JPH05322334A - Multi-stage compression freezing cycle and its actuating method - Google Patents

Multi-stage compression freezing cycle and its actuating method

Info

Publication number
JPH05322334A
JPH05322334A JP12710292A JP12710292A JPH05322334A JP H05322334 A JPH05322334 A JP H05322334A JP 12710292 A JP12710292 A JP 12710292A JP 12710292 A JP12710292 A JP 12710292A JP H05322334 A JPH05322334 A JP H05322334A
Authority
JP
Japan
Prior art keywords
compressor
stage
semi
hermetic
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12710292A
Other languages
Japanese (ja)
Inventor
Yoshibumi Suzuki
義文 鈴木
Tsuneji Morohoshi
恒次 諸星
Minoru Kasezawa
実 加瀬沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP12710292A priority Critical patent/JPH05322334A/en
Publication of JPH05322334A publication Critical patent/JPH05322334A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To provide a multi-stage compression freezing cycle in which an entire device can be made small in size and a simple maintenance work can be attained. CONSTITUTION:In a freezing cycle in which a compressor, an oil separator 3, a condensor 7, the first and second filters 8 and 10, a main expansion valve 12 and an evaporator 13 and the like are connected to each other, there is provided a three-stage compression system in which a compound type semi- closed two-stage compressor 1 having the first stage compression mechanism and the second stage compression mechanism integrally assembled to each other as the compressor is combined with a semi-closed single stage compressor 2 having the third stage compression mechanism. An electrical motor is stored in each of the compressors and at the same time a refrigerant cooling system is employed for cooling each of the electrical motors and further a differential pressure oil supplying system for supplying oil of freezer device is employed for supplying oil to a bearing of each of the compressors under utilization of a differential pressure between a discharging pressure and an intermediate pressure of the compressor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機,空調機の多段
圧縮冷凍サイクルと、これの圧縮機の起動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multistage compression refrigeration cycle for refrigerators and air conditioners, and a method for starting the compressor of the same.

【0002】[0002]

【従来の技術】図3はこの種冷凍サイクルの従来技術を
示す系統図である。
2. Description of the Related Art FIG. 3 is a system diagram showing a prior art of this type of refrigeration cycle.

【0003】この図3に示す従来技術では、圧縮機21
と、油分離器22と、凝縮器26と、過冷却器27と、
過冷却器用膨張弁28と、主膨張弁29と、蒸発器30
と、前記油分離器22に接続された油タンク23と、油
冷却器24と、油濾過器25とを備えている。そして、
前記圧縮機21には二段圧縮機が使用されている。
In the prior art shown in FIG. 3, the compressor 21
An oil separator 22, a condenser 26, a subcooler 27,
Subcooler expansion valve 28, main expansion valve 29, evaporator 30
And an oil tank 23 connected to the oil separator 22, an oil cooler 24, and an oil filter 25. And
A two-stage compressor is used as the compressor 21.

【0004】また、二段圧縮冷凍機の従来技術として、
文献「冷凍」1988年 VOL.63.No.731の
p.50の図10に示す冷凍装置がある。この文献に記
載の技術では、圧縮機の軸受への給油は吐出圧力と中間
圧力との差圧により行う差圧給油方式である。
Further, as the prior art of the two-stage compression refrigerator,
Reference “Frozen” 1988 VOL.63. No. 731, p. There are 50 refrigeration systems shown in FIG. In the technique described in this document, oil is supplied to the bearings of the compressor by a differential pressure oil supply method in which the pressure difference between the discharge pressure and the intermediate pressure is used.

【0005】[0005]

【発明が解決しようとする課題】ところで、図3に示す
従来技術では圧縮機21に二段圧縮機を使用している。
この二段圧縮機を使用した場合の冷媒の蒸発温度は、約
−65℃が限度であり、この温度以下に温度を下げるこ
とは冷凍機としての効率(消費電力当たりの冷却能力)
が著しく低下し、ランニングコストの観点からは窒素ガ
ス冷却等の他の方式による冷却の方が優位である。な
お、冷凍装置としては三段圧縮方式を用いることによ
り、蒸発温度が−80〜−65℃の超低温領域において
使用することが可能であるが、従来技術は単段圧縮機を
3台組み合わせる方式、またはブースタ側に開放型圧縮
機を使用する方式であり、装置全体が大型化する問題が
あり、メンテナンス作業が容易でないという問題があ
る。
By the way, in the prior art shown in FIG. 3, a two-stage compressor is used as the compressor 21.
The evaporation temperature of the refrigerant when this two-stage compressor is used is limited to about -65 ° C, and lowering the temperature below this temperature is the efficiency of the refrigerator (cooling capacity per power consumption).
Is significantly reduced, and from the viewpoint of running cost, cooling by another method such as nitrogen gas cooling is more advantageous. By using a three-stage compression system as a refrigerating device, it is possible to use it in an ultra-low temperature region where the evaporation temperature is −80 to −65 ° C. However, the conventional technique is a system in which three single-stage compressors are combined, Alternatively, an open-type compressor is used on the booster side, which causes a problem that the entire device becomes large and maintenance work is not easy.

【0006】一方、前掲「冷凍」に記載の従来技術で
は、圧縮機を起動する際に、高段側圧縮機構と低段側圧
縮機構とを同時に起動するようにしている。このため、
起動直後より安定運転に至るまでの過渡状態において一
時的に中間圧力が上昇する。これにより、吐出圧力と中
間圧力との圧力差が低下し、圧縮機の軸受への給油量不
足が生じ、潤滑性能の低下および軸受寿命の低下をもた
らすという問題がある。
On the other hand, in the prior art described in "Refrigeration", the high-stage compression mechanism and the low-stage compression mechanism are simultaneously activated when the compressor is activated. For this reason,
The intermediate pressure temporarily rises in the transitional state from immediately after startup until stable operation. As a result, there is a problem in that the pressure difference between the discharge pressure and the intermediate pressure is reduced, the amount of oil supplied to the bearing of the compressor is insufficient, and the lubrication performance and bearing life are reduced.

