JPH05320825A - Solid shaft for driving shaft - Google Patents

Solid shaft for driving shaft

Info

Publication number
JPH05320825A
JPH05320825A JP4126102A JP12610292A JPH05320825A JP H05320825 A JPH05320825 A JP H05320825A JP 4126102 A JP4126102 A JP 4126102A JP 12610292 A JP12610292 A JP 12610292A JP H05320825 A JPH05320825 A JP H05320825A
Authority
JP
Japan
Prior art keywords
shaft
solid
solid shaft
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4126102A
Other languages
Japanese (ja)
Other versions
JP3539981B2 (en
Inventor
Kazuhiko Yoshida
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP12610292A priority Critical patent/JP3539981B2/en
Publication of JPH05320825A publication Critical patent/JPH05320825A/en
Application granted granted Critical
Publication of JP3539981B2 publication Critical patent/JP3539981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To improve the twisting strength of the solid shaft of a driving shaft so as to regulate the maximum shearing stress into a prescribed value or above, to improve its working accuracy, as well and furthermore to form a serated shaft with high performance free from stress concentration and capable of miniaturizing the shaft. CONSTITUTION:A solid shaft 1 having a serated shaft 3 is formed of an alloy composition contg., by weight, 0.38 to 0.45% C, <=0.35% Si, 0.8 to 1.5% Mn, 0.0005 to 0.0035% B, 0.01 to 0.05% Ti and 0.01 to 0.06% Al and contg. <=0.01% N, and the balance substantial Fe, and on the surface, a quench-hardened layer having >=55 HRC surface hardness by induction hardening is formed so as to regulate the ratio of the layer thickness/the shaft radius into >=0.45. Thus, the solid axis having 47GPa (150kgf/mm<2>) maximum shearing stress is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車等の駆動軸用
中実軸に関し、さらに詳しくは、等速ジョイントを用い
た自動車等の駆動軸用中実軸に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid shaft for a drive shaft of an automobile or the like, and more particularly to a solid shaft for a drive shaft of an automobile or the like using a constant velocity joint.

【0002】[0002]

【従来の技術】一般に、自動車等のエンジンにて発生し
たトルクは、トランスミッション、デファレンシャルか
ら等速ジョイントを介して中実軸に伝達され、さらに等
速ジョイントを介してハブ、タイヤに伝達される。この
ような駆動軸系に介在する中実軸1は、たとえば図1に
示すように、その両端が等速ジョイント2嵌合用のセレ
ーション軸部3であり、この部分に前記のトルクが負荷
される。
2. Description of the Related Art Generally, torque generated in an engine of an automobile or the like is transmitted from a transmission and a differential to a solid shaft via a constant velocity joint, and further transmitted to a hub and tires via the constant velocity joint. For example, as shown in FIG. 1, the solid shaft 1 interposed in such a drive shaft system has serration shaft portions 3 for fitting a constant velocity joint 2 at both ends, and the above torque is applied to this portion. ..

【0003】したがって、駆動軸用中実軸は、その全体
に所要の捩れ強度が必要であり、かつセレーション軸部
には、応力集中を招かないようにピッチ等を精密に加工
する必要がある。
Therefore, the solid shaft for the drive shaft is required to have a required torsional strength as a whole, and the serration shaft portion is required to be precisely processed in pitch or the like so as not to cause stress concentration.

