した伝熱流体8の流れの偏流率も小さく
なる。よって第2手段による発明では、内胴内の伝熱管
の局所的に大きな変形と振動が防止される。
In the invention according to the second means, the opening area at the position where the flow velocity is low is made larger than the opening area at the position where the flow velocity is high in the flow deviation of the flow immediately after passing through the inner barrel inlet in the prior art. , By arranging a perforated plate in which holes each having a different opening area are arranged at the opening position of the inner shell inlet, when the heat transfer fluid 8 passes through the individual holes of this perforated plate, a hole with a small opening area is formed. Since the contact area per unit volume of the passing flow is larger than that of a hole with a large opening area, the flow velocity of a flow passing through a hole with a small opening area is smaller than that of a flow passing through a hole with a large opening area. , The degree of drift of the flow passing through the individual holes of the perforated plate is smaller than that of the flow immediately after passing through the inner barrel inlet in the conventional technique, and the flow drift immediately after passing through the inner barrel inlet in the conventional technique is reduced. Compared to, drift rate of the flow of heat transfer fluid 8 flows synthesized passing individual holes in the perforated plate is also reduced. Therefore, in the invention by the second means, a large local deformation and vibration of the heat transfer tube in the inner case are prevented.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1と図2により
説明する。図1において、100はシェルアンドチュー
ブ熱交換器本体の断面、2は外胴、6は内胴、4は内胴
6を外胴2内部に同心状に固定支持する内胴支持棒であ
る。第1の伝熱流体8は、外胴流入口10より流入し、
外胴2と内胴6に挟まれた案内流路12内を通過後に、
従来の技術を用いた図2の熱交換器における内胴流入口
14の全周にわたって外胴2と内胴6に固定された多孔
板13に導かれ、多孔板に配置された等しい開口面積を
持つ複数の孔15を通過し、内胴6の内部である内胴流
路16を経て外胴流出口18より流出する。また、第2
の伝熱流体20は、伝熱管入口プレナム流入口22より
流入し、伝熱管入口プレナム24から複数の伝熱管26
内を流れて、伝熱流体8と熱交換を行った後に伝熱管出
口プレナム28内を流れて、伝熱管出口プレナム流出口
30より流出する。40は伝熱管入口プレナム24と伝
熱管出口プレナム28と外胴内部を仕切る仕切板、42
は内胴6の軸に垂直の面で仕切って伝熱管26を内胴に
固定支持する伝熱管支持板、44は伝熱管支持板42に
設けられた支持板流路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, 100 is a cross section of the shell-and-tube heat exchanger body, 2 is an outer shell, 6 is an inner shell, and 4 is an inner shell support rod that concentrically supports the inner shell 6 inside the outer shell 2. The first heat transfer fluid 8 flows in through the outer barrel inlet 10,
After passing through the inside of the guide passage 12 sandwiched between the outer body 2 and the inner body 6,
In the heat exchanger of FIG. 2 using the conventional technique, the entire opening of the inner cylinder inlet 14 is guided to the perforated plate 13 fixed to the outer case 2 and the inner case 6, and the equal opening area arranged in the perforated plate is provided. It passes through the plurality of holes 15 that it has, and flows out from the outer case outlet 18 through the inner case flow passage 16 inside the inner case 6. Also, the second
The heat transfer fluid 20 flows into the heat transfer tube inlet plenum inlet 22 from the heat transfer tube inlet plenum 24 and a plurality of heat transfer tubes 26.
After flowing through the inside to exchange heat with the heat transfer fluid 8, it flows inside the heat transfer tube outlet plenum 28 and flows out from the heat transfer tube outlet plenum outlet 30. Reference numeral 40 is a partition plate that partitions the heat transfer tube inlet plenum 24, the heat transfer tube outlet plenum 28, and the inside of the outer shell.
Is a heat transfer tube support plate for partitioning the heat transfer tube 26 into a plane perpendicular to the axis of the inner case 6 and fixedly supporting the heat transfer tube 26 to the inner case, and 44 is a support plate flow path provided in the heat transfer tube support plate 42.

