JP2011225142A - Bearing device for wheel - Google Patents

Bearing device for wheel Download PDF

Info

Publication number
JP2011225142A
JP2011225142A JP2010097915A JP2010097915A JP2011225142A JP 2011225142 A JP2011225142 A JP 2011225142A JP 2010097915 A JP2010097915 A JP 2010097915A JP 2010097915 A JP2010097915 A JP 2010097915A JP 2011225142 A JP2011225142 A JP 2011225142A
Authority
JP
Japan
Prior art keywords
convex
hub wheel
wheel
hole
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097915A
Other languages
Japanese (ja)
Inventor
Yuichi Asano
祐一 淺野
Hikari Umekida
光 梅木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010097915A priority Critical patent/JP2011225142A/en
Publication of JP2011225142A publication Critical patent/JP2011225142A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • F16C35/0635Fixing them on the shaft the bore of the inner ring being of special non-cylindrical shape which co-operates with a complementary shape on the shaft, e.g. teeth, polygonal sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device for wheel of a type allowing separation and recombination of a hub ring and an outer coupling member via a protrusion-recess fitting structure, wherein failure in press fitting protrusions into recesses is prevented when reconstituting the protrusion-recess fitting structure.SOLUTION: Protrusions extending in an axial direction are provided at a shaft 11 of an outer coupling member 4, and the shaft 11 is press fitted into a hole 20 of a hub ring 1. By the press-fitting, recesses closely fitted to the protrusions are formed on an inner diameter surface of the hub ring 1 by the protrusions, a protrusion-recess fitting structure M in which the entire regions of the fitting parts of the protrusions and the recesses are brought into close contact with each other is constituted, and the hub ring 1 and the shaft 11 of the outer coupling member 4 are coupled by a bolt member 37. Separation by the application of drawing force in the axial direction is allowed in the protrusion-recess fitting structure M. An adjacent pitch error of the protrusions is set as a control object. The adjacent pitch error is set at ≤0.1 mm.

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置に関する。   The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile.

車輪用軸受装置には、複列の転がり軸受を組み合わせて使用する第1世代と称される構造から、外方部材に車体取付フランジを一体に設けた第2世代に進化し、さらに、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成した第3世代、さらには、複列の転がり軸受の2つの内側軌道面のうち、一方をハブ輪の外周に形成すると共に、他方を等速自在継手の外側継手部材の外周に形成した第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure called the first generation, which uses a combination of double row rolling bearings, to a second generation in which the body mounting flange is integrally provided on the outer member. One of the two inner raceways of the rolling bearing is formed on the outer circumference of the hub ring, and one of the two inner raceways of the double row rolling bearing is formed on the outer circumference of the hub ring. At the same time, a fourth-generation one having the other formed on the outer periphery of the outer joint member of the constant velocity universal joint has been developed.

例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図14に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 14, the wheel bearing device called the third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which the outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152.

等速自在継手154は、外側継手部材153と、この外側継手部材153のマウス部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面には雌スプライン161が形成され、この中心孔に図示省略のシャフトの端部に形成した雄スプラインが挿入される。内側継手部材158側の雌スプライン161とシャフト側の雄スプラインとを嵌合することで、内側継手部材158とシャフトがトルク伝達可能に結合される。   The constant velocity universal joint 154 is disposed between the outer joint member 153, the inner joint member 158 disposed in the mouth portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153. And a cage 160 for holding the ball 159. A female spline 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and a male spline formed at the end of the shaft (not shown) is inserted into the center hole. By fitting the female spline 161 on the inner joint member 158 side and the male spline on the shaft side, the inner joint member 158 and the shaft are coupled so that torque can be transmitted.

また、ハブ輪152は、筒部163と前記フランジ151とを有し、フランジ151の外端面164(アウトボード側の端面)には、図示省略のホイールおよびブレーキロータを装着するための短筒状のパイロット部165が突設されている。パイロット部165は、大径部165aと小径部165bとからなり、大径部165aにブレーキロータが外嵌され、小径部165bにホイールが外嵌される。   The hub wheel 152 has a cylindrical portion 163 and the flange 151, and a short cylindrical shape for mounting a wheel and a brake rotor (not shown) on the outer end surface 164 (end surface on the outboard side) of the flange 151. The pilot portion 165 is projected. The pilot portion 165 includes a large diameter portion 165a and a small diameter portion 165b, and a brake rotor is externally fitted to the large diameter portion 165a, and a wheel is externally fitted to the small diameter portion 165b.

筒部163のインボード側端部の外周面に嵌合部166が設けられ、この嵌合部166に内輪167が嵌合されている。筒部163の外周面のフランジ151近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられており、フランジ151にホイールおよびブレーキロータを固定するためのハブボルトがボルト装着孔162に装着される。   A fitting portion 166 is provided on the outer peripheral surface of the end portion on the inboard side of the cylindrical portion 163, and the inner ring 167 is fitted to the fitting portion 166. A first inner raceway surface 168 is provided in the vicinity of the flange 151 on the outer peripheral surface of the cylindrical portion 163, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167. The flange 151 of the hub wheel 152 is provided with a bolt mounting hole 162, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.

転がり軸受の外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)182が設けられている。外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の第2内側軌道面169とが対向し、これらの間に転動体172が介装される。   The outer member 155 of the rolling bearing is provided with two rows of outer raceways 170 and 171 on the inner periphery thereof, and a flange (vehicle body mounting flange) 182 on the outer periphery thereof. The first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub wheel 152 face each other, the second outer raceway surface 171 of the outer member 155, the second inner raceway surface 169 of the inner ring 167, and the like. Are opposed to each other, and a rolling element 172 is interposed therebetween.

ハブ輪152の筒部163に外側継手部材153の軸部173が挿入される。軸部173の軸端部にはネジ部174が形成され、このネジ部174よりもインボード側の外径部に雄スプライン175が形成されている。また、ハブ輪152の筒部163の内径面に雌スプライン176が形成され、軸部173をハブ輪152の筒部163に圧入することで、軸部173側の雄スプライン175とハブ輪152側の雌スプライン176とが嵌合する。   The shaft portion 173 of the outer joint member 153 is inserted into the tube portion 163 of the hub wheel 152. A screw portion 174 is formed at the shaft end portion of the shaft portion 173, and a male spline 175 is formed at the outer diameter portion on the inboard side of the screw portion 174. In addition, a female spline 176 is formed on the inner diameter surface of the cylindrical portion 163 of the hub wheel 152, and the shaft portion 173 is press-fitted into the cylindrical portion 163 of the hub wheel 152, so that the male spline 175 on the shaft portion 173 side and the hub wheel 152 side. The female spline 176 is fitted.

そして、軸部173のネジ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが固定される。この際、ナット部材177の座面178と筒部163の外端面179とが当接し、マウス部157のアウトボード側の端面180と内輪167の端面181とが当接する。これにより、ハブ輪152が内輪167を介してナット部材177とマウス部157とで挟持される。   Then, the nut member 177 is screwed to the screw portion 174 of the shaft portion 173, and the hub wheel 152 and the outer joint member 153 are fixed. At this time, the seat surface 178 of the nut member 177 and the outer end surface 179 of the cylindrical portion 163 come into contact with each other, and the end surface 180 on the outboard side of the mouse portion 157 and the end surface 181 of the inner ring 167 come into contact with each other. As a result, the hub wheel 152 is sandwiched between the nut member 177 and the mouth portion 157 via the inner ring 167.

しかしながら、このような構成を採用した場合には、外側継手部材153とハブ輪152は、外側継手部材153の軸部173に設けた雄スプライン175をハブ輪152に設けた雌スプライン176に圧入することで結合されるため、軸部173及びハブ輪152の両者にスプライン加工を施す必要があってコスト高となる。また、圧入時には、軸部173の雄スプライン175とハブ輪152の雌スプライン176の凹凸を合わせる必要があるが、歯面合わせで圧入すれば歯面がむしれ等によって損傷するおそれがあり、大径合わせで圧入すれば円周方向のガタが生じ易い。円周方向のガタがあると、トルク伝達性に劣ると共に異音が発生するおそれがある。このように、スプライン嵌合によって外側継手部材153とハブ輪152とを結合する場合、圧入時の歯面の損傷、及び使用時のガタの発生という問題があり、両問題を同時に回避することは困難であった。   However, when such a configuration is adopted, the outer joint member 153 and the hub wheel 152 press-fit the male spline 175 provided on the shaft portion 173 of the outer joint member 153 into the female spline 176 provided on the hub wheel 152. Therefore, both the shaft portion 173 and the hub wheel 152 need to be splined, which increases costs. In addition, it is necessary to match the unevenness of the male spline 175 of the shaft portion 173 and the female spline 176 of the hub wheel 152 at the time of press-fitting. If it is press-fitted by diameter matching, play in the circumferential direction is likely to occur. If there is a backlash in the circumferential direction, the torque transmission is inferior and abnormal noise may occur. In this way, when the outer joint member 153 and the hub wheel 152 are coupled by spline fitting, there are problems of tooth surface damage during press-fitting and generation of play during use, and both problems can be avoided at the same time. It was difficult.

そこで、本願出願人は、これらの問題に対処するために、特許文献2に開示の車輪用軸受装置を提案するに至っている。詳細には、外側継手部材の軸部とハブ輪の孔部のうち、何れか一方に設けられた軸方向に延びる凸部を他方に圧入し、他方に、凸部により凹部を形成することで凸部と凹部との嵌合部位全域が密着する凹凸嵌合構造を構成したものである。この凹凸嵌合構造の構成時には、凹部が形成される部材に予めスプライン部を形成しておく必要がないことから、生産性を向上することができる。また、圧入時の歯面の損傷を回避することができるので、安定した嵌合状態を維持することができる。また、上記の凹凸嵌合構造では、径方向および円周方向でガタが生じる隙間が形成されないので、安定したトルク伝達が可能であると共に異音の発生が防止される。しかも軸部が孔部に対して隙間無く密着し、トルク伝達部位の強度が向上するので、嵌合部長さを短くして軸受装置を軸方向にコンパクト化することができる。   Therefore, the present applicant has proposed a wheel bearing device disclosed in Patent Document 2 in order to deal with these problems. Specifically, by pressing a convex portion extending in the axial direction provided in one of the shaft portion of the outer joint member and the hole of the hub wheel into the other, and forming the concave portion by the convex portion on the other side. The concave-convex fitting structure in which the entire fitting portion between the convex portion and the concave portion is in close contact is configured. When the concave / convex fitting structure is configured, it is not necessary to previously form the spline portion on the member in which the concave portion is formed, so that productivity can be improved. Moreover, since the damage of the tooth surface at the time of press fit can be avoided, the stable fitting state can be maintained. Further, in the above-described concave / convex fitting structure, no gap is formed in which the play occurs in the radial direction and the circumferential direction, so that stable torque transmission is possible and the generation of abnormal noise is prevented. In addition, since the shaft portion is in close contact with the hole portion and the strength of the torque transmitting portion is improved, the length of the fitting portion can be shortened to make the bearing device compact in the axial direction.