【0007】本発明の目的は、装置全体を小型化でき、
かつメンテナンス作業の簡素化を図り得る多段圧縮冷凍
サイクルを提供することにある。
The object of the present invention is to reduce the size of the entire apparatus,
Another object of the present invention is to provide a multistage compression refrigeration cycle capable of simplifying maintenance work.

【0008】本発明の他の目的は、前記多段圧縮冷凍サ
イクルの圧縮機の起動直後より安定運転に至るまでの過
渡状態における中間圧力の上昇を抑制し、給油性能の低
下および圧縮機の軸受の寿命の低下を防止し得る起動方
法を提供することにある。
Another object of the present invention is to suppress an increase in intermediate pressure in a transient state from immediately after starting the compressor of the multi-stage compression refrigeration cycle to a stable operation, thereby lowering refueling performance and reducing a bearing of the compressor. An object of the present invention is to provide a starting method capable of preventing a decrease in life.

【0009】[0009]

【課題を解決するための手段】前記目的は、圧縮機とし
て、第一段の圧縮機構と第二段の圧縮機構とを一体化し
たコンパウンド型の半密閉二段圧縮機と、第三段目の圧
縮機構を有する半密閉単段圧縮機とを組み合わせた三段
圧縮方式を採り入れ、各々の圧縮機に電動機を内蔵する
とともに、各電動機の冷却に冷媒冷却方式を採り入れ、
各圧縮機の軸受への給油に、圧縮機の吐出圧力と中間圧
力との差圧を利用して冷凍機油を供給する差圧供給方式
を採り入れたことにより、達成される。
Means for Solving the Problems The above-mentioned object is, as a compressor, a compound type semi-hermetic two-stage compressor in which a first stage compression mechanism and a second stage compression mechanism are integrated, and a third stage Adopting a three-stage compression method that combines with a semi-hermetic single-stage compressor having a compression mechanism of, each compressor has a built-in electric motor, and adopts a refrigerant cooling method to cool each electric motor,
This is achieved by adopting a differential pressure supply system for supplying refrigerating machine oil by utilizing the differential pressure between the discharge pressure of the compressor and the intermediate pressure for oil supply to the bearing of each compressor.

【0010】また、前記目的はブースタ側に前記半密閉
二段圧縮機を複数台設置し、高段側に前記半密閉単段圧
縮機を1台設置したことにより、さらにブースタ側に前
記半密閉二段圧縮機を1台設置し、高段側に前記半密閉
単段圧縮機を複数台設置したことにより、達成される。
Further, the purpose is to install a plurality of the semi-hermetic two-stage compressors on the booster side and one semi-hermetic single-stage compressor on the high stage side, so that the semi-hermetically-sealed ones are further provided on the booster side. This is achieved by installing one two-stage compressor and installing a plurality of the semi-hermetic single-stage compressors on the high-stage side.

【0011】さらに、前記他の目的は圧縮機の吐出圧力
と中間圧力との差圧を利用して冷凍機油を供給する差圧
給油方式を採り入れた多段圧縮冷凍サイクルの圧縮機の
起動方法において、多段の圧縮機のうちの圧縮段数の高
い圧縮機の起動を優先するとともに、圧縮段数の高い圧
縮機が全負荷運転状態に移行後、直近でかつ上流側の圧
縮機から順次起動して行くことにより、達成される。
Still another object of the present invention is to provide a compressor start-up method for a multi-stage compression refrigeration cycle, which adopts a differential pressure oil supply system for supplying refrigerating machine oil by utilizing the differential pressure between the discharge pressure and the intermediate pressure of the compressor. Prioritize the startup of the compressor with the highest number of compression stages in the multi-stage compressor, and start the compressor closest to the upstream side in sequence after the compressor with the highest number of compression stages shifts to the full-load operation state. Is achieved by

【0012】そして、前記他の目的は前記多段の圧縮機
における低段側の圧縮機に容量制御機構を有する場合に
は、この低段側の圧縮機における容量制御運転から全負
荷運転に移動する時間を、常に高段側の圧縮機の全負荷
運転状態の時間帯とすることによって、達成される。
[0012] Further, in the case where the compressor on the lower stage side of the multi-stage compressor has a capacity control mechanism, the other purpose is to shift from the capacity control operation of the compressor on the low stage side to the full load operation. This is achieved by always setting the time to the time zone of the full-load operation state of the high-stage compressor.

【0013】[0013]

【作用】本発明多段圧縮冷凍サイクルでは、圧縮機とし
て、第一段の圧縮機構と第二段の圧縮機構とを一体化し
たコンパウンド型の半密閉二段圧縮機と、第三段目の圧
縮機構を有する半密閉単段圧縮機とを組み合わせた三段
圧縮方式を採り入れているので、蒸発温度が−80〜−
65℃の超低温領域において使用可能で、しかも消費電
力当たりの冷却能力の低下をきたさない冷凍サイクルと
して、圧縮機部分の小型化を図ることができるし、さら
には各々の圧縮機に電動機を内蔵し、各電動機の冷却に
冷媒冷却方式を採り入れているので、電動機を冷却する
ための冷却水循環装置や通風装置が不要となり、また電
動機内蔵のため、軸封装置も不要となり、さらに各圧縮
機の軸受への給油に、圧縮機の吐出圧力との中間圧力と
の差圧を利用して冷凍機油を供給する差圧給油方式を採
り入れているので、油ポンプ等の強制潤滑装置も不要と
なり、したがって冷凍サイクルの大幅な小型化およびメ
ンテナンス作業の簡素化を図ることができる。
In the multi-stage compression refrigeration cycle of the present invention, as the compressor, a compound type semi-hermetic two-stage compressor in which the first-stage compression mechanism and the second-stage compression mechanism are integrated, and the third-stage compression Since a three-stage compression system that combines a semi-hermetic single-stage compressor with a mechanism is adopted, the evaporation temperature is -80 to-
As a refrigeration cycle that can be used in the ultra-low temperature range of 65 ° C and that does not reduce the cooling capacity per power consumption, it is possible to reduce the size of the compressor part, and further, an electric motor is built into each compressor. Since a refrigerant cooling system is adopted to cool each electric motor, a cooling water circulation device and a ventilation device for cooling the electric motor are not required.Because the electric motor is built-in, a shaft sealing device is also unnecessary. Since the differential pressure oil supply system that supplies the refrigeration oil by utilizing the differential pressure between the discharge pressure and the intermediate pressure of the compressor is adopted for the oil supply to the It is possible to greatly reduce the size of the cycle and simplify the maintenance work.