【0011】図4は、図1の多孔板13付近を拡大して
示したもので、48は案内流路12通過直後の第1の伝
熱流体8の流れの流速分布である。案内流路12内から
多孔板13上の複数の孔15を伝熱流体8が通過する際
に、孔周囲の固体壁面に接する伝熱流体8の流体摩擦に
よって、この固体壁面付近の流れは減速して、内胴流入
口14と同様に伝熱流体8の流れの流速分布48には偏
流が生じる。しかし多孔板上の個々の孔の開口面積は小
さいため、図2の従来の技術を用いた熱交換器における
内胴流入口14を通過直後の流れの偏流に比べて、多孔
板13の個々の孔を通過した流れの偏流率は小さくな
り、従来の技術と比べて、この多孔板13上の個々の孔
15を通過する流れを合成した伝熱流体8の流れの摩擦
損失は大きくなるが、従来の技術における内胴流入口通
過直後の流れの偏流に比べて、その偏流の偏りは小さく
なるため、本発明では内胴6内の伝熱管26の局所的に
大きな変形と振動が防止される。
FIG. 4 is an enlarged view of the vicinity of the perforated plate 13 of FIG. 1, and 48 is the flow velocity distribution of the flow of the first heat transfer fluid 8 immediately after passing through the guide passage 12. When the heat transfer fluid 8 passes through the holes 15 on the perforated plate 13 from inside the guide flow path 12, the flow near the solid wall surface is decelerated due to the fluid friction of the heat transfer fluid 8 in contact with the solid wall surface around the holes. Then, similarly to the inner case inlet 14, a drift occurs in the flow velocity distribution 48 of the flow of the heat transfer fluid 8. However, since the opening areas of the individual holes on the perforated plate are small, the individual areas of the perforated plate 13 are different from the uneven flow of the flow immediately after passing through the inner barrel inlet 14 in the heat exchanger using the conventional technique of FIG. The drift ratio of the flow passing through the holes becomes smaller, and the friction loss of the flow of the heat transfer fluid 8 that is a combination of the flows passing through the individual holes 15 on the perforated plate 13 becomes larger than that in the conventional technique. Since the deviation of the flow is smaller than the deviation of the flow immediately after passing through the inner cylinder inlet in the conventional technique, large local deformation and vibration of the heat transfer tube 26 in the inner case 6 are prevented in the present invention. ..

【0012】本発明の他の実施例を図5ないし図18に
より説明する。
Another embodiment of the present invention will be described with reference to FIGS.

【0013】図1に示された実施例の多孔板13の代わ
りに、図5に示すように異なる開口面積を持つ穴を配置
した多孔板13aを設置した場合には、この多孔板の個
々の孔を伝熱流体が通過すると、小さい開口面積の孔を
通過する流れの単位体積あたりの接触面積は大きな開口
面積の孔に比べて大きいため、大きな開口面積の孔を通
過する流れに比べて小さい開口面積の孔を通過する流れ
の流速は小さくなり、従来の技術における内胴流入口通
過直後の流れの偏流に比べて多孔板の個々の孔を通過し
た流れの偏流が低減され、図1に示された実施例と同様
の効果が得られる。
When a perforated plate 13a in which holes having different opening areas are arranged as shown in FIG. 5 is installed instead of the perforated plate 13 of the embodiment shown in FIG. When a heat transfer fluid passes through a hole, the contact area per unit volume of the flow passing through a hole with a small opening area is larger than that of a hole with a large opening area, so it is smaller than the flow passing through a hole with a large opening area. The flow velocity of the flow passing through the holes of the opening area becomes small, and the flow unevenness of the flow passing through the individual holes of the perforated plate is reduced as compared with the flow unevenness of the flow immediately after passing through the inner barrel inlet in the prior art. The same effect as the embodiment shown is obtained.