特許文献2で開示された上記凹凸嵌合構造は、軸部に設けたボルト孔からボルト部材を取り外した状態で軸方向の引き抜き力を付与することによって分離可能とされている。そのため、車輪用軸受装置を軸受側の等速自在継手側とに分離することができ、軸受側と等速自在継手側の一方又は双方の部品を補修することが可能である。補修後には、外側継手部材の軸部をハブ輪の孔部に圧入することによって上記の凹凸嵌合構造を再構成することができる。   The concavo-convex fitting structure disclosed in Patent Document 2 can be separated by applying an axial pull-out force in a state where a bolt member is removed from a bolt hole provided in a shaft portion. Therefore, the wheel bearing device can be separated into the constant velocity universal joint side on the bearing side, and one or both components on the bearing side and the constant velocity universal joint side can be repaired. After the repair, the concave-convex fitting structure can be reconfigured by press-fitting the shaft portion of the outer joint member into the hole portion of the hub wheel.

以上の手順で凹凸嵌合構造を再構成した後、軸部に設けたボルト孔にボルト部材をねじ込むことで、ハブ輪と外側継手部材とが再結合され、車輪用軸受装置を再使用することができる。凹凸嵌合構造の再構成時には、圧入用のプレス機等、大掛かりな設備を使用する必要がなく、したがって、自動車整備工場等の現場においても、車輪用軸受装置の点検、補修等を容易に行うことができる。   After reconstructing the concave-convex fitting structure according to the above procedure, the hub wheel and the outer joint member are re-coupled by screwing the bolt member into the bolt hole provided in the shaft portion, and the wheel bearing device is reused. Can do. When reconstructing the concave-convex fitting structure, it is not necessary to use large-scale equipment such as a press-fitting press machine, so it is easy to inspect and repair the wheel bearing device even at the site of an automobile maintenance shop, etc. be able to.

特開2004−340311号公報JP 2004340403 A 特許第4302758号公報Japanese Patent No. 4302758

特許文献2に開示の車輪用軸受装置では、凹凸嵌合構造を再構成する際、凸部が分離前に噛み合っていた凹部と再度嵌合するとは限らず、むしろ分離前とは円周方向にずれた異なる凹部に嵌合するのが通例である。その場合、全ての凸部を凹部にスムーズに嵌合させることができず、凹凸嵌合構造の再構成が困難となる場合がある。また、嵌合できても凸部と凹部の間に隙間が形成され、凹凸嵌合構造の捩り強度が低下する問題がある。特に複数回分解、再組立を繰返すと、凹凸嵌合構造にガタを生じるおそれがある。   In the wheel bearing device disclosed in Patent Document 2, when the concave-convex fitting structure is reconfigured, the convex portion does not necessarily re-fit with the concave portion engaged before separation, but rather before separation in the circumferential direction. It is customary to fit in different recessed parts that are displaced. In that case, all the convex portions cannot be smoothly fitted into the concave portions, and it may be difficult to reconfigure the concave-convex fitting structure. Moreover, even if it can fit, a clearance gap is formed between a convex part and a recessed part, and there exists a problem which the torsional strength of an uneven | corrugated fitting structure falls. In particular, if the disassembly and reassembly are repeated a plurality of times, there is a risk of looseness in the concave-convex fitting structure.

以上の実情に鑑み、本発明は、凹凸嵌合構造の再構成をスムーズに行うことのできる車輪軸受装置を提供することを技術的課題とする。   In view of the above circumstances, an object of the present invention is to provide a wheel bearing device capable of smoothly reconstructing the concave-convex fitting structure.

上記の課題を解決するためには、円周方向で全ての凸部を凹部と確実に噛み合わせる必要がある。公知のスプライン嵌合構造では、雄スプラインと雌スプラインを確実に嵌合させるために製造時の管理項目がJIS等で規格化されている。これに対し、本発明のような凹凸嵌合構造においてはこの種の規格がなく、管理項目は特に定められていない。従って、凹凸嵌合構造特有の事情に応じ、コスト面も考慮して管理項目を独自に定める必要がある。   In order to solve the above problem, it is necessary to securely mesh all the convex portions with the concave portions in the circumferential direction. In the known spline fitting structure, the management items at the time of manufacture are standardized by JIS or the like in order to securely fit the male spline and the female spline. On the other hand, there is no standard of this kind in the concave-convex fitting structure as in the present invention, and management items are not particularly defined. Accordingly, it is necessary to uniquely define the management items in consideration of the cost in accordance with the circumstances specific to the concave-convex fitting structure.

かかる観点から本発明者らが鋭意検討した結果、円周方向複数箇所に設けた凸部の精度として、JISB1702に規格化された歯車のピッチ誤差、特に隣接ピッチ誤差の概念を凹凸嵌合構造にも導入し、凸部の隣接ピッチ誤差を管理することが凹凸嵌合構造の再構成をスムーズに行う上で最もシンプルでかつ確実な手法であることが判明した。   As a result of intensive studies by the present inventors from this point of view, as a precision of convex portions provided at a plurality of locations in the circumferential direction, the concept of gear pitch errors standardized in JISB1702, especially the concept of adjacent pitch errors, is applied to the concave-convex fitting structure. It was also found that managing the adjacent pitch error of the convex portion is the simplest and most reliable method for smoothly reconstructing the concave-convex fitting structure.

この場合、管理対象としての隣接ピッチ誤差は小さいほど好ましいことになるが、この誤差を余りに厳格に管理しすぎると、凸部の加工が困難となり、車輪用軸受装置の製作コストが大幅に増大する。本発明者らの検証によれば、隣接ピッチ誤差の上限は、0.1mm(より望ましくは0.06mm)であり、これ以下の誤差であれば、ハブ輪と外側継手部材の円周方向位相をどのようにとっても確実に凸部を凹部に再圧入できることが判明した。   In this case, it is preferable that the adjacent pitch error as a management target is as small as possible. However, if this error is managed too strictly, it is difficult to process the convex portion, and the manufacturing cost of the wheel bearing device is greatly increased. . According to the verification by the present inventors, the upper limit of the adjacent pitch error is 0.1 mm (more preferably 0.06 mm), and if the error is less than this, the circumferential phase of the hub wheel and the outer joint member It has been found that the convex portion can be reliably re-pressed into the concave portion.

以上の知見に基づき、本発明は、内周に複列の外側軌道面を有する外方部材と、車輪に固定するためのフランジが設けられたハブ輪を有し、前記外側軌道面に対向する複列の内側軌道面が形成された内方部材と、外側継手部材を有する等速自在継手とを備え、前記ハブ輪と、ハブ輪の孔部に嵌挿される前記外側継手部材の軸部とが結合された車輪用軸受装置であって、外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのうち、どちらか一方の円周方向複数箇所に設けられた軸方向に延びる凸部を、軸方向に沿って他方に圧入し、他方に凸部により凸部に密着嵌合する凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、かつこの凹凸嵌合構造は軸方向の引き抜き力付与による分離を許容する車輪用軸受装置において、凸部の隣接ピッチ誤差を管理対象に設定し、この隣接ピッチ誤差を0.1mm(望ましくは0.06mm)以下に設定することに特徴づけられる。   Based on the above knowledge, the present invention has an outer member having a double row outer raceway surface on the inner periphery, and a hub wheel provided with a flange for fixing to the wheel, and faces the outer raceway surface. An inner member having a double-row inner raceway surface; and a constant velocity universal joint having an outer joint member; the hub wheel; and a shaft portion of the outer joint member fitted into a hole of the hub wheel; Is an axial direction provided at a plurality of locations in the circumferential direction of either the outer diameter surface of the shaft portion of the outer joint member or the inner diameter surface of the hole portion of the hub wheel. A convex portion extending in the axial direction is press-fitted into the other, and a concave portion is formed on the other side to be closely fitted to the convex portion by the convex portion so that the entire fitting contact site between the convex portion and the concave portion is in close contact. A wheel bearing that constitutes a combined structure and allows the separation by applying an extraction force in the axial direction. In location, set managed adjacent pitch error of the projections, characterized by setting the adjacent pitch error below 0.1 mm (preferably 0.06 mm).

なお、ここでいう「凹凸嵌合構造」は、上記の通り、凸部と凹部の嵌合部位全域が密着するものであるが、嵌合部位のごく一部領域に隙間が不可避的に形成される場合がある。このような不可避的な隙間があっても「凹凸嵌合構造」という概念に含まれるものとする(以下、同様)。   As described above, the “concavo-convex fitting structure” here is one in which the entire fitting part of the convex part and the concave part is in close contact, but a gap is inevitably formed in a very small area of the fitting part. There is a case. It is assumed that such an inevitable gap is included in the concept of the “concave fitting structure” (the same applies hereinafter).

上記の構成において、前記外側継手部材の軸部をハブ輪に圧入した状態では、外側継手部材の軸部に設けたネジ孔にハブ輪を介してボルト部材を螺合することによりハブ輪と外側継手部材の軸部とが結合される。このボルト部材は、凹凸嵌合構造の分離後、外側継手部材の軸部をハブ輪に再圧入する際には、このボルト部材をハブ輪でガイドするのが好ましい。   In the above configuration, in a state where the shaft portion of the outer joint member is press-fitted into the hub wheel, the bolt member is screwed into the screw hole provided in the shaft portion of the outer joint member via the hub wheel to The shaft portion of the joint member is coupled. It is preferable that the bolt member is guided by the hub wheel when the shaft portion of the outer joint member is re-press-fitted into the hub wheel after separation of the concave-convex fitting structure.