【0014】また、本発明多段圧縮冷凍サイクルではブ
ースタ側に前記半密閉二段圧縮機を複数台設置し、高段
側に前記半密閉単段圧縮機を1台設置しており、または
ブースタ側に前記半密閉二段圧縮機を1台設置し、高段
側に前記半密閉単段圧縮機を複数台設置しているので、
より一層冷凍能力を向上させることができる。
In the multistage compression refrigeration cycle of the present invention, a plurality of the semi-hermetic two-stage compressors are installed on the booster side, and one semi-hermetic single-stage compressor is installed on the high stage side, or the booster side. Since one of the semi-hermetic two-stage compressors is installed in, and a plurality of the semi-hermetic single-stage compressors are installed on the high stage side,
The refrigerating capacity can be further improved.

【0015】そして、本発明多段圧縮冷凍サイクルの起
動方法では、前記多段の圧縮機のうちの圧縮段数の高い
圧縮機の起動を優先的に行い、圧縮段数の高い圧縮機が
全負荷運転状態、つまり高段側圧縮機が100%ロード
運転移行後、直近でかつ上流側の圧縮機から順次起動し
て行くようにしているので、圧縮機の起動直後から安定
状態に至るまでの過渡状態における中間圧力の異常上昇
を抑制することが可能となり、給油性能の低下および圧
縮機の軸受の寿命低下を防止することができる。
In the multistage compression refrigeration cycle starting method of the present invention, the compressor having the higher compression stage number among the multistage compressors is preferentially started so that the compressor having the higher compression stage number is in the full load operation state. In other words, after the 100% load operation of the high-stage compressor, it is arranged to start sequentially from the most recent and upstream compressor, so that the intermediate state in the transient state from immediately after the start of the compressor to the stable state is reached. It is possible to suppress an abnormal rise in pressure, and it is possible to prevent a decrease in oil supply performance and a reduction in the life of the compressor bearing.

【0016】また、本発明多段圧縮冷凍サイクルの起動
方法では、低段側の圧縮機に容量制御機構を有する場合
には、この低段側の圧縮機における容量制御運転から全
負荷運転に移行する時間を、常に高段側の圧縮機の全負
荷運転状態の時間帯としているので、この起動方法によ
っても、圧縮機の起動直後から安定状態に至るまでの過
渡状態における中間圧力の異常上昇を抑制し、給油性能
の低下および圧縮機の軸受の寿命低下を防止することが
できる。
Further, in the starting method of the multistage compression refrigeration cycle of the present invention, when the compressor on the lower stage side has a capacity control mechanism, the capacity control operation of the compressor on the lower stage side is shifted to the full load operation. Since the time is always set to the time zone of the full-load operation state of the high-stage compressor, this startup method also suppresses the abnormal rise of the intermediate pressure in the transient state from immediately after the startup of the compressor to the stable state. However, it is possible to prevent deterioration of oil supply performance and reduction of life of the bearing of the compressor.

【0017】[0017]

【実施例】以下、本発明の一実施例について、図1,図
2により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0018】図1は三段圧縮冷凍サイクルの系統図であ
り、この図1中で実線の矢印は冷媒および冷凍機油の流
れ方向を示す。図2は多段圧縮冷凍サイクルの各圧縮機
の起動時から安定状態に移行するまでの圧力特性図であ
る。
FIG. 1 is a system diagram of a three-stage compression refrigeration cycle. In FIG. 1, solid arrows indicate the flow directions of refrigerant and refrigerating machine oil. FIG. 2 is a pressure characteristic diagram from the start of each compressor of the multi-stage compression refrigeration cycle to the transition to a stable state.

【0019】その図1に示す三段圧縮冷凍サイクルは、
半密閉二段圧縮機1と、半密閉単段圧縮機2と、油分離
器3と、凝縮器7と、第一過冷却器用膨張弁9を有する
第一過冷却器8と、第二過冷却器用膨張弁11を有する
第二過冷却器10と、主膨張弁12と、蒸発器13と、
前記分離器3に接続された油タンク4と、油冷却器5
と、油濾過器6と、前記圧縮機の制御回路(図示せず)
とを備えて構成されている。
The three-stage compression refrigeration cycle shown in FIG.
Semi-hermetic two-stage compressor 1, semi-hermetic single-stage compressor 2, oil separator 3, condenser 7, first subcooler 8 having first subcooler expansion valve 9, and second supercooler A second subcooler 10 having a cooler expansion valve 11, a main expansion valve 12, and an evaporator 13,
An oil tank 4 connected to the separator 3 and an oil cooler 5
An oil filter 6 and a control circuit for the compressor (not shown)
And is configured.