【0004】このため、従来の駆動軸用中実軸は、圧延
用鋼AISI1541またはS40C等の中炭素鋼を成
形材料として、焼なましを行なって機械加工性を高めて
転造、切削等の加工を行なった後、最終工程にて高周波
焼入れを行ない、その表面を硬化して所要の捩れ強度を
確保していた。
For this reason, the conventional solid shaft for a drive shaft uses a medium carbon steel such as the rolling steel AISI1541 or S40C as a molding material and is annealed to improve the machinability so as to be rolled or cut. After processing, induction hardening was performed in the final step to harden the surface and secure the required torsional strength.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、S40
C等の従来の中炭素鋼から成形され、高周波焼入れされ
た駆動軸用中実軸は、焼割れ感受性に問題があり、前記
焼入れによる硬化層を充分な層厚で形成できないため、
捩り強度が最大せん断応力(τmax)にて1.27G
Pa(130kgf/mm2 )に止まり、このような中実軸
では部品や装置の小型化、軽量化の要求に対応できない
という問題点がある。
However, S40
A solid shaft for a drive shaft, which is molded from a conventional medium carbon steel such as C and is induction hardened, has a problem of susceptibility to quench cracking, and a hardened layer due to the quenching cannot be formed with a sufficient layer thickness.
Torsional strength is 1.27G at maximum shear stress (τmax)
There is a problem in that it is only Pa (130 kgf / mm 2 ), and such a solid shaft cannot meet the demand for downsizing and weight reduction of parts and devices.

【0006】具体的には、中実軸の小型化を計るため、
捩り強度を最大せん断応力(τmax)にて少なくとも
1.47GPa(150kgf/mm2 )以上とする必要が
あるが、このような捩り強度は、従来構造の中実軸では
得られなかった。
Specifically, in order to reduce the size of the solid shaft,
The torsional strength must be at least 1.47 GPa (150 kgf / mm 2 ) at the maximum shear stress (τmax), but such torsional strength could not be obtained with the solid shaft of the conventional structure.

【0007】そこで、この発明は、上記した問題点を解
決し、駆動軸用中実軸を、最大せん断応力が所定の値以
上となるように捩り強度を向上させ、かつ加工精度がよ
く、セレーション軸部も応力集中のないものとして、充
分に小型化し得る高性能の中実軸とすることを課題とし
ている。
Therefore, the present invention solves the above-mentioned problems, improves the torsional strength of the drive shaft solid shaft so that the maximum shear stress is equal to or more than a predetermined value, and has a high processing accuracy and serration. The challenge is to make the shaft part a high-performance solid shaft that can be sufficiently miniaturized without stress concentration.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、中実軸にセレーション軸部を
有する駆動軸用中実軸において、この中実軸を、C:
0.38〜0.45重量%、Si:0.35重量%以
下、Mn:0.8〜1.5重量%、B:0.0005〜
0.0035重量%、Ti:0.01〜0.05重量%
およびAl:0.01〜0.06重量%を含有し、N:
0.01重量%以下であって、残部が実質上Feからな
る合金組成物から成形すると共に、その表面に、高周波
焼入れによる表面硬さがHR C55以上で焼入硬化層
を、層厚/軸半径の比が0.45以上となるよう形成し
た構成を採用したのである。
In order to solve the above problems, according to the present invention, in a drive shaft solid shaft having a serration shaft portion in the solid shaft, the solid shaft is C:
0.38-0.45 wt%, Si: 0.35 wt% or less, Mn: 0.8-1.5 wt%, B: 0.0005-
0.0035% by weight, Ti: 0.01 to 0.05% by weight
And Al: 0.01 to 0.06% by weight, N:
0.01% by weight or less, and the balance is substantially formed from Fe, and a quench-hardened layer having a surface hardness of H R C55 or more by induction hardening is formed on the surface of the alloy composition. That is, the configuration is adopted in which the ratio of the axial radii is 0.45 or more.

【0009】以下、その詳細を述べる。The details will be described below.

【0010】この発明に用いる合金組成物のうち炭素元
素(C)の含有量は、0.38〜0.45重量%(以
下、単に%と略記する)である。なぜなら、0.38%
未満の少量では、中実軸の捩り強度、耐衝撃性が充分で
なく、0.45%を越える多量では、被削性が著しく低
下すると共に、転造性も低下し、焼割れ感受性は増大し
て不都合となるからである。
The content of the carbon element (C) in the alloy composition used in the present invention is 0.38 to 0.45% by weight (hereinafter simply referred to as "%"). Because 0.38%
If the amount is less than 0.1%, the torsional strength and impact resistance of the solid shaft will not be sufficient, and if it exceeds 0.45%, the machinability will be significantly reduced and the rolling property will also be reduced, increasing the susceptibility to quench cracking. This is inconvenient.