このようにすれば、ハブ輪と外側継手部材の軸部とがボルト部材を介して結合されるので、ハブ輪からの外側継手部材の軸部の軸方向の抜けが規制される。また、再圧入時には、ボルト部材がハブ輪にガイドされた状態にあるため、安定した再圧入が可能である。   In this way, the hub wheel and the shaft portion of the outer joint member are coupled via the bolt member, so that the axial displacement of the shaft portion of the outer joint member from the hub wheel is restricted. Moreover, since the bolt member is in a state of being guided by the hub wheel at the time of re-pressing, stable re-pressing is possible.

上記の構成において、前記ボルト部材はネジ部と非ネジ部とを有するとともに、ハブ輪にボルト部材の非ネジ部が挿通される貫通孔を設け、貫通孔の孔径とボルト部材の非ネジ部の軸径との径差をΔdとし、凹凸嵌合構造における外側継手部材の軸部外径と凹凸嵌合構造におけるハブ輪内径との径差をΔd2としたときに、0<Δd<Δd2とすることが好ましい。   In the above configuration, the bolt member has a threaded portion and a non-threaded portion, and a hub ring is provided with a through-hole through which the non-threaded portion of the bolt member is inserted. When the diameter difference from the shaft diameter is Δd, and the diameter difference between the shaft outer diameter of the outer joint member in the uneven fitting structure and the hub ring inner diameter in the uneven fitting structure is Δd2, 0 <Δd <Δd2. It is preferable.

このようにすれば、貫通孔の孔径とボルト部材の非ねじ部の軸径との径差を、外側継手部材の軸部外径と凹凸嵌合構造におけるハブ輪内径との径差よりも小さく設定することになって、非ネジ部が挿通される貫通孔が外側継手部材の軸部の圧入時のガイドとなる。   In this way, the diameter difference between the hole diameter of the through hole and the shaft diameter of the non-threaded portion of the bolt member is smaller than the diameter difference between the shaft outer diameter of the outer joint member and the hub ring inner diameter in the concave-convex fitting structure. The through hole into which the non-threaded portion is inserted serves as a guide when the shaft portion of the outer joint member is press-fitted.

上記の構成において、前記ハブ輪の孔部にこの内部を仕切る内壁を設けるとともに、この内壁に前記貫通孔を設けることが好ましい。   In the above configuration, it is preferable to provide an inner wall for partitioning the inside of the hole of the hub wheel, and to provide the through hole in the inner wall.

このようにすれば、内壁の貫通孔を、外側継手部材の軸部の圧入時におけるガイドとすることができる。   If it does in this way, the through-hole of an inner wall can be used as the guide at the time of the press injection of the axial part of an outer joint member.

上記の構成において、前記ハブ輪に前記ボルト部材の頭部座面が当接し且つ硬化処理が施されたボルト受け面を設けるとともに、該ボルト受け面の表面硬さを管理対象として設定し、該表面硬さとして50HRC以上に設定するのが好ましい。   In the above-described configuration, a bolt receiving surface on which the head seat surface of the bolt member abuts on the hub wheel and a hardening process is provided, and the surface hardness of the bolt receiving surface is set as a management target, The surface hardness is preferably set to 50 HRC or more.

この構成では、ボルト部材の頭部座面が当接するハブ輪のボルト受け面に硬化処理を施すと共に、その硬化処理が施されたハブ輪のボルト受け面の表面硬さを管理対象として設定し、この表面硬さを50HRC以上に設定すれば、ボルト部材の頭部座面との接触により、ハブ輪のボルト受け面に磨耗や圧痕が事後的に生じるのを防止することが可能となる。したがって、ボルト部材により外側継手部材とハブ輪との安定した締結状態を維持することができ、長期に亘って安定したトルク伝達を行うことが可能となる。   In this configuration, the hub ring bolt receiving surface with which the head seat surface of the bolt member abuts is hardened, and the surface hardness of the bolt receiving surface of the hub ring subjected to the hardening treatment is set as a management target. If the surface hardness is set to 50 HRC or more, it becomes possible to prevent subsequent occurrence of wear or indentation on the bolt receiving surface of the hub wheel due to contact with the head seating surface of the bolt member. Therefore, a stable fastening state between the outer joint member and the hub wheel can be maintained by the bolt member, and stable torque transmission can be performed over a long period of time.

また、このような外側継手部材とハブ輪との締結状態の安定化を図ることで、両者の間に事後的に隙間が形成されることを防止することができ、ボルト孔を通じてアウトボード側から泥水等の異物が浸入するのを確実に防止することが可能となる。   In addition, by stabilizing the fastening state between the outer joint member and the hub wheel, it is possible to prevent a gap from being formed afterwards from the outboard side through the bolt hole. It is possible to reliably prevent foreign matters such as muddy water from entering.

上記の構成において、前記硬化処理が、高周波焼入れであることが好ましい。   Said structure WHEREIN: It is preferable that the said hardening process is induction hardening.

このようにすれば、加熱効率がよく、硬化処理に要する作業時間が短時間で済むという利点がある。また、部分焼入れが可能であり、焼入れ歪みが少ないという利点もある。   In this way, there is an advantage that the heating efficiency is good and the work time required for the curing process is short. Further, partial quenching is possible, and there is an advantage that quenching distortion is small.

上記の構成において、前記外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くすることが好ましい。   In the above configuration, the convex portion of the concave-convex fitting structure may be provided on the shaft portion of the outer joint member, and at least the hardness of the axial end portion of the convex portion may be higher than the inner diameter portion of the hole portion of the hub wheel. preferable.

このようにすれば、凸部をハブ輪の孔部側に圧入した際に、ハブ輪の孔部側の一部を切り出したり、或いは押し出したりすることが容易となることから、ハブ輪の孔部側に凸部の形状に倣った凹部を正確に形成しやすくなる。そのため、凸部と凹部の嵌合状態がより緻密なものとなり、凸部と凹部の密着状態をより良好なものとすることができる。   In this way, when the convex part is press-fitted into the hole part side of the hub wheel, it becomes easy to cut out or push out part of the hole part side of the hub wheel. It becomes easy to accurately form a concave portion that follows the shape of the convex portion on the portion side. Therefore, the fitting state between the convex portion and the concave portion becomes more precise, and the close contact state between the convex portion and the concave portion can be made better.

上記の構成において、前記外側継手部材の軸部に、前記凸部と、前記圧入によって生じるはみ出し部を収容するポケット部とを形成し、該ポケット部を、この凸部の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することが好ましい。   In the above configuration, the convex portion and a pocket portion that accommodates the protruding portion generated by the press-fitting are formed on the shaft portion of the outer joint member, and the press-fitting start side end surface of the convex portion is cut off from the pocket portion. When finishing by machining, it is preferable to form by cutting at the same time.

このようにすれば、はみ出し部をこのポケット部内に保持することができるので、はみ出し部が装置外の車両内等へ入り込んだりすることがない。したがって、はみ出し部の除去処理を行う必要がなくなるので、当該除去処理を省略して組立作業工数の減少を図ることができ、組立作業性の向上及びコスト低減を図ることができる。   In this way, since the protruding portion can be held in the pocket portion, the protruding portion does not enter the vehicle outside the apparatus. Therefore, since it is not necessary to perform the removal process of the protruding portion, the removal process can be omitted to reduce the number of assembling work, and the assembling workability can be improved and the cost can be reduced.

また、ポケット部を、圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することにより、ポケット部を形成することによる製造コストの上昇を抑制できる。   Further, by forming the pocket portion by cutting simultaneously with finishing the end surface on the press-fitting start side by cutting, an increase in manufacturing cost due to forming the pocket portion can be suppressed.

上記の構成において、前記ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くすることが好ましい。   In the above configuration, the convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and at least the hardness of the axial end portion of the convex portion is the shaft portion of the outer joint member of the constant velocity universal joint. It is preferable to make it higher than the outer diameter part.

このようにすれば、凸部を外側継手部材の軸部側に圧入した際に、外側継手部材の軸部側の一部を切り出したり、或いは押し出したりすることが容易となることから、外側継手部材の軸部側に凸部の形状に倣った凹部を正確に形成しやすくなる。すなわち、凸部と凹部の嵌合状態がより緻密なものとなり、凸部と凹部の密着状態をより良好なものとすることができる。   In this way, when the convex portion is press-fitted into the shaft portion side of the outer joint member, it becomes easy to cut out or push out a part of the shaft portion side of the outer joint member. It becomes easy to accurately form a concave portion that follows the shape of the convex portion on the shaft side of the member. That is, the fitting state between the convex portion and the concave portion becomes denser, and the close contact state between the convex portion and the concave portion can be made better.

上記の構成において、前記軸部ハブ輪の孔部に、前記凸部と、前記圧入によって生じるはみ出し部を収容するポケット部とを形成し、該ポケット部を、この凸部の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することが好ましい。   In the above configuration, the convex portion and a pocket portion that accommodates the protruding portion generated by the press-fitting are formed in the hole portion of the shaft hub wheel, and the press-fitting start side end surface of the convex portion is formed on the pocket portion. It is preferable to form by cutting simultaneously with finishing by cutting.

このようにすれば、はみ出し部をこのポケット部内に保持することができるので、はみ出し部が装置外の車両内等へ入り込んだりすることがない。したがって、はみ出し部の除去処理を行う必要がなくなるので、当該除去処理を省略して組立作業工数の減少を図ることができ、組立作業性の向上及びコスト低減を図ることができる。   In this way, since the protruding portion can be held in the pocket portion, the protruding portion does not enter the vehicle outside the apparatus. Therefore, since it is not necessary to perform the removal process of the protruding portion, the removal process can be omitted to reduce the number of assembling work, and the assembling workability can be improved and the cost can be reduced.

また、ポケット部を、圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することにより、ポケット部を形成することによる製造コストの上昇を抑制できる。   Further, by forming the pocket portion by cutting simultaneously with finishing the end surface on the press-fitting start side by cutting, an increase in manufacturing cost due to forming the pocket portion can be suppressed.

上記の構成において、前記内方部材が、前記ハブ輪と、該ハブ輪におけるインボード側の端部の外周に圧入される内輪とで構成され、前記ハブ輪の外周面および内輪の外周面にそれぞれ前記内側軌道面が形成されていることが好ましい。   In the above configuration, the inner member includes the hub wheel and an inner ring that is press-fitted into the outer periphery of the end portion on the inboard side of the hub wheel. Each of the inner raceways is preferably formed.