【0020】前記半密閉二段圧縮機1には、第一段の圧
縮機構と第二段の圧縮機構とを一体化したコンパウンド
型の例えばスクリュー圧縮機が用いられており、この半
密閉二段圧縮機1はブースタ側に設置されている。ま
た、この半密閉二段圧縮機1の低段側の圧縮機構である
第一段の圧縮機構側に、吸入ガスをバイパスして容量制
御を行う容量制御機構を有している。
The semi-hermetic two-stage compressor 1 uses a compound type screw compressor, for example, which is a combination of a first-stage compression mechanism and a second-stage compression mechanism. The compressor 1 is installed on the booster side. Further, on the side of the first-stage compression mechanism, which is the compression mechanism on the low-stage side of the semi-hermetic two-stage compressor 1, there is provided a capacity control mechanism for bypassing the suction gas and controlling the capacity.

【0021】前記半密閉単段圧縮機2には、三段目の圧
縮機構を有する例えばスクリュー圧縮機が用いられてお
り、この半密閉単段圧縮機2は高段側に設置されてい
る。
As the semi-hermetic single-stage compressor 2, for example, a screw compressor having a third-stage compression mechanism is used, and the semi-hermetic single-stage compressor 2 is installed on the high stage side.

【0022】前記半密閉二段圧縮機1および半密閉単段
圧縮機2には、それぞれ電動機(図示せず)が内蔵され
ている。各電動機は、冷媒冷却方式により冷却されるよ
うになっている。各圧縮機の軸受等へは、圧縮機の吐出
圧力と中間圧力との差圧を利用して冷凍器油を供給する
差圧給油方式により給油するようになっている。なお、
第一段目の圧縮後の圧力を第一中間圧力と称し、第二段
目の圧縮後の圧力を第二中間圧力と称する。
An electric motor (not shown) is built in each of the semi-hermetic two-stage compressor 1 and the semi-hermetic single-stage compressor 2. Each electric motor is cooled by a refrigerant cooling system. The bearing and the like of each compressor are lubricated by a differential pressure lubrication system that supplies refrigerating machine oil by utilizing the differential pressure between the discharge pressure of the compressor and the intermediate pressure. In addition,
The pressure after compression in the first stage is referred to as the first intermediate pressure, and the pressure after compression in the second stage is referred to as the second intermediate pressure.

【0023】前記圧縮機の制御回路は、限時継電器を有
し、常に高段側の圧縮機が全負荷運転状態となった信号
を検知したのちに、直近でかつ上流側の圧縮機から運転
を開始して行くように構成され、また低段側の圧縮機に
容量制御機構を有する場合には、その低段側の圧縮機に
おける容量制御運転から全負荷運転に移動する時間を、
常に高段側の圧縮機が全負荷運転状態となった信号を検
知後の時間帯に設定している。
The control circuit of the compressor has a time delay relay, and after detecting a signal that the high-stage side compressor is in a full-load operation state at all times, the compressor is operated immediately from the upstream side. If it is configured to start and the compressor on the low stage side has a capacity control mechanism, the time to move from the capacity control operation to the full load operation on the compressor on the low stage side,
The high-stage compressor is always set to the time zone after detection of the signal indicating that the compressor is operating at full load.

【0024】なお、前記圧縮機は低段側であるブースタ
側に半密閉二段圧縮機1を複数台設置し、高段側に半密
閉単段圧縮機2を1台設置してもよく、またはブースタ
側に半密閉二段圧縮機1を1台設置し、高段側に半密閉
単段圧縮機2を複数台設置してもよい。
In the compressor, a plurality of semi-hermetic two-stage compressors 1 may be installed on the booster side, which is the low stage side, and one semi-hermetic single-stage compressor 2 may be installed on the high stage side. Alternatively, one semi-hermetic two-stage compressor 1 may be installed on the booster side, and a plurality of semi-hermetic single-stage compressors 2 may be installed on the high stage side.

【0025】次に、前記実施例の三段圧縮冷凍サイクル
の動作と、圧縮機の起動方法について説明する。
Next, the operation of the three-stage compression refrigeration cycle of the above embodiment and the method of starting the compressor will be described.

【0026】まず、冷媒は半密閉二段圧縮機1の第一段
および第二段の圧縮機構により二回圧縮されたのち、半
密閉単段圧縮機2の第三段の圧縮機構により三回目の圧
縮が行われ、高温高圧の冷媒ガスとなって吐出される。
なお、この冷媒ガスには冷凍機油が含まれている。
First, the refrigerant is compressed twice by the first-stage and second-stage compression mechanisms of the semi-hermetic two-stage compressor 1, and then the third time by the third stage compression mechanism of the semi-hermetic single-stage compressor 2. Is compressed and discharged as high-temperature high-pressure refrigerant gas.
This refrigerant gas contains refrigerating machine oil.

【0027】前記半密閉単段圧縮機2から吐出された冷
媒ガスは、油分離器3に送られ、この油分離器3により
冷媒ガスと冷凍機油に分離され、分離された冷媒ガスは
凝縮器7に送られ、冷凍機油は油タンク4に送られる。
The refrigerant gas discharged from the semi-hermetic single-stage compressor 2 is sent to the oil separator 3, and is separated into the refrigerant gas and the refrigerating machine oil by the oil separator 3, and the separated refrigerant gas is condensed. 7, the refrigerating machine oil is sent to the oil tank 4.

【0028】前記凝縮器7に送り込まれた冷媒ガスは、
この凝縮器7により凝縮され、高圧の液冷媒となり、第
一過冷却器8に送られる。
The refrigerant gas sent to the condenser 7 is
It is condensed by the condenser 7, becomes a high-pressure liquid refrigerant, and is sent to the first subcooler 8.