【0014】図1に示された実施例の多孔板13の代わ
りに、図6に示すように等しい開口面積を持つ複数の孔
15を格子板13bを内胴流入口14に設置した場合に
は、この格子板の個々の孔は、これを通過する伝熱流体
に図1の多孔板13の個々の孔と同様の作用を及ぼすた
め、図1に示した実施例と同様の効果が得られる。
Instead of the perforated plate 13 of the embodiment shown in FIG. 1, when a plurality of holes 15 having the same opening area are installed on the inner plate inlet port 14 of the lattice plate 13 as shown in FIG. Since the individual holes of the lattice plate exert the same action on the heat transfer fluid passing therethrough as the individual holes of the perforated plate 13 of FIG. 1, the same effect as that of the embodiment shown in FIG. 1 can be obtained. ..

【0015】図1に示された実施例の多孔板13の代わ
りに、図7に示すように、メッシュ板13cを内胴流入
口14に設置した場合には、このメッシュ板は、これを
通過する伝熱流体に図1の多孔板13の個々の孔と同様
の作用を及ぼすため、図1に示された実施例と同様の効
果が得られる。
As shown in FIG. 7, instead of the porous plate 13 of the embodiment shown in FIG. 1, when a mesh plate 13c is installed at the inner trunk inlet 14, this mesh plate passes through it. Since the heat transfer fluid has the same action as the individual holes of the perforated plate 13 of FIG. 1, the same effect as that of the embodiment shown in FIG. 1 can be obtained.

【0016】図1に示された実施例の多孔板13の代わ
りに、図8ないし図10に示すように、内胴周方向の位
置によって孔の個数を変化させた多孔板13d,13
e,13fを設置した場合には、孔の個数の少ない多孔
板周方向の位置付近に比べて孔の個数の多い多孔板周方
向の位置付近の開口面積が大きいため、孔の個数の多い
内胴周方向の位置付近を伝熱流体は通過し易く、流れの
摩擦損失は低下する。その上この多孔板は、これを通過
する伝熱流体に図1の多孔板13の個々の孔と同様の作
用を及ぼすため、図1に示された実施例と同様の効果が
得られる。
Instead of the perforated plate 13 of the embodiment shown in FIG. 1, as shown in FIGS. 8 to 10, perforated plates 13d, 13 in which the number of holes is changed depending on the position in the inner body circumferential direction.
When e and 13f are installed, the opening area near the position in the circumferential direction of the perforated plate, which has a large number of holes, is larger than that near the position in the circumferential direction of the perforated plate, where the number of holes is small. The heat transfer fluid easily passes near the position in the circumferential direction of the body, and the friction loss of the flow decreases. Moreover, this perforated plate exerts the same effect on the heat transfer fluid passing therethrough as the individual holes of the perforated plate 13 of FIG. 1, so that the same effect as the embodiment shown in FIG. 1 can be obtained.

【0017】図1に示された実施例の多孔板13の代わ
りに、図11ないし図13に示すように、内胴周方向の
位置によって孔の個数を変化させ、かつ内胴軸方向の位
置によって孔の開口面積を変化させた多孔板13g,1
3h,13iを設置した場合には、孔の個数が少なく開
口面積の小さい多孔板上の位置付近に比べて、孔の個数
の多く開口面積も大きい多孔板上の位置付近の開口面積
が大きいため、孔の個数の多い内胴周方向の位置付近を
伝熱流体は通過し易く、流れの摩擦損失は低下する。そ
の上、この多孔板は、これを通過する伝熱流体に図1の
多孔板13の個々の孔と同様の作用を及ぼすため、図8
ないし図10に示された実施例と同様の効果が得られ
る。
Instead of the perforated plate 13 of the embodiment shown in FIG. 1, as shown in FIGS. 11 to 13, the number of holes is changed depending on the position in the inner body circumferential direction, and the position in the inner body axial direction is changed. Perforated plates 13g, 1 in which the opening area of the holes is changed by
When 3h and 13i are installed, the opening area is larger near the position on the perforated plate where the number of holes is large and the opening area is larger than that near the position on the perforated plate where the number of holes is small and the opening area is small. The heat transfer fluid easily passes near the positions in the circumferential direction of the inner cylinder where the number of holes is large, and the friction loss of the flow is reduced. Moreover, this perforated plate has the same effect on the heat transfer fluid passing through it as the individual holes of the perforated plate 13 of FIG.
The same effect as that of the embodiment shown in FIG. 10 can be obtained.