このようにすれば、ハブ輪の外周面および内輪の外周面にそれぞれ前記内側軌道面を形成することができる。これにより、車輪用軸受装置の軽量・コンパクト化を図ることができる。   In this way, the inner raceway surface can be formed on the outer peripheral surface of the hub wheel and the outer peripheral surface of the inner ring, respectively. As a result, the wheel bearing device can be reduced in weight and size.

凹凸嵌合構造を分離することにより、軸受装置を軸受側と等速自在継手側とに分解した際には、ハブ輪と外側継手部材のどちらか一方を交換することもできる。この場合、交換作業後は、交換する側のハブ輪もしくは外側継手部材にスプライン(雌スプラインもしくは雄スプライン)を形成し、このスプラインの凸部を再使用する側の外側継手部材もしくはハブ輪の凹部に圧入することで、前記凹凸嵌合構造を再構成することができる。この時、補修時と同様に、交換した部材のスプラインの凸部と再使用する部材の凹部とが噛み合わず、同様に凹凸嵌合構造の再構成が困難となり、あるいはスプラインの歯面と相手側との間に隙間が形成される場合がある。この場合でも、スプラインの凸部の隣接ピッチ誤差を管理対象に設定し、この隣接ピッチ誤差を0.1mm(望ましくは0.06mm)以下に設定すれば、交換作業後の凹凸嵌合構造の再構成をスムーズに行うことができる。   By separating the concave-convex fitting structure, when the bearing device is disassembled into the bearing side and the constant velocity universal joint side, either the hub wheel or the outer joint member can be exchanged. In this case, after the replacement work, a spline (female spline or male spline) is formed on the hub wheel or outer joint member on the replacement side, and the concave portion of the outer joint member or hub ring on the side where the convex portion of the spline is reused. The concave-convex fitting structure can be reconfigured by press-fitting into. At this time, similarly to the repair, the convex part of the spline of the replaced member and the concave part of the reused member do not mesh with each other, and it becomes difficult to reconfigure the concave-convex fitting structure, or the tooth surface of the spline and the other side A gap may be formed between the two. Even in this case, if the adjacent pitch error of the convex part of the spline is set as a management target, and this adjacent pitch error is set to 0.1 mm (preferably 0.06 mm) or less, the uneven fitting structure after the replacement work can be restored. The configuration can be performed smoothly.

以上のような本発明によれば、凹凸嵌合構造の再構成時に、凹部と凸部の従前の円周方向の位相関係を問わず、全ての凸部を凹部にスムーズに圧入することができ、凹凸嵌合構造の再構成をスムーズに行うことができる。また、圧入後も凸部と凹部の間に隙間が形成されることなく、凹凸嵌合構造の捩り強度の低下を防止することができ、複数回分解、再組立を繰返しても凹凸嵌合構造にガタは生じない。   According to the present invention as described above, at the time of reconfiguration of the concave-convex fitting structure, it is possible to smoothly press-fit all the convex portions into the concave portions regardless of the previous circumferential phase relationship between the concave portions and the convex portions. In addition, it is possible to smoothly reconstruct the concave-convex fitting structure. In addition, a gap is not formed between the convex part and the concave part even after press-fitting, so that the torsional strength of the concave-convex fitting structure can be prevented from being lowered, and the concave-convex fitting structure can be repeated even after repeated disassembly and reassembly. No backlash occurs.

本発明の実施形態に係る車輪用軸受装置を示す断面図である。It is sectional drawing which shows the wheel bearing apparatus which concerns on embodiment of this invention. (a)は、前記車輪用軸受装置の凹凸嵌合構造の断面図であって、(b)は、(a)に示すX部の拡大図である。(A) is sectional drawing of the uneven | corrugated fitting structure of the said wheel bearing apparatus, (b) is an enlarged view of the X section shown to (a). 前記車輪用軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the said wheel bearing apparatus. 前記車輪用軸受装置の圧入前の最終状態での凸部の周辺の拡大断面図である。It is an expanded sectional view of the periphery of the convex part in the final state before press-fitting of the wheel bearing device. 前記車輪用軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said bearing apparatus for wheels. 前記車輪用軸受装置における凹凸嵌合構造の分離工程を示す断面図である。It is sectional drawing which shows the isolation | separation process of the uneven | corrugated fitting structure in the said wheel bearing apparatus. 前記車輪用軸受装置の再圧入方法を示すものであって、(a)は圧入直前状態を示す断面図、(b)は圧入途中を示す断面図、(c)は圧入完了状態を示す断面図である。The re-pressing method of the said wheel bearing apparatus is shown, Comprising: (a) is sectional drawing which shows a state immediately before press-fitting, (b) is sectional drawing which shows in the middle of press-fitting, (c) is sectional drawing which shows a press-fit completion state It is. 前記車輪用軸受装置の再圧入方法を示す断面図である。It is sectional drawing which shows the re-pressing method of the said bearing apparatus for wheels. (a)は、凹凸嵌合構造の凸部の他例を示す断面図であって、(b)は、凹凸嵌合構造の凸部の更に他例を示す断面図である。(A) is sectional drawing which shows the other example of the convex part of an uneven | corrugated fitting structure, (b) is sectional drawing which shows the other example of the convex part of an uneven | corrugated fitting structure. (a)は、凹凸嵌合構造の他例を示す断面図であって、(b)は、(a)に示すY部の拡大図である。(A) is sectional drawing which shows the other example of an uneven | corrugated fitting structure, (b) is an enlarged view of the Y section shown to (a). 圧入前の最終状態での凸部の他例の周辺における拡大断面図である。It is an expanded sectional view in the circumference of other examples of a convex part in the final state before press fit. 本発明の実施形態に係る車両用軸受装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the vehicle bearing apparatus which concerns on embodiment of this invention. (a)は、シール部材としてOリングを用いたときの拡大断面図であって、(b)は、シール部材としてガスケットを用いたときの拡大断面図である。(A) is an expanded sectional view when an O-ring is used as a sealing member, and (b) is an enlarged sectional view when a gasket is used as a sealing member. 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.

以下、本発明の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施形態に係る車輪用軸受装置を示す断面図である。同図に示すように、本実施形態に係る車輪用軸受装置は、ハブ輪1を含む複列の転がり軸受2と、等速自在継手3とが一体化されてなる。なお、以下の説明において、インボード側とは、車両に取り付けた状態で、車両の車幅方向内側となる側を意味し、アウトボード側とは、車両に取り付けた状態で車両の車幅方向外側となる側を意味する。   FIG. 1 is a cross-sectional view showing a wheel bearing device according to an embodiment of the present invention. As shown in the figure, the wheel bearing device according to the present embodiment is formed by integrating a double row rolling bearing 2 including a hub wheel 1 and a constant velocity universal joint 3. In the following description, the inboard side means the side that is inside the vehicle width direction of the vehicle when attached to the vehicle, and the outboard side means the vehicle width direction of the vehicle when attached to the vehicle. This means the outside side.

等速自在継手3は、外側継手部材としての外側継手部材4と、外側継手部材4の内側に配された内側継手部材5と、外側継手部材4と内側継手部材5との間に介在してトルクを伝達する複数のボール6と、外側継手部材4と内側継手部材5との間に介在してボール6を保持するケージ7とを主要な部材として構成される。内側継手部材5はその孔部内径5aにシャフト8の端部8aを圧入し、かつスプライン嵌合することにより、シャフト8とトルク伝達可能に結合されている。なお、シャフト8の端部8aには、シャフト抜け止め用の止め輪9が嵌合されている。   The constant velocity universal joint 3 is interposed between an outer joint member 4 as an outer joint member, an inner joint member 5 disposed inside the outer joint member 4, and the outer joint member 4 and the inner joint member 5. A plurality of balls 6 that transmit torque and a cage 7 that is interposed between the outer joint member 4 and the inner joint member 5 and holds the balls 6 are configured as main members. The inner joint member 5 is coupled to the shaft 8 so that torque can be transmitted by press-fitting the end 8a of the shaft 8 into the hole inner diameter 5a and by spline fitting. Note that a retaining ring 9 for preventing the shaft from coming off is fitted to the end portion 8 a of the shaft 8.

外側継手部材4はマウス部10と軸部(ステム部とも呼ばれる)11とからなり、マウス部10は一端にて開口した椀状で、その内球面12に、軸方向に延びた複数のトラック溝13が円周方向等間隔に形成されている。そのトラック溝13はマウス部10の開口端まで延びている。内側継手部材5は、その外球面14に、軸方向に延びた複数のトラック溝15が円周方向等間隔に形成されている。   The outer joint member 4 includes a mouth portion 10 and a shaft portion (also referred to as a stem portion) 11. The mouth portion 10 has a bowl shape opened at one end, and a plurality of track grooves extending in the axial direction on the inner spherical surface 12 thereof. 13 are formed at equal intervals in the circumferential direction. The track groove 13 extends to the open end of the mouse portion 10. In the inner joint member 5, a plurality of track grooves 15 extending in the axial direction are formed on the outer spherical surface 14 at equal intervals in the circumferential direction.

外側継手部材4のトラック溝13と内側継手部材5のトラック溝15とは対をなし、各対のトラック溝13,15で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール6が転動可能に組み込んである。ボール6は外側継手部材4のトラック溝13と内側継手部材5のトラック溝15との間に介在してトルクを伝達する。ケージ7は外側継手部材4と内側継手部材5との間に摺動可能に介在し、外球面7aにて外側継手部材4の内球面12と嵌合し、内球面7bにて内側継手部材5の外球面14と嵌合する。なお、この場合の等速自在継手3は、ツェッパ型を示しているが、マウス部10の開口側で外側継手部材4のトラック溝13を直線状とし、マウス部10の奥部側で内側継手部材5のトラック溝15をストレートにしたアンダーカットフリー型等の他の等速自在継手であってもよい。   The track groove 13 of the outer joint member 4 and the track groove 15 of the inner joint member 5 make a pair, and one ball 6 as a torque transmission element is provided for each ball track constituted by each pair of track grooves 13 and 15. It is incorporated so that it can roll. The ball 6 is interposed between the track groove 13 of the outer joint member 4 and the track groove 15 of the inner joint member 5 to transmit torque. The cage 7 is slidably interposed between the outer joint member 4 and the inner joint member 5, and is fitted to the inner spherical surface 12 of the outer joint member 4 at the outer spherical surface 7a, and the inner joint member 5 at the inner spherical surface 7b. The outer spherical surface 14 is fitted. The constant velocity universal joint 3 in this case is a Rzeppa type, but the track groove 13 of the outer joint member 4 is linear on the opening side of the mouth portion 10 and the inner joint is located on the back side of the mouth portion 10. Other constant velocity universal joints such as an undercut free type in which the track grooves 15 of the member 5 are straight may be used.