【0029】前記第一過冷却器8に送り込まれた高圧の
液冷媒は、この第一過冷却器8により過冷却されて液温
が下げられ、第一過冷却器8を通過後に二方向に分岐さ
れる。分岐された一方の液冷媒は第二過冷却器10に向
かう主流液となり、他方の液冷媒は第一過冷却器用膨張
弁9により湿りガスとなり、半密閉二段圧縮機1に吸入
される。
The high-pressure liquid refrigerant sent to the first subcooler 8 is subcooled by the first subcooler 8 to lower the liquid temperature, and after passing through the first subcooler 8, it is bidirectionally moved. Branched. One of the branched liquid refrigerant becomes a mainstream liquid toward the second subcooler 10, and the other liquid refrigerant becomes a wet gas by the first subcooler expansion valve 9 and is sucked into the semi-hermetic two-stage compressor 1.

【0030】前記半密閉二段圧縮機1に吸入された湿り
ガスは半密閉二段圧縮機1より吐出された高温高圧のガ
スと混合され、このガスを冷却してから半密閉単段圧縮
機2に吸入される。
The moist gas sucked into the semi-hermetic two-stage compressor 1 is mixed with the high-temperature and high-pressure gas discharged from the semi-hermetic two-stage compressor 1, and the semi-hermetic single-stage compressor is cooled. Inhaled to 2.

【0031】一方、前記第一過冷却器8から第二過冷却
器10に流入した主流液は、この第二過冷却器10によ
りさらに過冷却され、第二過冷却器10を通過後、二方
向に分岐される。分岐された液冷媒の一方は主膨張弁1
2に向かう主流液となり、他方は第二過冷却器用膨張弁
11により湿りガスとなり、半密閉二段圧縮機1の中間
ケーシング部に吸入される。
On the other hand, the mainstream liquid flowing from the first subcooler 8 into the second subcooler 10 is further subcooled by the second subcooler 10 and, after passing through the second subcooler 10, is It is branched in the direction. One of the branched liquid refrigerant is the main expansion valve 1
It becomes the main stream liquid toward 2, and the other becomes the wet gas by the expansion valve 11 for the second subcooler, and is sucked into the intermediate casing part of the semi-hermetic two-stage compressor 1.

【0032】前記半密閉二段圧縮機1の中間ケーシング
に吸入された湿りガスは、半密閉二段圧縮機1内で第一
段の圧縮機構により圧縮された吐出ガスと混合され、圧
縮機に内蔵の電動機を冷却したのち、第二段の圧縮機構
に吸入され、圧縮される。
The moist gas sucked into the intermediate casing of the semi-hermetic two-stage compressor 1 is mixed with the discharge gas compressed by the first-stage compression mechanism in the semi-hermetic two-stage compressor 1 to be supplied to the compressor. After cooling the built-in electric motor, it is sucked into the second-stage compression mechanism and compressed.

【0033】前記主膨張弁12に流入した主流液は、こ
の主膨張弁12により低圧の湿りガスとなり、蒸発器1
3に送られ、この蒸発器13内で蒸発して冷却作用を行
ったのち、半密閉二段圧縮機1に吸入される。
The main flow liquid flowing into the main expansion valve 12 becomes a low-pressure wet gas by the main expansion valve 12, and the evaporator 1
After being sent to the evaporator 3, the evaporator 13 evaporates and performs a cooling function, and then is sucked into the semi-hermetic two-stage compressor 1.

【0034】そして、前記油分離器3により冷媒ガスと
分離された冷凍機油は、油タンク4にいったん貯えら
れ、ついで油冷却器5により冷却され、油濾過器6を経
て半密閉二段圧縮機1および半密閉単段圧縮機2内の軸
受等に差圧給油方式により給油される。
The refrigerating machine oil separated from the refrigerant gas by the oil separator 3 is temporarily stored in the oil tank 4, then cooled by the oil cooler 5, and passed through the oil filter 6 to the semi-hermetic two-stage compressor. The bearings in 1 and the semi-hermetic single-stage compressor 2 are lubricated by a differential pressure lubrication system.

【0035】ところで、前記圧縮機の起動順序として
は、まず第三段目の圧縮機構を有する半密閉単段圧縮機
2を起動する。この半密閉単段圧縮機2を起動後、10
0%ロード状態となった信号を検知したのちに、圧縮機
の制御回路の限時継電器の動作により、限時継電器の設
定時間後に半密閉二段圧縮機1を起動する。この半密閉
二段圧縮機1はコンパウンド型の圧縮機で、第一段の圧
縮機構と第二段の圧縮機構とは同時起動となるが、低段
側の圧縮機構である第一段の圧縮機構の容量制御機構
は、半密閉単段圧縮機2の起動直後からの制御回路の限
時継電器の動作により、限時継電器の設定時間帯にの
み、つまり半密閉単段圧縮機2が100%ロード状態と
なったときにのみ、第一段の圧縮機構が動作し、容量制
御運転を実施する。
As for the order of starting the compressors, first, the semi-hermetic single-stage compressor 2 having the third-stage compression mechanism is started. After starting this semi-hermetic single-stage compressor 2, 10
After the 0% load signal is detected, the semi-hermetic two-stage compressor 1 is started after the set time of the time delay relay by the operation of the time delay relay in the control circuit of the compressor. The semi-hermetic two-stage compressor 1 is a compound type compressor, and the first-stage compression mechanism and the second-stage compression mechanism are simultaneously activated, but the first-stage compression mechanism which is the lower-stage compression mechanism. The capacity control mechanism of the mechanism is that the semi-hermetic single-stage compressor 2 is in a 100% loaded state only during the set time zone of the time-limiting relay by the operation of the time relay of the control circuit immediately after starting the semi-hermetic single-stage compressor 2. Only when this occurs, the first-stage compression mechanism operates and the capacity control operation is performed.