【0018】図2の内胴流入口14の開口位置の一部分
に、図14ないし図15に示すように複数の孔15が配
置された多孔板13j,13kを設置した場合には、そ
の孔の開口面積の小さい多孔板上の位置付近に比べて、
孔の開口面積が大きい内胴周方向の位置付近を伝熱流体
は通過し易く、流れの摩擦損失は低下する。その上、こ
の多孔板は、これを通過する伝熱流体に図1の多孔板1
3の個々の孔と同様の作用を及ぼすため、図8ないし図
13に示された実施例と同様の効果が得られる。
When a plurality of perforated plates 13j and 13k having a plurality of holes 15 as shown in FIGS. 14 to 15 are installed at a part of the opening position of the inner trunk inflow port 14 of FIG. Compared with the vicinity of the position on the perforated plate with a small opening area,
The heat transfer fluid easily passes near the position of the inner cylinder circumferential direction where the opening area of the hole is large, and the friction loss of the flow is reduced. In addition, this perforated plate is used for the heat transfer fluid passing therethrough as shown in FIG.
Since the same effect as the individual holes of No. 3 is exerted, the same effect as that of the embodiment shown in FIGS. 8 to 13 can be obtained.

【0019】図2の内胴流入口14の開口位置に、図1
6ないし図17に示すように複数の孔15が配置され、
内胴6の直径とはその直径が異なる多孔板13l,13
mを設置した場合には、この多孔板の複数の孔を通過す
る伝熱流体の流れの摩擦損失を大きくしないように、多
孔板上の複数の孔15の各々の開口面積や孔の個数を多
孔板13l,13mを変えることが可能となる。その上
この多孔板は、これを通過する伝熱流体に図1の多孔板
13の個々の孔と同様の作用を及ぼすため、図8ないし
図15に示された実施例と同様の効果が得られる。
At the opening position of the inner trunk inlet 14 of FIG.
6 to 17, a plurality of holes 15 are arranged,
Perforated plates 13l, 13 having a diameter different from the diameter of the inner case 6
When m is set, the opening area of each of the plurality of holes 15 on the perforated plate and the number of holes are set so as not to increase the friction loss of the flow of the heat transfer fluid passing through the plurality of holes of the perforated plate. It is possible to change the perforated plates 13l and 13m. Moreover, since this perforated plate exerts the same effect on the heat transfer fluid passing through it as the individual holes of the perforated plate 13 of FIG. 1, the same effect as the embodiment shown in FIGS. 8 to 15 can be obtained. Be done.