また、マウス部10の開口部はブーツ16にて塞がれている。ブーツ16は、大径部16aと、小径部16bと、大径部16aと小径部16bとを連結する蛇腹部16cとからなる。大径部16aがマウス部10の開口部に外嵌され、この状態でブーツバンド17aにて締結される。また、小径部16bがシャフト8のブーツ装着部8bに外嵌され、この状態でブーツバンド17bにて締結されている。   Further, the opening of the mouse portion 10 is closed by a boot 16. The boot 16 includes a large diameter portion 16a, a small diameter portion 16b, and a bellows portion 16c that connects the large diameter portion 16a and the small diameter portion 16b. The large-diameter portion 16a is fitted on the opening of the mouse portion 10, and is fastened with the boot band 17a in this state. Moreover, the small diameter part 16b is externally fitted by the boot mounting part 8b of the shaft 8, and is fastened by the boot band 17b in this state.

ハブ輪1は、筒部18と、筒部18のアウトボード側の端部に設けられる車輪取り付け用のフランジ19とを有する。筒部18の孔部20は、軸部嵌合孔20aと、アウトボード側のテーパ孔20bと、インボード側に設けられた大径孔20cとを備える。軸部嵌合孔20aにおいて、凹凸嵌合構造Mを介して外側継手部材4の軸部11とハブ輪1とが分離可能に結合される。軸部嵌合孔20aと大径孔20cとの間には、テーパ部(テーパ孔)20dが設けられており、軸部嵌合孔20aとテーパ孔20bとの間には、内径方向へ突出する内壁20eが設けられている。   The hub wheel 1 includes a cylindrical portion 18 and a wheel mounting flange 19 provided at an end portion on the outboard side of the cylindrical portion 18. The hole portion 20 of the cylindrical portion 18 includes a shaft portion fitting hole 20a, a tapered hole 20b on the outboard side, and a large diameter hole 20c provided on the inboard side. In the shaft portion fitting hole 20a, the shaft portion 11 of the outer joint member 4 and the hub wheel 1 are detachably coupled via the concave-convex fitting structure M. A tapered portion (tapered hole) 20d is provided between the shaft portion fitting hole 20a and the large diameter hole 20c, and protrudes in the inner diameter direction between the shaft portion fitting hole 20a and the tapered hole 20b. An inner wall 20e is provided.

ハブ輪1のインボード側の外周面には、小径の段差部21が形成される。この段差部21に内輪22を嵌合することで、ハブ輪1と内輪22とからなり、複列の内側軌道面23,24を有する内方部材が構成される。複列の内側軌道面23,24のうち、アウトボード側の内側軌道面23はハブ輪1の筒部18の外周面に形成され、インボード側の内側軌道面24は、内輪22の外周面に形成されている。車輪用軸受2は、この内方部材と、内方部材の外径側に配置され、内周に複列の外側軌道面25,26を有する外方部材27と、外方部材27のアウトボード側の外側軌道面25とハブ輪1の内側軌道面23との間、および外方部材27のインボード側の外側軌道面26と内輪22の内側軌道面24との間に配置され且つ転動体として機能するボール28とで構成される。ハブ輪1と、ハブ輪1の外周に圧入される内輪22とで、内側軌道面23,24を有する内方部材を構成するので、車輪用軸受装置の軽量・コンパクト化を図ることができる。なお、外方部材27の両開口部にはシール部材S1、S2が装着されている。   A small-diameter step portion 21 is formed on the outer peripheral surface of the hub wheel 1 on the inboard side. By fitting the inner ring 22 to the stepped portion 21, an inner member that includes the hub wheel 1 and the inner ring 22 and has double-row inner raceway surfaces 23 and 24 is formed. Of the double-row inner raceways 23, 24, the inner raceway 23 on the outboard side is formed on the outer circumference of the cylindrical portion 18 of the hub wheel 1, and the inner raceway 24 on the inboard side is the outer circumference of the inner race 22. Is formed. The wheel bearing 2 is disposed on the inner member, the outer diameter side of the inner member, an outer member 27 having double-row outer raceways 25 and 26 on the inner periphery, and an outboard of the outer member 27. Between the outer raceway surface 25 on the side and the inner raceway surface 23 of the hub wheel 1, and between the outer raceway surface 26 on the inboard side of the outer member 27 and the inner raceway surface 24 of the inner ring 22, and a rolling element. And the ball 28 functioning as Since the hub ring 1 and the inner ring 22 press-fitted into the outer periphery of the hub ring 1 constitute an inner member having the inner raceways 23 and 24, the wheel bearing device can be reduced in weight and size. Seal members S1 and S2 are attached to both openings of the outer member 27.

この車輪用軸受2は、ハブ輪1のインボード側の円筒状端部を加締め、加締めによって形成された加締部29で内輪22を押圧することによって軸受内部に予圧を付与する構造である。これによって、内輪22をハブ輪1に固定することができる。ハブ輪1の端部に形成した加締部29で軸受2に予圧を付与した場合、外側継手部材4のマウス部10で予圧を付与する必要がない。従って、予圧量を考慮せずに外側継手部材4の軸部11を圧入することができ、ハブ輪1と外側継手部材4との連結性(組み付け性)の向上を図ることができる。   The wheel bearing 2 has a structure in which a cylindrical end portion on the inboard side of the hub wheel 1 is swaged, and an inner ring 22 is pressed by a swaged portion 29 formed by swaging to apply a preload to the inside of the bearing. is there. Thereby, the inner ring 22 can be fixed to the hub ring 1. When preload is applied to the bearing 2 by the crimping portion 29 formed at the end of the hub wheel 1, it is not necessary to apply preload at the mouth portion 10 of the outer joint member 4. Therefore, the shaft portion 11 of the outer joint member 4 can be press-fitted without considering the amount of preload, and the connectivity (assembly property) between the hub wheel 1 and the outer joint member 4 can be improved.

ハブ輪1の加締部29とマウス部10のバック面10aとは互いに当接している。この場合、外側継手部材4の軸部11の位置決めが行われるので、車輪軸受装置の寸法精度が安定すると共に、凹凸嵌合構造Mの軸方向長さを安定化させて、トルク伝達性の向上を図ることができる。このようにハブ輪1の加締部29とマウス部10のバック面10aとを当接させる場合、両者の接触面圧は100MPa以下とするのが望ましい。接触面圧が100MPaを超えると、大トルク負荷時に外側継手部材4とハブ輪1との捩れ量に差が生じ、この差によって接触部に急激なスリップが生じて異音を発生するおそれがあるからである。従って、接触面圧を100MPa以下とすることで、異音の発生を防止して静粛な車輪用軸受装置を提供することができる。   The caulking portion 29 of the hub wheel 1 and the back surface 10a of the mouse portion 10 are in contact with each other. In this case, since the positioning of the shaft portion 11 of the outer joint member 4 is performed, the dimensional accuracy of the wheel bearing device is stabilized, and the axial length of the concave-convex fitting structure M is stabilized to improve torque transmission. Can be achieved. Thus, when the crimping part 29 of the hub wheel 1 and the back surface 10a of the mouse | mouth part 10 are contact | abutted, it is desirable that both contact surface pressure shall be 100 Mpa or less. If the contact surface pressure exceeds 100 MPa, there is a difference in the torsion amount between the outer joint member 4 and the hub wheel 1 when a large torque is applied, and this difference may cause a sudden slip at the contact portion and generate noise. Because. Therefore, by setting the contact surface pressure to 100 MPa or less, it is possible to provide a quiet wheel bearing device that prevents the generation of abnormal noise.

ハブ輪1のフランジ19にはボルト装着孔30が設けられて、ホイールおよびブレーキロータをこのフランジ19に固定するためのハブボルト31がこのボルト装着孔30に装着される。   A bolt mounting hole 30 is provided in the flange 19 of the hub wheel 1, and a hub bolt 31 for fixing the wheel and the brake rotor to the flange 19 is mounted in the bolt mounting hole 30.

凹凸嵌合構造Mは、図2(a),(b)に示すように、例えば、軸部11のアウトボード側の端部に設けられた軸方向に延びる凸部32と、ハブ輪1の孔部20の内径面に形成される凹部33とで構成される。本実施形態では、凹部33は、軸部嵌合孔20aの内径面34に形成される。凸部32とその凸部32に嵌合するハブ輪1の凹部33との嵌合部位全域が密着している。軸部11のアウトボード側の端部の外周面に、軸方向に延びる複数の凸部32が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部20の軸部嵌合孔20aの内径面34に、凸部32が嵌合する軸方向の複数の凹部33が周方向に沿って形成されている。   As shown in FIGS. 2 (a) and 2 (b), the concave / convex fitting structure M includes, for example, a protruding portion 32 provided in an end portion of the shaft portion 11 on the outboard side and extending in the axial direction, and the hub wheel 1. It is comprised by the recessed part 33 formed in the internal-diameter surface of the hole part 20. As shown in FIG. In the present embodiment, the recess 33 is formed in the inner diameter surface 34 of the shaft portion fitting hole 20a. The whole fitting part of the convex part 32 and the concave part 33 of the hub wheel 1 fitted to the convex part 32 is in close contact. A plurality of convex portions 32 extending in the axial direction are arranged at a predetermined pitch along the circumferential direction on the outer peripheral surface of the end portion on the outboard side of the shaft portion 11, and the shaft portion fitting hole of the hole portion 20 of the hub wheel 1. A plurality of axial recesses 33 into which the protrusions 32 are fitted are formed in the inner diameter surface 34 of 20a along the circumferential direction.