【0011】またケイ素元素(Si)の合金組成物中の
含有量は、0.35%以下である。このものは、鋼材の
生産性を高める脱酸剤として若干量必要であるが、0.
35%を越えて多量に存在する場合には、冷間転造性が
低下する。
The content of elemental silicon (Si) in the alloy composition is 0.35% or less. Although a slight amount of this substance is required as a deoxidizing agent for improving the productivity of steel,
When it is present in a large amount exceeding 35%, the cold rolling property is deteriorated.

【0012】マンガン元素(Mn)の前記含有量は0.
8〜1.5%である。なぜなら、このものは、所定範囲
内の含有量にて高周波焼入れ性を高め、硫化マンガン化
合物となって被削性を向上させる。しかし、0.8%未
満の少量では、焼入れ性の改善効果が充分に得られず、
1.5%を越える多量では、冷間鍛造性を阻害するの
で、好ましくない。
The content of elemental manganese (Mn) is 0.
8 to 1.5%. This is because this material enhances the induction hardenability at a content within a predetermined range and becomes a manganese sulfide compound to improve machinability. However, if the amount is less than 0.8%, the effect of improving hardenability cannot be sufficiently obtained,
If the amount exceeds 1.5%, cold forgeability is impaired, which is not preferable.

【0013】ホウ素元素(B)の前記含有量は、0.0
005〜0.0035%である。Bは、上記所定範囲内
の含有量にて焼入れ性、粒界強化および耐衝撃性を改善
するが、0.0005%未満ではそのような改善効果が
充分にない。一方、0.0035%を越えると、添加量
に見合った焼入れ性の向上効果が発揮されないばかり
か、冷間加工時にFe2 Bを析出して、いわゆる冷間割
れの原因となるからである。
The content of the elemental boron (B) is 0.0
It is 005 to 0.0035%. B improves the hardenability, grain boundary strengthening and impact resistance when the content is within the above-mentioned predetermined range, but if it is less than 0.0005%, such an improving effect is not sufficient. On the other hand, if it exceeds 0.0035%, not only the effect of improving the hardenability corresponding to the added amount is not exhibited, but also Fe 2 B is precipitated during cold working, which causes so-called cold cracking.

【0014】チタン元素(Ti)、アルミニウム元素
(Al)の前記含有量は、それぞれ0.01〜0.05
%、0.01〜0.06%である。これらは共に材料中
のNおよびOを固定する作用がある。たとえば、固溶し
たNがあると、窒化ホウ素化合物を形成してBの焼入れ
性向上効果が阻害されるが、TiやAlがあれば、Ti
N、AlNの生成が優先して、Bの効果が効率よく発揮
される。このためには、どちらも0.01%以上の存在
が必要であり、一方、多量に添加しても意味がなくなる
から、清浄度を害しないようにとの配慮によって、Ti
は0.05%、Alは0.06%を限界量とした。
The contents of titanium element (Ti) and aluminum element (Al) are 0.01 to 0.05, respectively.
%, 0.01 to 0.06%. Both of them have a function of fixing N and O in the material. For example, if solid solution N is present, a boron nitride compound is formed and the hardenability improving effect of B is hindered, but if Ti or Al is present, Ti
The production of N and AlN takes precedence, and the effect of B is efficiently exhibited. For this purpose, the presence of 0.01% or more is required for both of them. On the other hand, even if added in a large amount, it becomes meaningless.
Was 0.05% and Al was 0.06%.

【0015】チッ素元素(N)の前記含有量は0.01
%以下である。なぜなら、0.01%を越える多量で
は、窒化ホウ素(BN)が形成されるので、焼入れ性に
有効に作用するフリーボロンが減少して好ましくないか
らである。
The content of the nitrogen element (N) is 0.01
% Or less. This is because boron nitride (BN) is formed in a large amount exceeding 0.01%, which is not preferable because the amount of free boron effectively acting on the hardenability is reduced.