【0020】図1に示された実施例の多孔板13の代わ
りに、図18に示すように複数の孔15が配置された多
孔板13nを、内胴6の中心軸とその多孔板の中心軸と
を一致させないようオフセットを与えるように、図2の
内胴流入口14の開口位置に設置した場合には、多孔板
の複数の孔を通過する伝熱流体の流れの摩擦損失を大き
くしないように、この多孔板外周の周方向位置で案内流
路12の広さを変化させて、多孔板13nを通過する伝
熱流体の流量の差異を与えることが可能となる。その上
この多孔板は、これを通過する伝熱流体に図1の多孔板
13の個々の孔と同様の作用を及ぼすため、図8ないし
図17に示された実施例と同様の効果が得られる。
Instead of the perforated plate 13 of the embodiment shown in FIG. 1, a perforated plate 13n having a plurality of holes 15 as shown in FIG. 18 is provided in the center axis of the inner case 6 and the center of the perforated plate. When installed at the opening position of the inner barrel inlet 14 of FIG. 2 so as to give an offset so as not to coincide with the axis, the friction loss of the flow of the heat transfer fluid passing through the plurality of holes of the perforated plate is not increased. As described above, it is possible to change the width of the guide passage 12 at the circumferential position on the outer circumference of the perforated plate to give a difference in the flow rate of the heat transfer fluid passing through the perforated plate 13n. Moreover, since this perforated plate exerts the same effect on the heat transfer fluid passing through it as the individual holes of the perforated plate 13 of FIG. 1, the same effect as the embodiment shown in FIGS. 8 to 17 can be obtained. Be done.

【0021】[0021]

【発明の効果】本発明によれば、内胴内における伝熱流
体の偏流による伝熱管の変形や振動の問題を解決するこ
とができる。
According to the present invention, it is possible to solve the problems of deformation and vibration of the heat transfer tube due to uneven flow of the heat transfer fluid in the inner case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のシェルアンドチューブ熱交
換器の断面図。
FIG. 1 is a cross-sectional view of a shell and tube heat exchanger according to an embodiment of the present invention.

【図2】従来技術によるシェルアンドチューブ熱交換器
の断面図。
FIG. 2 is a sectional view of a shell and tube heat exchanger according to the prior art.

【図3】従来技術によるシェルアンドチューブ熱交換器
の内胴流入口付近の断面図。
FIG. 3 is a cross-sectional view of the shell and tube heat exchanger according to the related art in the vicinity of the inner shell inlet.

【図4】本発明の一実施例のシェルアンドチューブ熱交
換器の多孔板付近の断面図。
FIG. 4 is a cross-sectional view near a perforated plate of a shell and tube heat exchanger according to an embodiment of the present invention.

【図5】本発明の第二の実施例のシェルアンドチューブ
熱交換器の断面図。
FIG. 5 is a sectional view of a shell and tube heat exchanger according to a second embodiment of the present invention.

【図6】本発明の第三の実施例のシェルアンドチューブ
熱交換器の断面図。
FIG. 6 is a sectional view of a shell and tube heat exchanger according to a third embodiment of the present invention.

【図7】本発明の第四の実施例のシェルアンドチューブ
熱交換器の断面図。
FIG. 7 is a sectional view of a shell-and-tube heat exchanger according to a fourth embodiment of the present invention.

【図8】本発明の第五の実施例のシェルアンドチューブ
熱交換器の断面図。
FIG. 8 is a sectional view of a shell and tube heat exchanger according to a fifth embodiment of the present invention.

【図9】本発明の第六の実施例のシェルアンドチューブ
熱交換器の断面図。
FIG. 9 is a sectional view of a shell and tube heat exchanger according to a sixth embodiment of the present invention.

【図10】本発明の第七の実施例のシェルアンドチュー
ブ熱交換器の断面図。
FIG. 10 is a sectional view of a shell and tube heat exchanger according to a seventh embodiment of the present invention.

【図11】本発明の第八の実施例のシェルアンドチュー
ブ熱交換器の断面図。
FIG. 11 is a sectional view of a shell and tube heat exchanger according to an eighth embodiment of the present invention.

【図12】本発明の第九の実施例のシェルアンドチュー
ブ熱交換器の断面図。
FIG. 12 is a sectional view of a shell and tube heat exchanger according to a ninth embodiment of the present invention.

【図13】本発明の第十の実施例のシェルアンドチュー
ブ熱交換器の断面図。
FIG. 13 is a sectional view of a shell and tube heat exchanger according to a tenth embodiment of the present invention.