この場合、各凸部32は、図2(b)に示すように、その断面が凸アール状の頂部を有する三角形状(山形状)であり、各凸部32の凹部33との嵌合部位は、図2(b)に示す範囲Aである。断面における凸部32の円周方向両側の中腹部から頂部に至る範囲で各凸部32と凹部33が嵌合している。そして、この嵌合状態で、周方向の隣り合う凸部32間において、ハブ輪1の内径面34よりも内径側に隙間35が形成されている。   In this case, as shown in FIG. 2B, each convex portion 32 has a triangular shape (mountain shape) having a convex round-shaped top, and a fitting portion of each convex portion 32 with the concave portion 33. Is the range A shown in FIG. Each convex part 32 and the recessed part 33 are fitted in the range from the middle part on both sides in the circumferential direction of the convex part 32 in the cross section to the top part. In this fitted state, a gap 35 is formed on the inner diameter side with respect to the inner diameter surface 34 of the hub wheel 1 between the adjacent convex portions 32 in the circumferential direction.

また、図1に示すように、アウトボード側から軸部11のネジ孔としてのボルト孔36にボルト部材37が螺着されている。ボルト部材37は、フランジ付きの頭部37aと、軸部37bとからなる。軸部37bは、先端側の周囲に形成されたネジ部37b1と基端側の周囲に形成された非ネジ部37b2とを有する。内壁20eには、貫通孔38が設けられ、この貫通孔38にボルト部材37の軸部37bが挿通されて、ネジ部37b1が軸部11のボルト孔36に螺着される。   Moreover, as shown in FIG. 1, the bolt member 37 is screwed by the bolt hole 36 as a screw hole of the axial part 11 from the outboard side. The bolt member 37 includes a flanged head portion 37a and a shaft portion 37b. The shaft portion 37b has a screw portion 37b1 formed around the distal end side and a non-screw portion 37b2 formed around the proximal end side. A through hole 38 is provided in the inner wall 20 e, and the shaft portion 37 b of the bolt member 37 is inserted into the through hole 38, and the screw portion 37 b 1 is screwed into the bolt hole 36 of the shaft portion 11.

ネジ部37b1が螺着された状態では、非ネジ部37b2が貫通孔38に挿通された状態である。また、ネジ部37b1が螺着された状態では、頭部37aの座面37a1が、内壁20eのアウトボード側の端面に設けられたボルト受け面20e1に当接している。なお、内壁20eのアウトボード側の端面全体を平坦面として、その一部でボルト受け面20e1を構成してもよいが、この実施形態では、内壁20eのアウトボード側の端面の一部をインボード側に窪ませて陥没部を形成し、その陥没部の底面でボルト受け面20e1を構成している。また、ボルト部材37の頭部37aの座面37a1は、平坦面をなしている。   In a state where the screw portion 37b1 is screwed, the non-screw portion 37b2 is inserted through the through hole 38. Further, in a state where the screw portion 37b1 is screwed, the seat surface 37a1 of the head portion 37a is in contact with the bolt receiving surface 20e1 provided on the end surface of the inner wall 20e on the outboard side. The entire end surface of the inner wall 20e on the outboard side may be a flat surface, and the bolt receiving surface 20e1 may be formed by a part of the end surface. However, in this embodiment, a part of the end surface of the inner wall 20e on the outboard side is used. A recessed portion is formed by being recessed on the board side, and a bolt receiving surface 20e1 is formed by the bottom surface of the recessed portion. Further, the seat surface 37a1 of the head portion 37a of the bolt member 37 is a flat surface.

この車輪用軸受装置では、凹凸嵌合構造Mへの雨水や異物の侵入を防止するために、凹凸嵌合構造Mよりもインボード側、及びアウトボード側がそれぞれシールされている。   In this wheel bearing device, the inboard side and the outboard side are sealed from the concave / convex fitting structure M in order to prevent rainwater and foreign matter from entering the concave / convex fitting structure M, respectively.

インボード側は、図1に示すように、ハブ輪1の加締部29と、外側継手部材4のマウス部10のバック面10aとを接触させることで、シール構造を構成している。そのため、このシール構造により、インボード側から雨水や異物が凹凸嵌合構造Mへ浸入するという事態を防止することができる。なお、ハブ輪1の加締部29と、外側継手部材4のマウス部10のバック面10aとの少なくとも一方に、樹脂材等のシール材を別途塗布してもよい。   As shown in FIG. 1, the inboard side forms a seal structure by bringing the caulking portion 29 of the hub wheel 1 into contact with the back surface 10 a of the mouth portion 10 of the outer joint member 4. Therefore, this seal structure can prevent a situation in which rainwater and foreign matter enter the concave-convex fitting structure M from the inboard side. A sealing material such as a resin material may be separately applied to at least one of the caulking portion 29 of the hub wheel 1 and the back surface 10a of the mouth portion 10 of the outer joint member 4.

一方、アウトボード側は、ボルト部材37の座面37a1と内壁20eとの間にシール材(図示省略)を介在させて、シール構造を構成している。この場合、シール構造は、ボルト部材37の座面37a1と、内壁20eのボルト受け面20e1との少なくとも一方に、樹脂等のシール材を塗布して構成することができる。なお、ボルト部材37を螺着する際において、ボルト部材37の座面37a1と、内壁20eのボルト受け面20e1とが密着性に優れるものであれば、このようなシール材を省略することも可能である。例えば、ボルト受け面20e1を研削すれば、ボルト部材37の座面37a1との密着性が向上するので、シール材の塗布を省略することが可能となる。密着性が確保される限り、ボルト受け面20e1への研削加工を省略し、鍛造肌や旋削仕上げ状態を、そのまま残すこともできる。   On the other hand, on the outboard side, a seal material (not shown) is interposed between the seating surface 37a1 of the bolt member 37 and the inner wall 20e to constitute a seal structure. In this case, the sealing structure can be configured by applying a sealing material such as a resin to at least one of the seat surface 37a1 of the bolt member 37 and the bolt receiving surface 20e1 of the inner wall 20e. When the bolt member 37 is screwed, such a sealing material can be omitted if the seat surface 37a1 of the bolt member 37 and the bolt receiving surface 20e1 of the inner wall 20e are excellent in adhesion. It is. For example, if the bolt receiving surface 20e1 is ground, adhesion with the seating surface 37a1 of the bolt member 37 is improved, so that it is possible to omit application of the sealing material. As long as the adhesion is ensured, the grinding process to the bolt receiving surface 20e1 can be omitted, and the forged skin and the turning finished state can be left as they are.

また、凸部32と凹部33との間にシール材を介在させてもよい。この場合、例えば、凸部32の表面に、塗布後に硬化して嵌合部位において密封性を発揮できる種々の樹脂からなるシール材を塗布すればよい。   Further, a sealing material may be interposed between the convex portion 32 and the concave portion 33. In this case, for example, sealing materials made of various resins that can be cured after application and exhibit sealing properties at the fitting portion may be applied to the surface of the convex portion 32.

上記凹凸嵌合構造Mは、以下の手順で得ることができる。   The uneven fitting structure M can be obtained by the following procedure.

先ず、外側継手部材4の軸部11に、公知の加工方法(転造加工、切削加工、プレス加工、引き抜き加工等)を用いて、軸方向に延びた多数の歯を有する雄スプライン39を形成する。図2(b)に示すように、雄スプライン39のうち、歯底39aを除き、歯先39b、および歯先39bから歯底39aに至る両歯面で囲まれた領域が凸部32となる。   First, the male spline 39 having a large number of teeth extending in the axial direction is formed on the shaft portion 11 of the outer joint member 4 using a known processing method (rolling, cutting, pressing, drawing, etc.). To do. As shown in FIG. 2B, in the male spline 39, the tooth tip 39 b and a region surrounded by both tooth surfaces from the tooth tip 39 b to the tooth bottom 39 a except for the tooth bottom 39 a become the convex portion 32. .

雄スプライン39は、モジュールを0.5以下とし、通常使用されるスプラインのモジュールよりも小さい歯とするのが望ましい。これにより、雄スプライン39の成形性の向上を図ることができるとともに、雄スプライン39をハブ輪1の軸部嵌合孔20aに圧入する際の圧入荷重を小さくすることができる。軸部11の凸部32を雄スプライン39で形成することにより、この種のシャフトにスプラインを形成するための加工設備を活用することができ、低コストに凸部32を形成することが可能である。   The male spline 39 preferably has a module of 0.5 or less, and has a smaller tooth than a commonly used spline module. As a result, the moldability of the male spline 39 can be improved, and the press-fitting load when the male spline 39 is press-fitted into the shaft portion fitting hole 20a of the hub wheel 1 can be reduced. By forming the convex part 32 of the shaft part 11 with the male spline 39, it is possible to utilize the processing equipment for forming the spline on this kind of shaft, and it is possible to form the convex part 32 at a low cost. is there.

次いで、図1及び図3にクロスハッチングで示すように、軸部11の外径面に熱硬化処理を施して硬化層H1を形成する。硬化層H1は、凸部32の全体および歯底39aも含めて円周方向に連続して形成される。なお、硬化層H1の軸方向の形成範囲は、少なくとも雄スプライン39のアウトボード側の端縁から、外側継手部材4のマウス部10の底壁の内径側部位に至るまでの連続領域を含んだ範囲とする。熱硬化処理としては、浸炭焼入れ等の種々の熱処理を採用することができるが、部分焼入れが容易である等の理由から本実施形態では高周波焼入れを採用している。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。   Next, as shown by cross hatching in FIGS. 1 and 3, the outer diameter surface of the shaft portion 11 is subjected to a thermosetting treatment to form a hardened layer H <b> 1. The hardened layer H1 is continuously formed in the circumferential direction including the entire convex portion 32 and the tooth bottom 39a. Note that the axial formation range of the hardened layer H1 includes at least a continuous region from the edge on the outboard side of the male spline 39 to the inner diameter side portion of the bottom wall of the mouth portion 10 of the outer joint member 4. Range. As the thermosetting treatment, various heat treatments such as carburizing and quenching can be adopted. However, in this embodiment, induction hardening is adopted because partial quenching is easy. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.