【0016】なお、この発明における合金組成物の被削
性を更に改善する為、S、Pb、Te、Ca等の元素を
含有させてもよく、また、焼入れ性を改善する為、加工
性を著しく低下させない範囲でCr:0.5%以下、M
o:0.2%以下でそれぞれ、または両者併用して添加
してもよい。また、Nb:0.1%以下を添加すれば耐
衝撃性および焼割れ感受性が改善される。
Incidentally, in order to further improve the machinability of the alloy composition of the present invention, elements such as S, Pb, Te and Ca may be contained, and in order to improve the hardenability, the workability is improved. Cr: 0.5% or less, M within a range that does not significantly reduce
o: 0.2% or less, or both may be added in combination. If Nb: 0.1% or less is added, impact resistance and susceptibility to quench cracking are improved.

【0017】上記の合金組成物から成形された中実軸に
は、高周波焼入れにより、表面硬さがHR C(ロックウ
ェルC硬さ)55以上で焼入硬化層を、層厚/軸半径の
比が0.45以上となるよう形成する。なぜなら、この
比が0.45未満の場合には、中実軸の捩り強度が充分
に改善されず、最大せん断応力(τmax)の値も1.
47GPa(150kgf/mm2 )未満となって、所期の
目的である中実軸の小型化を達成できないからである。
なお、前記焼入硬化層は、JISGO559の測定法に
従い、表面からビッカース硬さHV 392(HR C40
相当)までの距離とした。
A solid shaft molded from the above alloy composition is subjected to induction hardening to form a quench hardened layer having a surface hardness of H R C (Rockwell C hardness) of 55 or more and a layer thickness / axis radius. Is formed to be 0.45 or more. Because, when this ratio is less than 0.45, the torsional strength of the solid shaft is not sufficiently improved, and the maximum shear stress (τmax) value is 1.
This is because the pressure is less than 47 GPa (150 kgf / mm 2 ) and the intended purpose of miniaturization of the solid shaft cannot be achieved.
Incidentally, the quenching hardened layer in accordance with the measurement method of JISGO559, Vickers hardness from the surface H V 392 (H R C40
(Equivalent) to the distance.

【0018】[0018]

【作用】この発明の駆動軸用中実軸は、マルテンサイト
変態温度が従来材料より高い合金組成物であると共に、
ホウ素元素(B)が所定範囲の組成割合からなり、細粒
組織(フェライト結晶粒度番号6以上)を形成して、焼
割れ感受性は低下したものとなる。高周波焼入れによっ
て、所定の表面硬さでかつ所定の深さまで形成された焼
入硬化層は、中実軸の捩れ強度を充分に高めるので、最
大せん断応力が1.47GPa(150kgf/mm2 )以
上に高まる。
The solid shaft for a drive shaft of the present invention is an alloy composition having a higher martensite transformation temperature than conventional materials, and
The boron element (B) has a composition ratio within a predetermined range, forms a fine grain structure (ferrite crystal grain size number 6 or more), and the quench cracking susceptibility is reduced. The quench-hardened layer, which has been formed to a predetermined depth with a predetermined surface hardness by induction hardening, sufficiently increases the torsional strength of the solid shaft, so the maximum shear stress is 1.47 GPa (150 kgf / mm 2 ) or more. Increase to.

【0019】[0019]