【図14】本発明の第十一の実施例のシェルアンドチュ
ーブ熱交換器の断面図。
FIG. 14 is a sectional view of a shell and tube heat exchanger according to an eleventh embodiment of the present invention.

【図15】本発明の第十二の実施例のシェルアンドチュ
ーブ熱交換器の断面図。
FIG. 15 is a sectional view of a shell and tube heat exchanger according to a twelfth embodiment of the present invention.

【図16】本発明の第十三の実施例のシェルアンドチュ
ーブ熱交換器の断面図。
FIG. 16 is a sectional view of a shell and tube heat exchanger according to a thirteenth embodiment of the present invention.

【図17】本発明の第十四の実施例のシェルアンドチュ
ーブ熱交換器の断面図。
FIG. 17 is a sectional view of a shell and tube heat exchanger according to a fourteenth embodiment of the present invention.

【図18】本発明の第十五の実施例のシェルアンドチュ
ーブ熱交換器の断面図。
FIG. 18 is a sectional view of a shell and tube heat exchanger according to a fifteenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100…シェルアンドチューブ熱交換器本体、2…外
胴、6…内胴、8…第1の伝熱流体、13…多孔板、1
4…内胴流入口、20…第2の伝熱流体、26…伝熱
管。
100 ... Shell and tube heat exchanger body, 2 ... Outer shell, 6 ... Inner shell, 8 ... First heat transfer fluid, 13 ... Perforated plate, 1
4 ... inner trunk inlet, 20 ... second heat transfer fluid, 26 ... heat transfer tube.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒容器状の外胴と、前記外胴の外部と内
部を介して連通する前記外胴の流入口および、前記外胴
の流出口と、前記外胴内部の両端、または一端に、前記
外胴内部の空間を複数に仕切り、前記空間を伝熱管入口
プレナムと伝熱管出口プレナムと前記外胴内部とを形成
する仕切板と、前記外胴の内部に同心状に、前記外胴と
前記仕切板とは内胴支持棒によってのみ支持されるよう
に設けられた円筒状の内胴と、前記内胴の軸に垂直の面
で仕切る支持板と、前記支持板と前記仕切板とを貫通し
て、前記伝熱管入口プレナムと前記伝熱管出口プレナム
との間を連結して、前記支持板と前記仕切板に保持され
る伝熱管群と、前記伝熱管群の一方の開口端に前記伝熱
管入口プレナムを介して連通する前記伝熱管入口プレナ
ムの流入口と、前記伝熱管群の他方の開口端に前記伝熱
管出口プレナムを介して連通する前記伝熱管出口プレナ
ムの流出口を具備して、前記外胴外部より前記外胴流入
口から流入する伝熱媒体を、内胴の内部へと導入する内
胴流入口を介して、前記内胴内部の伝熱管群の間を通過
させた後に前記外胴流出口へと流出させて、前記外胴外
部より前記伝熱管入口プレナム流入口から流入させて、
この伝熱媒体とは別の伝熱媒体を、前記伝熱管入口プレ
ナムと伝熱管群を介して、前記伝熱管出口プレナムを通
過させた後に前記伝熱管出口プレナム流出口へと流出さ
せて、前記内胴内部の前記伝熱管を介して前記2種類の
伝熱媒体の間で熱交換を行なう熱交換器において、前記
内胴流入口の開口部分に、開口面積が各々等しい孔を複
数設けた多孔板を配置したことを特徴とする熱交換器。
1. An outer case in the form of a cylindrical container, an inflow port of the outer case, which communicates with the outside of the outer case through the inside thereof, an outlet of the outer case, and both ends or one end of the inside of the outer case. A partition plate that divides the space inside the outer shell into a plurality of spaces, and forms a heat transfer tube inlet plenum, a heat transfer tube outlet plenum, and the inside of the outer shell in the space, and concentrically inside the outer shell. A cylindrical inner cylinder provided so that the cylinder and the partition plate are supported only by an inner cylinder support rod, a support plate that is partitioned by a plane perpendicular to the axis of the inner cylinder, the support plate and the partition plate And a heat transfer tube group held between the heat transfer tube inlet plenum and the heat transfer tube outlet plenum and held by the support plate and the partition plate, and one open end of the heat transfer tube group. An inlet of the heat transfer tube inlet plenum that communicates with the heat transfer tube inlet plenum, and A heat transfer medium having an outlet of the heat transfer tube outlet plenum that communicates with the other open end of the heat transfer tube group via the heat transfer tube outlet plenum, the heat transfer medium flowing from the outer case inlet from the outside of the outer case, After passing between the heat transfer tube groups inside the inner case, through the inner case inlet introduced into the inner case, and then flowing out to the outer case outlet, the heat transfer tube from the outside of the outer case. Inlet from the plenum inlet,
A heat transfer medium different from this heat transfer medium is passed through the heat transfer tube outlet plenum through the heat transfer tube inlet plenum and the heat transfer tube group, and then flows out to the heat transfer tube outlet plenum outlet, A heat exchanger for exchanging heat between the two types of heat transfer media via the heat transfer tube inside the inner case, wherein a plurality of holes each having an equal opening area are provided at an opening portion of the inner case inlet. A heat exchanger characterized by arranging plates.
【請求項2】請求項1において、前記内胴流入口の開口
部分に配置された開口面積が各々等しい孔を多数設けた
前記多孔板の代わりに、各々の開口面積が等しくない孔
を複数設けた多孔板を配置した熱交換器。
2. A plurality of holes having different opening areas are provided in place of the perforated plate having a large number of holes having the same opening areas, which are arranged at the opening portion of the inner shell inlet. Heat exchanger with a perforated plate.
JP12448592A 1992-05-18 1992-05-18 Heat exchanger Pending JPH05322473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12448592A JPH05322473A (en) 1992-05-18 1992-05-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12448592A JPH05322473A (en) 1992-05-18 1992-05-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH05322473A true JPH05322473A (en) 1993-12-07