その一方、ハブ輪1の内径側は未焼き状態に維持される。すなわち、ハブ輪1の孔部20の内径面34は熱硬化処理を行わない未硬化部(未焼き状態)とする。外側継手部材4の軸部11の硬化層H1とハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。例えば、硬化層H1の硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。ハブ輪1の内径面34のうち、少なくとも軸部嵌合孔20aの内径面34が未硬化部であれば足り、その他の内径面には熱硬化処理を施しても構わない。また、上記硬度差が確保されるのであれば、「未硬化部」とすべき上記領域に熱硬化処理を施してもよい。   On the other hand, the inner diameter side of the hub wheel 1 is maintained in an unburned state. That is, the inner diameter surface 34 of the hole portion 20 of the hub wheel 1 is an uncured portion (unburned state) that is not subjected to thermosetting. The hardness difference between the hardened layer H1 of the shaft portion 11 of the outer joint member 4 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. For example, the hardness of the hardened layer H1 is about 50 HRC to 65 HRC, and the hardness of the uncured portion is about 10 HRC to about 30 HRC. Of the inner diameter surface 34 of the hub wheel 1, it is sufficient that at least the inner diameter surface 34 of the shaft portion fitting hole 20 a is an uncured portion, and the other inner diameter surface may be subjected to thermosetting treatment. Further, if the hardness difference is ensured, the region to be the “uncured portion” may be subjected to a heat curing treatment.

凸部32の高さは、圧入時に凸部32が凹部形成前のハブ輪1の軸部嵌合孔20aの内径面34に食い込み、かつ歯底39aが該内径面34と干渉しない寸法に設定する。すなわち、図2(a)に示すように、軸部嵌合孔20aの内径面34の内径寸法D1を、雄スプライン39の凸部32の最大外径寸法(雄スプライン39の歯先39bをとおる外接円の直径寸法)D2よりも小さく、雄スプライン39の歯底39aの最小外径寸法D3(雄スプライン39の歯底39aを結ぶ円の直径寸法)よりも大きくなるように設定する(D3<D1<D2)。   The height of the convex portion 32 is set to such a dimension that the convex portion 32 bites into the inner diameter surface 34 of the shaft portion fitting hole 20a of the hub wheel 1 before forming the concave portion and the tooth bottom 39a does not interfere with the inner diameter surface 34 at the time of press-fitting. To do. That is, as shown in FIG. 2A, the inner diameter D1 of the inner diameter surface 34 of the shaft portion fitting hole 20a is set to the maximum outer diameter of the convex portion 32 of the male spline 39 (the tooth tip 39b of the male spline 39). It is set to be smaller than the circumscribed circle diameter dimension D2 and larger than the minimum outer diameter dimension D3 of the tooth bottom 39a of the male spline 39 (diameter dimension of the circle connecting the tooth bottom 39a of the male spline 39) (D3 < D1 <D2).

ハブ輪1の熱処理終了後、ハブ輪1の軸心と等速自在継手3の外側継手部材4の軸心とを合わせた状態で、ハブ輪1の孔部20に外側継手部材4の軸部11を圧入する。この際、ハブ輪1の孔部20に圧入方向に沿って縮径するテーパ部20dを形成しているので、このテーパ部20dが圧入開始時のハブ輪1の孔部20と、外側継手部材4の軸部11との芯出しを行なう。また、軸部嵌合孔20aの内径寸法D1、凸部32の最大外径寸法D2、および雄スプライン39の歯底の最小外径寸法D3とが、前記のような関係であるので、軸部11をハブ輪1の軸部嵌合孔20aに圧入することにより、この凸部32がハブ輪1のインボード側端面の内径部に食い込み、ハブ輪1の肉を切り込む。軸部11を押し進めることで、ハブ輪1の軸部嵌合孔20aの内径面34が凸部32で切り出され、又は押出されて、内径面34に軸部11の凸部32に対応した形状の凹部33が形成される。また、軸部11の凸部32の硬度をハブ輪1の軸部嵌合孔20aの内径面34よりも20ポイント以上高くしているので、ハブ輪1の内径面34への凹部形成が容易となる。また、軸部側の硬度を高くすることで、軸部11の捩り強度を向上させることができる。   After the heat treatment of the hub wheel 1 is completed, the shaft portion of the outer joint member 4 is inserted into the hole 20 of the hub wheel 1 in a state where the shaft center of the hub wheel 1 and the shaft center of the outer joint member 4 of the constant velocity universal joint 3 are aligned. 11 is press-fitted. At this time, since the tapered portion 20d having a diameter reduced along the press-fitting direction is formed in the hole portion 20 of the hub wheel 1, the tapered portion 20d and the outer joint member of the hub wheel 1 at the start of press-fitting. Centering with the four shaft portions 11 is performed. Further, since the inner diameter dimension D1 of the shaft fitting hole 20a, the maximum outer diameter dimension D2 of the convex portion 32, and the minimum outer diameter dimension D3 of the tooth bottom of the male spline 39 are as described above, the shaft section 11 is press-fitted into the shaft fitting hole 20a of the hub wheel 1, so that the convex portion 32 bites into the inner diameter portion of the end surface on the inboard side of the hub wheel 1 and cuts the meat of the hub wheel 1. By pushing forward the shaft portion 11, the inner diameter surface 34 of the shaft portion fitting hole 20 a of the hub wheel 1 is cut out or extruded by the convex portion 32, and the shape corresponding to the convex portion 32 of the shaft portion 11 is formed on the inner diameter surface 34. A recess 33 is formed. In addition, since the hardness of the convex portion 32 of the shaft portion 11 is 20 points or more higher than the inner diameter surface 34 of the shaft portion fitting hole 20a of the hub wheel 1, it is easy to form a recess in the inner diameter surface 34 of the hub wheel 1. It becomes. Moreover, the torsional strength of the shaft portion 11 can be improved by increasing the hardness of the shaft portion side.

この圧入工程を経ることによって、図2(a),(b)に示すように、軸部11の凸部32で、これに嵌合する凹部33が形成される。凸部32が、ハブ輪1の内径面34に食い込んでいくことによって、孔部20が僅かに拡径した状態となり、凸部32の軸方向の移動を許容する。その一方で、軸方向の移動が停止すれば、内径面34が元の径に戻ろうとして縮径することになる。言い換えれば、凸部32の圧入時にハブ輪1が外径方向に弾性変形し、この弾性変形分の予圧が凸部32のうち、凹部33と嵌合する部分の表面に付与される。このため、凹部33は、その軸方向全体に亘って凸部32の表面と密着する。これによって凹凸嵌合構造Mが構成される。   By passing through this press-fitting process, as shown in FIGS. 2A and 2B, a concave portion 33 that fits into the convex portion 32 of the shaft portion 11 is formed. When the convex portion 32 bites into the inner diameter surface 34 of the hub wheel 1, the hole portion 20 is slightly expanded in diameter, and the convex portion 32 is allowed to move in the axial direction. On the other hand, if the movement in the axial direction stops, the inner diameter surface 34 is reduced in diameter to return to the original diameter. In other words, when the convex portion 32 is press-fitted, the hub wheel 1 is elastically deformed in the outer diameter direction, and a preload corresponding to the elastic deformation is applied to the surface of a portion of the convex portion 32 that fits into the concave portion 33. For this reason, the recessed part 33 closely_contact | adheres to the surface of the convex part 32 over the whole axial direction. Thereby, the concave-convex fitting structure M is configured.

また、軸部11の圧入に伴い、ハブ輪1側で塑性変形が生じるため、凹部33の表面には加工硬化が生じる。このため、凹部33側のハブ輪1の内径面34が硬化して、回転トルク伝達性の向上を図ることができる。   Further, as the shaft portion 11 is press-fitted, plastic deformation occurs on the hub wheel 1 side, so that work hardening occurs on the surface of the recess 33. For this reason, the inner diameter surface 34 of the hub wheel 1 on the concave portion 33 side is hardened, and the rotational torque transmission can be improved.

テーパ部20dは、軸部11の圧入を開始する際のガイドとして機能させることができる。そのため、ハブ輪1の孔部20に対して外側継手部材4の軸部11を、芯ずれを生じさせることなく圧入させることができる。   The tapered portion 20d can function as a guide when starting press-fitting of the shaft portion 11. Therefore, the shaft portion 11 of the outer joint member 4 can be pressed into the hole portion 20 of the hub wheel 1 without causing misalignment.

このテーパ部20dのアウトボード側には、図3及び図7に示すように、円周方向に沿って所定ピッチでガイド用凹部40が設けられている。このガイド用凹部40に軸部11の凸部32を嵌合させることで、圧入開始時に凸部32の位置決めを行うことができる。なお、ガイド用凹部40に凸部32を嵌合させた状態で、ガイド用凹部40と凸部32との間には、凸部32の円周方向移動及び径方向移動を許容する程度の僅かな隙間が形成される。なお、このガイド用凹部40は、後述するように、外側継手部材4とハブ輪1を一旦分離した後に、ハブ輪1に外側継手部材4の軸部11を再圧入して両者を再結合する場合にも利用される。この場合、ガイド用凹部40は、再圧入時の凸部32の位相と凹部33の位相を一致させるために利用される。   As shown in FIGS. 3 and 7, guide recesses 40 are provided on the outboard side of the tapered portion 20d at a predetermined pitch along the circumferential direction. By fitting the convex portion 32 of the shaft portion 11 into the guide concave portion 40, the convex portion 32 can be positioned at the start of press-fitting. In addition, with the convex portion 32 fitted in the guide concave portion 40, a slight amount is allowed between the guide concave portion 40 and the convex portion 32 to allow the circumferential movement and radial movement of the convex portion 32. Gaps are formed. As will be described later, the guide recess 40 once separates the outer joint member 4 and the hub wheel 1, and then press-fits the shaft portion 11 of the outer joint member 4 to the hub wheel 1 to recombine them. Also used in cases. In this case, the guide recess 40 is used to make the phase of the projection 32 and the phase of the recess 33 coincide with each other at the time of re-pressing.

凹凸嵌合構造Mは、極力、軸受2の軌道面23、24、25、26の内径側を避けて配置することが求められる。特に内側軌道面23、24上における接触角が通る線との交点の内径側を避け、これらの交点の間の軸方向一部領域に凹凸嵌合構造Mを形成することが望まれる。これにより、軸受軌道面におけるフープ応力の発生を抑えることができる。従って、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受を提供することができる。   The concave / convex fitting structure M is required to be arranged so as to avoid the inner diameter side of the raceway surfaces 23, 24, 25, and 26 of the bearing 2 as much as possible. In particular, it is desirable to avoid the inner diameter side of the intersection with the line through which the contact angle passes on the inner raceway surfaces 23 and 24, and to form the concave / convex fitting structure M in a partial region in the axial direction between these intersections. Thereby, generation | occurrence | production of the hoop stress in a bearing raceway surface can be suppressed. Therefore, it is possible to prevent bearing failures such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing can be provided.