【実施例】この発明の実施例を以下、図面を参照しつつ
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】[実施例1〜21]C:0.38〜0.4
5重量%、Si:0.35重量%以下、Mn:0.8〜
1.5重量%、B:0.0005〜0.0035重量
%、Ti:0.01〜0.05重量%およびAl:0.
01〜0.06重量%を含有し、N:0.01重量%以
下であって、残部が実質上Feからなる合金組成物を、
加熱温度1100℃以下、仕上げ温度950℃以下で、
減面率70%以上の低温圧延を施して、図1に示す87
ACおよび109AC(等速ジョイントのサイズ別名
称)の中実軸1の素材を成形した。主な諸元を表1に示
す。
[Examples 1 to 21] C: 0.38 to 0.4
5 wt%, Si: 0.35 wt% or less, Mn: 0.8-
1.5% by weight, B: 0.0005 to 0.0035% by weight, Ti: 0.01 to 0.05% by weight and Al: 0.
An alloy composition containing 01 to 0.06% by weight, N: 0.01% by weight or less, and the balance being substantially Fe.
At a heating temperature of 1100 ° C or less and a finishing temperature of 950 ° C or less,
A low-temperature rolling with a surface reduction rate of 70% or more was performed, and 87 shown in FIG.
The material of the solid shaft 1 was molded from AC and 109AC (name by size of constant velocity joint). Table 1 shows the main specifications.

【0021】[0021]

【表1】 [Table 1]

【0022】図1に示すように、中実軸1には、セレー
ション軸部3の他、端部に止め輪4装着用の周溝5およ
び、中程にブーツ6嵌合用の周溝7を形成した。
As shown in FIG. 1, the solid shaft 1 has, in addition to the serration shaft portion 3, a peripheral groove 5 for mounting the retaining ring 4 at the end and a peripheral groove 7 for fitting the boot 6 in the middle. Formed.

【0023】そして、上記中実軸1に対して、以下の条
件にて高周波焼入れを行ない、表2に示す表面硬さ(H
R C)および焼入硬化層の層厚/軸半径の比(γ)とし
た。 (高周波焼入れ条件) 周波数 :8KHz 出力 :250KW 移動速度:5.7〜9.3mm/sec
Then, the solid shaft 1 was subjected to induction hardening under the following conditions to obtain the surface hardness (H
R C) and the layer thickness / axial radius ratio (γ) of the quench-hardened layer. (Induction hardening conditions) Frequency: 8 KHz Output: 250 KW Moving speed: 5.7 to 9.3 mm / sec

【0024】[0024]

【表2】 [Table 2]

【0025】得られた中実軸に対し、静捩り強度試験に
よる最大せん断応力(τmax)を調べ、この結果を表
2に示した。また、τmaxと焼入硬化層の層厚/軸半
径の比γの関係を図2中に、前記表2の表面硬さ毎に一
致した符号をプロットして示した。
The maximum shear stress (τmax) of the obtained solid shaft was examined by the static torsional strength test, and the results are shown in Table 2. In addition, the relationship between τmax and the ratio γ of the layer thickness / axial radius of the quench-hardened layer is shown in FIG. 2 by plotting the same symbols for each surface hardness in Table 2 above.

【0026】[比較例1〜7]従来材であるS40C相
当材(C:0.37〜0.43%、Si:0.15〜
0.35%、Mn:0.60〜0.90%、P:0.0
30以下、S:0.035以下)を用いる以外は、実施
例と全く同様にして製造した中実軸(87AC、109
AC)について、焼入硬化層の層厚/軸半径の比γと、
最大せん断応力を調べ、この結果を図2中に×印にてプ
ロットした。
[Comparative Examples 1 to 7] Conventional material equivalent to S40C (C: 0.37 to 0.43%, Si: 0.15 to 0.15%)
0.35%, Mn: 0.60 to 0.90%, P: 0.0
30 or less, S: 0.035 or less), the solid shaft (87AC, 109) manufactured in exactly the same manner as in the example.
AC), and the ratio γ of layer thickness / axial radius of the quench-hardened layer,
The maximum shear stress was investigated, and this result was plotted with a cross in FIG.

【0027】表2および図2の結果から明らかなよう
に、比較例1〜7のγは0.45未満で捩り強度は、い
ずれも1.47GPaを下回ったが、実施例1〜21
(HR C55以上)のγは0.45以上で充分な焼入れ
深さであり、しかも1.47GPaを越える最大せん断
応力を有して、中実軸の小型化に充分な捩り強度であっ
た。
As is clear from the results shown in Table 2 and FIG. 2, γ of Comparative Examples 1 to 7 was less than 0.45, and the torsional strengths thereof were all lower than 1.47 GPa.
The γ of (H R C55 or higher) is sufficient hardening depth 0.45 or more, yet has a maximum shear stress exceeding 1.47GPa, was sufficient torsional strength to the miniaturization of solid shaft ..