【0036】各圧縮機の起動時から安定状態に移行する
までの圧力特性は、図2に示すようになる。この図2に
おいて、実線で示す圧力特性は本発明起動方法による場
合の挙動であり、第一中間圧力は線図(ハ),第二中間
圧力は線図(イ)のごとき推移となり、圧縮機の吐出圧
力(高圧圧力)と第一中間圧力との差圧ΔP1 ,同吐出
圧力と第二中間圧力との差圧ΔP2 とも十分大きく確保
することができる。したがって、この差圧ΔP1,ΔP2
を利用して圧縮機の軸受等への給油を安定的に行うこと
ができ、圧縮機の起動直後より安定状態に至るまでの過
渡状態における中間圧力の異常上昇を抑制し、給油性能
の低下および軸受寿命の低下を防止することができる。
The pressure characteristics from the start of each compressor to the transition to the stable state are as shown in FIG. In FIG. 2, the pressure characteristic indicated by the solid line is the behavior in the case of the starting method of the present invention. The first intermediate pressure changes as shown in the diagram (c) and the second intermediate pressure changes as shown in the diagram (a). differential pressure [Delta] P 1 of the discharge pressure (the high pressure) and the first intermediate pressure, also the pressure difference [Delta] P 2 of the same discharge pressure and the second intermediate pressure can be ensured sufficiently large. Therefore, this differential pressure ΔP 1 , ΔP 2
Can be used to stably supply oil to the bearings of the compressor, suppress an abnormal increase in intermediate pressure in the transient state from immediately after the compressor is started until it reaches a stable state, and reduce oil supply performance. It is possible to prevent the bearing life from being shortened.

【0037】図2に破線で示す圧力特性は、従来の起動
方法による場合の挙動であり、第一中間圧力は線図
(ニ),第二中間圧力は線図(ロ)のごとくとなり、圧
縮機の吐出圧力と第一中間圧力との差圧ΔP1′ ,同吐
出圧力と第二中間圧力との差圧ΔP2′ とも、前記ΔP
1,ΔP2に比較して小さく、圧縮機の軸受等への給油状
態が不安定となることが分かる。
The pressure characteristic shown by the broken line in FIG. 2 is the behavior in the case of the conventional starting method. The first intermediate pressure is as shown in the diagram (d) and the second intermediate pressure is as shown in the diagram (b). The pressure difference ΔP 1 ′ between the discharge pressure of the machine and the first intermediate pressure and the pressure difference ΔP 2 ′ between the discharge pressure and the second intermediate pressure are both
It is smaller than 1 and ΔP 2 , and it can be seen that the state of oil supply to the bearings of the compressor becomes unstable.

【0038】[0038]

【発明の効果】以上説明した本発明の請求項1記載の発
明によれば、圧縮機として、第一段の圧縮機構と第二段
の圧縮機構とを一体化したコンパウンド型の半密閉二段
圧縮機と、第三段目の圧縮機構を有する半密閉単段圧縮
機とを組み合わせた三段圧縮方式を採り入れているの
で、蒸発温度が−80〜−65℃の超低温領域において
使用可能で、しかも消費電力当たりの冷却能力の低下を
きたさない冷凍サイクルとして、圧縮機部分の小型化を
図ることができるし、さらには各々の圧縮機に電動機を
内蔵し、各電動機の冷却に冷媒冷却方式を採り入れてい
るので、電動機を冷却するための冷却水循環装置や通風
装置が不要となり、また電動機内蔵のため、軸封装置も
不要となり、さらに各圧縮機の軸受への給油に、圧縮機
の吐出圧力と中間圧力との差圧を利用して冷凍機油を供
給する差圧給油方式を採り入れているので、油ポンプ等
の強制潤滑装置も不要となり、したがって冷凍サイクル
の大幅な小型化およびメンテナンス作業の簡素化を図り
得る効果がある。
According to the invention described in claim 1 of the present invention described above, as a compressor, a compound type semi-hermetic two-stage in which a first-stage compression mechanism and a second-stage compression mechanism are integrated. Since a three-stage compression method that combines a compressor and a semi-hermetic single-stage compressor having a third-stage compression mechanism is adopted, it can be used in an ultra-low temperature range where the evaporation temperature is -80 to -65 ° C. Moreover, as a refrigeration cycle that does not reduce the cooling capacity per power consumption, it is possible to reduce the size of the compressor part.Furthermore, each compressor has a built-in electric motor, and a refrigerant cooling system is used to cool each electric motor. Since it is adopted, no cooling water circulation device or ventilation device for cooling the electric motor is required.Since the electric motor is built in, a shaft sealing device is also unnecessary. And intermediate pressure Since a differential pressure lubrication system that supplies refrigerating machine oil by utilizing the differential pressure between and is not required, a forced lubrication device such as an oil pump is not required, and therefore the refrigeration cycle is greatly downsized and maintenance work is simplified. There is an effect to obtain.

【0039】また、本発明の請求項2記載の発明によれ
ば、ブースタ側に前記半密閉二段圧縮機を複数台設置
し、高段側に前記半密閉単段圧縮機を1台設置してお
り、さらに、請求項3記載の発明によれば、ブースタ側
に前記半密閉二段圧縮機を1台設置し、高段側に前記半
密閉単段圧縮機を複数台設置しているので、より一層冷
凍能力を向上させ得る効果がある。
According to the second aspect of the present invention, a plurality of the semi-hermetic two-stage compressors are installed on the booster side, and one semi-hermetic single-stage compressor is installed on the high stage side. Further, according to the invention of claim 3, one of the semi-hermetic two-stage compressors is installed on the booster side, and a plurality of the semi-hermetic single-stage compressors is installed on the high stage side. Therefore, there is an effect that the refrigerating capacity can be further improved.