Family

ID=14886685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12448592A Pending JPH05322473A (en) 1992-05-18 1992-05-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH05322473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200398A (en) * 2011-04-11 2011-09-28 山东北辰压力容器有限公司 Double-shell heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200398A (en) * 2011-04-11 2011-09-28 山东北辰压力容器有限公司 Double-shell heat exchanger

Similar Documents

Publication Publication Date Title
US5203405A (en) Two pass shell and tube heat exchanger with return annular distributor
JP3705859B2 (en) Heat exchanger with distribution device
KR910006683A (en) Tubular heat exchanger
US7234512B2 (en) Heat exchanger with internal baffle and an external bypass for the baffle
EP1214558B1 (en) A spiral heat exchanger
CN110770526A (en) Fluid distributor assembly for heat exchanger
US2707096A (en) Heat exchanger
US4805694A (en) Heat exchanger
JPH0368320B2 (en)
JPH05322473A (en) Heat exchanger
US4010797A (en) Heat exchanger
JP2865922B2 (en) Multi-tube heat exchanger
JPH11183062A (en) Double piped heat exchanger
KR100751961B1 (en) Tube bundle heat exchanger
JPH05231793A (en) Parallel flow type heat exchanger
JPS59191897A (en) Multitubular heat exchanger
JPS63315893A (en) Multi-pipe type heat exchanger
JP2749957B2 (en) Multi-tube heat exchanger
JPS5931671B2 (en) Shell and tube heat exchanger
JPS6222994A (en) Multi-tubular heat exchanger
JP2650937B2 (en) Water cooler
JPS61285390A (en) Heat exchanger
JPS5937576Y2 (en) Shell-and-tube heat exchanger
JPH03207993A (en) Multitube type heat exchanger
JPH06307734A (en) Absorber