【0028】[実施例22〜24]実施例1〜21と全
く同様にして、実施例22;◆印(軸径φD28.1m
m、表面硬さHR C55以上、γ=0.55)、実施例
23;△印(軸径φD22.2mm、表面硬さHR C55
以上、γ=0.64)、実施例24;●印(軸径φD2
8.1mm、表面硬さHR C55以上、γ=0.75)の
中実軸を各4本ずつ得た。得られた中実軸について、実
施例別にトルクを負荷して両振り捩り疲労強度を調べ、
この結果を図3に示した。なお、前記した比較例6;×
印(軸径φD28.1mm、γ=0.33)についても同
様に両振り捩り疲労強度を調べ、この結果を図3中に併
記した。
[Embodiments 22 to 24] Except for Embodiments 1 to 21, Embodiment 22; ♦ mark (shaft diameter φD28.1 m)
m, surface hardness H R C55 or more, γ = 0.55), Example 23; Δ mark (shaft diameter φD22.2 mm, surface hardness H R C55
Above, γ = 0.64), Example 24; ● mark (shaft diameter φD2
Four solid shafts each having 8.1 mm, surface hardness H R C55 or more, γ = 0.75) were obtained. For each of the obtained solid shafts, a torque was applied to each example to examine the torsional fatigue strength on both sides,
The result is shown in FIG. Incidentally, the above-mentioned Comparative Example 6; X
Similarly, the double torsional fatigue strength was also examined for the mark (shaft diameter φD28.1 mm, γ = 0.33), and the results are also shown in FIG.

【0029】すなわち、負荷トルクと破断部軸径より換
算した最大せん断応力τmaxをY軸に、破断までの繰
り返し回数N(常用対数)をX軸に採り、破断面部軸半
径に対する焼入深さの比γをパラメーターとして示し
た。なお、図3中の直線は、試験結果より求めた回帰直
線である。
That is, the maximum shear stress τmax converted from the load torque and the shaft diameter of the fractured part is taken on the Y-axis, and the number of repetitions N (common logarithm) until the fracture is taken on the X-axis, and the quenching depth of the fractured surface part is measured. The ratio γ is shown as a parameter. The straight line in FIG. 3 is a regression line obtained from the test results.

【0030】図3の結果から明らかなように、実施例の
両振り捩り強度は、焼入深さ比γに比例して増加する
が、実施例23(△印、γ=0.64)と実施例24
(●印、γ=0.75)の強度は同レベルであり、静捩
り強度と、同様にγ=0.65近辺より飽和する傾向に
あった。また、τmaXで1.27GPa(130kgf
/mm2 )の静捩り保証強度を有する比較例6(×印、γ
=0.33)と前記の実施例22〜24の捩り疲労強度
を比較すると、後者が顕著に向上していた。
As is clear from the results shown in FIG. 3, the both-side torsional strength of the example increases in proportion to the quenching depth ratio γ, but the example 23 (Δ mark, γ = 0.64) Example 24
The strength of ( mark, γ = 0.75) was at the same level, and tended to be saturated from around γ = 0.65 similarly to the static torsional strength. In addition, τmaX is 1.27 GPa (130 kgf
Comparative Example 6 (x mark, γ) having a static torsion guaranteed strength of / mm 2 ).
= 0.33) and the torsional fatigue strengths of Examples 22 to 24 above, the latter was remarkably improved.