【0040】さらに、本発明の請求項4記載の発明によ
れば、前記多段の圧縮機のうちの圧縮段数の高い圧縮機
の起動を優先的に行い、圧縮段数の高い圧縮機が全負荷
運転状態に移動後、直近でかつ上流側の圧縮機から順次
起動して行くようにしているので、圧縮機の起動直後か
ら安定状態に至るまでの過渡状態における中間圧力の上
昇を抑制することが可能となり、給油性能の低下および
圧縮機の軸受の寿命低下を防止し得る効果がある。
Further, according to the invention described in claim 4 of the present invention, of the multi-stage compressors, the compressor having a high compression stage is preferentially started, and the compressor having a high compression stage operates at full load. After moving to the state, the compressor is started sequentially from the most recent and upstream compressor, so it is possible to suppress the rise of intermediate pressure in the transient state from immediately after the compressor starts to the stable state. Therefore, there is an effect that it is possible to prevent the deterioration of the lubrication performance and the life of the bearing of the compressor.

【0041】そして、本発明の請求項5記載の発明によ
れば、低段側の圧縮機に容量制御機構を有する場合に
は、この低段側の圧縮機における容量制御運転から全負
荷運転に移行する時間を、常に高段側の圧縮機の全負荷
運転状態の時間帯としているので、この起動方法によっ
ても、圧縮機の起動直後から安定状態に至るまでの過渡
状態における中間圧力の上昇を抑制し、給油性能の低下
および圧縮機の軸受の寿命低下を防止し得る効果があ
る。
According to the fifth aspect of the present invention, when the compressor on the low stage side has a capacity control mechanism, the capacity control operation of the compressor on the low stage side is changed to full load operation. Since the transition time is always set to the time zone of the full-load operation state of the high-stage compressor, this startup method also increases the intermediate pressure in the transient state from immediately after the startup of the compressor to the stable state. There is an effect that it is possible to suppress and prevent deterioration of oil supply performance and reduction of life of the bearing of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す三段圧縮冷凍サイクル
の系統図である。
FIG. 1 is a system diagram of a three-stage compression refrigeration cycle showing an embodiment of the present invention.

【図2】多段圧縮冷凍サイクルの各圧縮機の起動時から
安定状態に移行するまでの圧力特性図である。
FIG. 2 is a pressure characteristic diagram from the time of starting each compressor of the multi-stage compression refrigeration cycle to a stable state.

【図3】従来の多段圧縮冷凍サイクルの系統図である。FIG. 3 is a system diagram of a conventional multistage compression refrigeration cycle.

【符号の説明】[Explanation of symbols]

1…半密閉二段圧縮機、2…半密閉単段圧縮機、3…油
分離器、4…油タンク、5…油冷却器、6…油濾過器、
7…凝縮器、8…第一過冷却器、9…第一過冷却器用膨
張弁、10…第二過冷却器、11…第二過冷却器用膨張
弁、12…主膨張弁、13…蒸発器。
1 ... Semi-hermetic two-stage compressor, 2 ... Semi-hermetic single-stage compressor, 3 ... Oil separator, 4 ... Oil tank, 5 ... Oil cooler, 6 ... Oil filter,
7 ... Condenser, 8 ... 1st subcooler, 9 ... 1st subcooler expansion valve, 10 ... 2nd subcooler, 11 ... 2nd subcooler expansion valve, 12 ... Main expansion valve, 13 ... Evaporation vessel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加瀬沢 実 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Kasezawa 390 Muramatsu, Shimizu City, Shizuoka Prefecture Hitachi Ltd. Shimizu Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】少なくとも圧縮機と、凝縮器と、過冷却器
と、主膨張弁と、蒸発器とを接続してなる冷凍サイクル
において、前記圧縮機として、第一段の圧縮機構と第二
段の圧縮機構とを一体化したコンパウンド型の半密閉二
段圧縮機と、第三段目の圧縮機構を有する半密閉単段圧
縮機とを組み合わせた三段圧縮方式を採り入れ、各々の
圧縮機に電動機を内蔵するとともに、各電動機の冷却に
冷媒冷却方式を採り入れ、各圧縮機の軸受への給油に、
圧縮機の吐出圧力と中間圧力との差圧を利用して冷凍機
油を供給する差圧供給方式を採り入れたことを特徴とす
る多段圧縮冷凍サイクル。
1. A refrigerating cycle in which at least a compressor, a condenser, a subcooler, a main expansion valve and an evaporator are connected to each other, and the first stage compression mechanism and the second compression mechanism are used as the compressor. Adopted a three-stage compression system that combines a compound type semi-hermetic two-stage compressor integrated with a three-stage compression mechanism and a semi-hermetic single-stage compressor having a third-stage compression mechanism, and each compressor In addition to incorporating an electric motor in the, adopting a refrigerant cooling system to cool each electric motor, to lubricate the bearings of each compressor,
A multi-stage compression refrigeration cycle, characterized by adopting a differential pressure supply system for supplying refrigerating machine oil by utilizing the differential pressure between the discharge pressure of the compressor and the intermediate pressure.
【請求項2】ブースタ側に前記半密閉二段圧縮機を複数
台設置し、高段側に前記半密閉単段圧縮機を1台設置し
たことを特徴とする請求項1記載の多段圧縮冷凍サイク
ル。
2. The multi-stage compression refrigeration system according to claim 1, wherein a plurality of said semi-hermetic two-stage compressors are installed on the booster side, and one said semi-hermetic single-stage compressor is installed on the high stage side. cycle.
【請求項3】ブースタ側に前記半密閉二段圧縮機を1台
設置し、高段側に前記半密閉単段圧縮機を複数台設置し
たことを特徴とする請求項1記載の多段圧縮冷凍サイク
ル。
3. A multistage compression refrigeration system according to claim 1, wherein one semi-hermetic two-stage compressor is installed on the booster side and a plurality of semi-hermetic single-stage compressors are installed on the high stage side. cycle.
【請求項4】少なくとも多段の圧縮機と、凝縮器と、過
冷却器と、主膨張弁と、蒸発器とを接続し、かつ各段の
圧縮機の軸受への給油に、圧縮機の吐出圧力と中間圧力
との差圧を利用して冷凍機油を供給する差圧給油方式を
採り入れた多段冷凍サイクルの圧縮機の起動方法におい
て、前記多段の圧縮機のうちの圧縮段数の高い圧縮機の
起動を優先するとともに、圧縮段数の高い圧縮機が全負
荷運転状態に移動後、直近でかつ上流側の圧縮機から順
次起動して行くことを特徴とする多段圧縮冷凍サイクル
の起動方法。
4. A compressor discharge for connecting at least a multi-stage compressor, a condenser, a subcooler, a main expansion valve, and an evaporator, and for supplying oil to the bearings of each stage compressor. In a method of starting a compressor of a multi-stage refrigeration cycle that adopts a differential pressure oil supply system that supplies a refrigerating machine oil using a differential pressure between a pressure and an intermediate pressure, in a compressor with a high compression stage number among the multi-stage compressors. A start-up method for a multi-stage compression refrigeration cycle, characterized in that start-up is prioritized, and a compressor with a high number of compression stages is moved to a full-load operation state and then sequentially started from the most recent upstream compressor.
【請求項5】前記多段の圧縮機における低段側の圧縮機
に容量制御機構を有する場合には、この低段側の圧縮機
における容量制御運転から全負荷運転に移行する時間
を、常に高段側の圧縮機の全負荷運転状態の時間帯とす
ることを特徴とする請求項4記載の多段圧縮冷凍サイク
ルの起動方法。
5. When the compressor on the low stage side of the multi-stage compressor has a capacity control mechanism, the time for shifting from the capacity control operation to the full load operation on the compressor on the low stage side is always high. The method for starting a multi-stage compression refrigeration cycle according to claim 4, wherein the time zone of full-load operation of the stage compressor is set.
JP12710292A 1992-05-20 1992-05-20 Multi-stage compression freezing cycle and its actuating method Pending JPH05322334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12710292A JPH05322334A (en) 1992-05-20 1992-05-20 Multi-stage compression freezing cycle and its actuating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12710292A JPH05322334A (en) 1992-05-20 1992-05-20 Multi-stage compression freezing cycle and its actuating method

Publications (1)

Publication Number Publication Date
JPH05322334A true JPH05322334A (en) 1993-12-07

Family

ID=14951650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12710292A Pending JPH05322334A (en) 1992-05-20 1992-05-20 Multi-stage compression freezing cycle and its actuating method

Country Status (1)

Country Link
JP (1) JPH05322334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460371B2 (en) 2000-10-13 2002-10-08 Mitsubishi Heavy Industries, Ltd. Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
WO2005024313A1 (en) * 2003-09-05 2005-03-17 Daikin Industries, Ltd. Freezer device
JP2010156536A (en) * 2008-12-05 2010-07-15 Daikin Ind Ltd Refrigeration device
CN104792052A (en) * 2015-04-29 2015-07-22 上海海洋大学 Novel ultralow-temperature compression refrigerating system
CN108489130A (en) * 2018-06-06 2018-09-04 深圳市派沃新能源科技股份有限公司 A kind of screw single machine three stage compression heat pump heating system and control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460371B2 (en) 2000-10-13 2002-10-08 Mitsubishi Heavy Industries, Ltd. Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
WO2005024313A1 (en) * 2003-09-05 2005-03-17 Daikin Industries, Ltd. Freezer device
EP1669694A1 (en) * 2003-09-05 2006-06-14 Daikin Industries, Ltd. Freezer device
EP1669694A4 (en) * 2003-09-05 2009-04-08 Daikin Ind Ltd Freezer device
US7640762B2 (en) 2003-09-05 2010-01-05 Daikin Industries, Ltd. Refrigeration apparatus
JP2010156536A (en) * 2008-12-05 2010-07-15 Daikin Ind Ltd Refrigeration device
CN104792052A (en) * 2015-04-29 2015-07-22 上海海洋大学 Novel ultralow-temperature compression refrigerating system
CN108489130A (en) * 2018-06-06 2018-09-04 深圳市派沃新能源科技股份有限公司 A kind of screw single machine three stage compression heat pump heating system and control method

Similar Documents

Publication Publication Date Title
US5884498A (en) Turborefrigerator
US7854137B2 (en) Variable speed compressor motor control for low speed operation
US8037702B2 (en) Multistage compressor
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
WO2001022008A1 (en) Multi-stage compression refrigerating device
KR101220583B1 (en) Freezing device
KR20020031409A (en) Turbo compressor and refrigerator with the compressor
CN112360716B (en) Double-cylinder two-stage compressor, refrigerating system control method and refrigerator
KR101220741B1 (en) Freezing device
KR20110074711A (en) Freezing device
JP2001091071A (en) Multi-stage compression refrigerating machine
US3367125A (en) Refrigeration system
KR20110074709A (en) Freezing device
KR101332478B1 (en) Freezing device
JP3152454B2 (en) Two-stage compression refrigeration system
JP3903409B2 (en) Two-stage compression refrigerator
JPH10267441A (en) Multiple effect refrigerating device
JPH05322334A (en) Multi-stage compression freezing cycle and its actuating method
JP2003021089A (en) Two-stage compression refrigerating machine, and its operating method
JP2011137557A (en) Refrigerating apparatus
JP2008025905A (en) Refrigerator
JP2003214380A (en) Centrifugal compressor and refrigerator
US20160116190A1 (en) Turbo refrigerator
KR20110074710A (en) Freezing device
JP2002266782A (en) Screw refrigerating machine