【0031】なお、上記いずれの実施例においてもセレ
ーション軸部に焼割れの発生はなく、量産加工機での加
工性評価結果も、素材切断については比較例と同等、そ
れ以外のセンタリング、外径旋削、セレーション転造、
止め輪溝加工性は、比較例よりいずれも良好であった。
特に、比較例1〜7では、セレーションのピッチ誤差が
平均x=0.06であったが、実施例1〜24のものは
平均x=0.03と半分以下に改善されており、セレー
ションの各歯に作用する応力も均一となることが判明し
た。
In any of the above-mentioned examples, there was no occurrence of quenching cracks in the serration shaft, and the results of workability evaluation with a mass-production processing machine were the same as those of the comparative example for material cutting, and other centering and outer diameter. Turning, serration rolling,
The workability of the snap ring groove was better than that of the comparative example.
In particular, in Comparative Examples 1 to 7, the pitch error of the serration was x = 0.06 on average, but in Examples 1 to 24, the average x = 0.03, which was improved to half or less. It was found that the stress acting on each tooth was also uniform.

【0032】[0032]

【効果】この発明は、以上説明したように、所定の合金
組成物から、高周波焼入れにより所定の表面硬さで、か
つ焼入硬化層を所定の層厚にて形成した駆動軸用中実軸
としたので、最大せん断応力が1.47GPa(150
kgf/mm2 )となって、捩り強度が向上し、かつ、セレ
ーション軸も精密なピッチで応力集中のないものとな
り、充分に小型化し得る高性能の中実軸となる利点があ
る。
As described above, the present invention provides a solid shaft for a drive shaft, which is formed from a predetermined alloy composition by induction hardening to have a predetermined surface hardness and a quench hardened layer with a predetermined layer thickness. Therefore, the maximum shear stress is 1.47 GPa (150
kgf / mm 2 ), the torsional strength is improved, and the serration shaft has a precise pitch without stress concentration, which is an advantage that it can be sufficiently miniaturized to be a high-performance solid shaft.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の正面図FIG. 1 is a front view of an embodiment.

【図2】最大せん断応力と焼入深さ/軸半径および表面
硬度の関係を示すグラフ
FIG. 2 is a graph showing the relationship between maximum shear stress, quenching depth / axial radius, and surface hardness.

【図3】中実軸の両振り捩り疲労強度を示すグラフFIG. 3 is a graph showing a double shaft torsional fatigue strength of a solid shaft.

【符号の説明】[Explanation of symbols]

1 中実軸 2 等速ジョイント 3 セレーション軸部 4 止め輪 5、7 周溝 6 ブーツ 1 Solid shaft 2 Constant velocity joint 3 Serration shaft 4 Retaining ring 5, 7 Circumferential groove 6 Boot

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中実軸にセレーション軸部を有する駆動
軸用中実軸において、 この中実軸を、C:0.38〜0.45重量%、Si:
0.35重量%以下、Mn:0.8〜1.5重量%、
B:0.0005〜0.0035重量%、Ti:0.0
1〜0.05重量%およびAl:0.01〜0.06重
量%を含有し、N:0.01重量%以下であって、残部
が実質上Feからなる合金組成物から成形すると共に、
その表面に、高周波焼入れによる表面硬さがHR C55
以上で焼入硬化層を、層厚/軸半径の比が0.45以上
となるよう形成したことを特徴とする駆動軸用中実軸。
1. A solid shaft for a drive shaft having a serration shaft portion as a solid shaft, wherein the solid shaft is C: 0.38 to 0.45% by weight, and Si:
0.35% by weight or less, Mn: 0.8 to 1.5% by weight,
B: 0.0005 to 0.0035% by weight, Ti: 0.0
1 to 0.05% by weight and Al: 0.01 to 0.06% by weight, N: 0.01% by weight or less, the balance being formed from an alloy composition consisting essentially of Fe, and
The surface has a surface hardness of H R C55 by induction hardening.
A solid shaft for a drive shaft, wherein the quench-hardened layer is formed so that the ratio of layer thickness / axial radius is 0.45 or more.
JP12610292A 1992-05-19 1992-05-19 Solid shaft for drive shaft Expired - Lifetime JP3539981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12610292A JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12610292A JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Publications (2)

Publication Number Publication Date
JPH05320825A true JPH05320825A (en) 1993-12-07
JP3539981B2 JP3539981B2 (en) 2004-07-07

Family

ID=14926668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12610292A Expired - Lifetime JP3539981B2 (en) 1992-05-19 1992-05-19 Solid shaft for drive shaft

Country Status (1)

Country Link
JP (1) JP3539981B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862419A (en) * 1983-11-10 1989-08-29 Advanced Micro Devices, Inc. High speed pointer based first-in-first-out memory
FR2788821A1 (en) 1999-01-12 2000-07-28 Ntn Toyo Bearing Co Ltd Power transmission shaft using constant velocity universal joint has induction hardened surface layer and comprises carbon steel including silicon, manganese, aluminum and boron
FR2789402A1 (en) * 1999-02-10 2000-08-11 Ntn Toyo Bearing Co Ltd Power transmission shaft, useful as a drive shaft used in a constant-velocity joint of an automobile, consists of induction surface hardened carbon steel
EP1647608A1 (en) * 2004-10-13 2006-04-19 Nippon Steel Corporation Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2011225142A (en) * 2010-04-21 2011-11-10 Ntn Corp Bearing device for wheel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065815A (en) 2008-09-12 2010-03-25 Ntn Corp Power transmission shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862419A (en) * 1983-11-10 1989-08-29 Advanced Micro Devices, Inc. High speed pointer based first-in-first-out memory
FR2788821A1 (en) 1999-01-12 2000-07-28 Ntn Toyo Bearing Co Ltd Power transmission shaft using constant velocity universal joint has induction hardened surface layer and comprises carbon steel including silicon, manganese, aluminum and boron
FR2789402A1 (en) * 1999-02-10 2000-08-11 Ntn Toyo Bearing Co Ltd Power transmission shaft, useful as a drive shaft used in a constant-velocity joint of an automobile, consists of induction surface hardened carbon steel
EP1647608A1 (en) * 2004-10-13 2006-04-19 Nippon Steel Corporation Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
US7438771B2 (en) 2004-10-13 2008-10-21 Nippon Steel Corporation Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP2011225142A (en) * 2010-04-21 2011-11-10 Ntn Corp Bearing device for wheel

Also Published As

Publication number Publication date
JP3539981B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
EP0643148B1 (en) Steel material for induction-hardened shaft part and shaft part made therefrom
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JPH0853714A (en) Shaft parts for machine structural use excellent in torsional fatigue strength
EP1647608B1 (en) High strength constant velocity joint intermediate shaft
JPH05320825A (en) Solid shaft for driving shaft
JPH0790484A (en) High strength induction-hardened shaft parts
US5223049A (en) Steel for induction hardening
JP2650225B2 (en) Spring steel
EP1538227A1 (en) Mechanical structural shaft component and method of manufacturing the same
JPH05140696A (en) Manufacture of bearing steel and bearing parts
EP1098012B1 (en) Non-heat treated, soft-nitrided steel parts
JP2686755B2 (en) High-strength steel with excellent fatigue strength
JP3037891B2 (en) High-strength case hardened steel that facilitates induction annealing of carburized part and method of manufacturing the same
US6800144B2 (en) Process for producing retainer for constant velocity joint possessing improved machinability and flexural strength
JPH09235654A (en) Steel for induction hardening and induction hardened part
JPH0416538B2 (en)
JPH028020B2 (en)
JPH0559486A (en) Steel for cold forging excellent in induction hardenability and fatigue property
WO2007043315A1 (en) Steel material and process for producing the same
JPH0797656A (en) Cold forging steel
JPH0978127A (en) Production of high strength and high toughness axial parts for mechanical structure
JPS63250441A (en) High-strength spring steel and steel wire for valve spring using same
JPH06336646A (en) Steel for induction hardening excellent in twisting property
JPH09241799A (en) Curburizing steel
JPH07242989A (en) Steel for induction hardening, excellent in cold forgeability, machinability, and torsional fatigue strength

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9