外側継手部材4の軸部11をハブ輪1の孔部20に圧入する際には、図5に示すように、外側継手部材4のマウス部10の外径面に設けられた段差面41に、圧入用治具Kを係合させて、この圧入用治具Kから段差面41に圧入荷重(軸方向荷重)を付与すればよい。なお、段差面41としては周方向全周に設けても、周方向に沿って所定ピッチで設けてもよい。使用する圧入用治具も、これらの段差面41の形状に対応して軸方向荷重を付与できるものであればよい。   When the shaft portion 11 of the outer joint member 4 is press-fitted into the hole 20 of the hub wheel 1, as shown in FIG. 5, the stepped surface 41 provided on the outer diameter surface of the mouth portion 10 of the outer joint member 4 is formed. The press-fitting jig K may be engaged, and a press-fitting load (axial load) may be applied from the press-fitting jig K to the step surface 41. In addition, as the level | step difference surface 41, you may provide in the circumferential direction whole periphery, or may provide with a predetermined pitch along the circumferential direction. The press-fitting jig to be used only needs to be able to apply an axial load corresponding to the shape of these stepped surfaces 41.

そして、外側継手部材4の軸部11をハブ輪1の孔部20に圧入して上記の凹凸嵌合構造Mを形成した後に、図1に示すように、軸部11のボルト孔36にボルト部材37を螺着する。この状態で、非ネジ部37b2が貫通孔38に挿通された状態である。また、この状態で、ボルト部材37の頭部37aの座面37a1が、内壁20eのアウトボード側の端面に設けられたボルト受け面20e1に当接し、ボルト部材37による固定力が外側継手部材4の軸部11に作用する。   Then, after the shaft portion 11 of the outer joint member 4 is press-fitted into the hole portion 20 of the hub wheel 1 to form the concave / convex fitting structure M, a bolt is inserted into the bolt hole 36 of the shaft portion 11 as shown in FIG. The member 37 is screwed. In this state, the non-screw portion 37b2 is inserted through the through hole 38. Further, in this state, the seating surface 37a1 of the head portion 37a of the bolt member 37 abuts on the bolt receiving surface 20e1 provided on the end surface on the outboard side of the inner wall 20e, and the fixing force by the bolt member 37 is increased by the outer joint member 4. Acts on the shaft portion 11 of the.

この場合、貫通孔38の孔径とボルト部材37の非ネジ部37b2の軸径との径差をΔdとし、凹凸嵌合構造Mにおける外側継手部材4の軸部11の外径と凹凸嵌合構造Mにおけるハブ輪1の内径との径差をΔd2としたときに、0<Δd<Δd2とする。詳述すれば、凹凸嵌合構造Mにおける外側継手部材4の軸部11の外径は、図2(a)に例示する凸部32の最大外径寸法D2であり、凹凸嵌合構造Mにおけるハブ輪1の内径は、図2(a)に例示する内径面34の内径寸法D1である。   In this case, the diameter difference between the hole diameter of the through hole 38 and the shaft diameter of the non-threaded portion 37b2 of the bolt member 37 is Δd, and the outer diameter of the shaft portion 11 of the outer joint member 4 in the uneven fitting structure M and the uneven fitting structure. When the diameter difference from the inner diameter of the hub wheel 1 at M is Δd2, 0 <Δd <Δd2. More specifically, the outer diameter of the shaft portion 11 of the outer joint member 4 in the concave-convex fitting structure M is the maximum outer diameter D2 of the convex portion 32 illustrated in FIG. The inner diameter of the hub wheel 1 is an inner diameter dimension D1 of the inner diameter surface 34 illustrated in FIG.

仮に、ボルト部材37の頭部37aの座面37a1と、ハブ輪1のボルト受け面20e1との接触状態が不適正であると、ボルト部材37の座面37a1の一部がボルト受け面20e1に局所的に圧接され、ボルト受け面20e1に圧痕や磨耗が生じやすくなる。このような圧痕等は、ボルト部材37の固定力の低下を招く。そこで、このボルト受け面20e1の軸部嵌合孔20aの内径面34に対する直角度を管理対象として設定し、この直角度として、0.1mm以下の許容値を付与した。また、この実施形態では、この直角度に加えて、ボルト受け面20e1の平面度を管理対象として設定し、この平面度として0.1mm以下の許容値を付与した。   If the contact state between the seating surface 37a1 of the head portion 37a of the bolt member 37 and the bolt receiving surface 20e1 of the hub wheel 1 is inappropriate, a part of the seating surface 37a1 of the bolt member 37 becomes the bolt receiving surface 20e1. The contact is locally made and the indentation and wear are likely to occur on the bolt receiving surface 20e1. Such indentation or the like causes a decrease in the fixing force of the bolt member 37. Accordingly, the perpendicularity of the bolt receiving surface 20e1 with respect to the inner diameter surface 34 of the shaft portion fitting hole 20a is set as a management target, and an allowable value of 0.1 mm or less is given as this perpendicularity. In this embodiment, in addition to this squareness, the flatness of the bolt receiving surface 20e1 is set as a management target, and an allowable value of 0.1 mm or less is given as this flatness.

これにより、ボルト部材37を軸部11のボルト孔36に螺着した状態で、ボルト部材37がボルト受け面20e1に対して不当に傾斜することがなくなる。すなわち、ボルト部材37の座面37a1がボルト受け面20e1と平行にならずに、座面37a1の一部がボルト受け面20e1に片当たりするなどして、ボルト部材37の座面37a1とボルト受け面20e1との間の接触状態が不適正になるという事態を防止することができる。したがって、ボルト部材37の頭部37aの座面37a1と、ハブ輪1のボルト受け面20e1との接触状態の最適化が図られ、ボルト部材37により外側継手部材4とハブ輪1との安定した結合状態を維持することが可能となる。その結果、長期に亘って安定したトルク伝達を行うことが可能となる。また、ボルト部材37の緩みが生じ難くなるので、ハブ輪1と外側継手部材4との相対的な位置関係が不当に変化することがない。よって、凹凸嵌合構造Mのインボード側およびアウトボード側のシール性を長期間に亘って維持することができるので、泥水等の異物の浸入を的確に防止し続けることが可能となり、実用上も極めて好ましいものとなる。   Accordingly, the bolt member 37 is not unduly inclined with respect to the bolt receiving surface 20e1 in a state where the bolt member 37 is screwed into the bolt hole 36 of the shaft portion 11. That is, the seat surface 37a1 of the bolt member 37 is not parallel to the bolt receiving surface 20e1, and a part of the seat surface 37a1 comes into contact with the bolt receiving surface 20e1. A situation in which the contact state with the surface 20e1 becomes inappropriate can be prevented. Therefore, the contact state between the seat surface 37a1 of the head portion 37a of the bolt member 37 and the bolt receiving surface 20e1 of the hub wheel 1 is optimized, and the bolt member 37 stabilizes the outer joint member 4 and the hub wheel 1 stably. It becomes possible to maintain the coupled state. As a result, stable torque transmission can be performed over a long period of time. In addition, since the bolt member 37 is less likely to be loosened, the relative positional relationship between the hub wheel 1 and the outer joint member 4 does not unduly change. Therefore, since the sealing performance on the inboard side and the outboard side of the concavo-convex fitting structure M can be maintained over a long period of time, it becomes possible to continue to prevent intrusion of foreign matters such as muddy water, and practically. Is also extremely preferable.

なお、図1に示すように、ボルト受け面20e1には、熱硬化処理を施して硬化層H2を形成してもよい。この硬化層H2の形成範囲は、少なくともボルト部材37の座面37a1が当接する領域を含んでいる。この実施形態では、硬化層H2の形成領域は、貫通孔38のアウトボード側の開口縁から、ボルト受け面20e1及びテーパ孔20bの連結部に至るまでの連続した領域とされている。この場合、硬化層H2の表面硬さが50HRC以上になるようにすることが好ましい。また、熱硬化処理としては、浸炭焼入れ等の種々の焼入れを採用することができるが、部分焼入れが容易である等の理由から高周波焼入れを採用することが好ましい。   In addition, as shown in FIG. 1, you may perform the thermosetting process in the bolt receiving surface 20e1, and may form the hardened layer H2. The formation range of the hardened layer H2 includes at least a region where the seating surface 37a1 of the bolt member 37 abuts. In this embodiment, the formation region of the hardened layer H2 is a continuous region from the opening edge of the through hole 38 on the outboard side to the connecting portion of the bolt receiving surface 20e1 and the tapered hole 20b. In this case, it is preferable that the surface hardness of the hardened layer H2 is 50 HRC or more. As the thermosetting treatment, various quenching methods such as carburizing and quenching can be employed. However, induction quenching is preferably employed for the reason that partial quenching is easy.

以上に述べた凹凸嵌合構造Mでは、凸部32と凹部33との嵌合部位全体が密着しているので、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生もない。   In the concave / convex fitting structure M described above, since the entire fitting portion between the convex portion 32 and the concave portion 33 is in close contact, there is no gap in which play occurs in the radial direction and the circumferential direction. For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

また、凹部33が形成される部材(この場合、ハブ輪1)には、雌スプライン等を予め形成しておく必要がない。従って、生産性に優れ、かつスプライン同士の位相合わせを必要としないことから組立性の向上を図ることができる。さらに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。また、ハブ輪1の内径側は比較的軟らかいため、ハブ輪1の凹部は、軸部11の凸部32と高い密着性をもって嵌合する。そのため、径方向及び円周方向におけるガタの防止により一層有効となる。   Further, it is not necessary to previously form a female spline or the like on the member in which the recess 33 is formed (in this case, the hub wheel 1). Therefore, the productivity is excellent and the phase alignment between the splines is not required, so that the assemblability can be improved. Furthermore, damage to the tooth surface during press-fitting can be avoided, and a stable fitting state can be maintained. Moreover, since the inner diameter side of the hub wheel 1 is relatively soft, the concave portion of the hub wheel 1 is fitted with the convex portion 32 of the shaft portion 11 with high adhesion. Therefore, it becomes more effective by preventing play in the radial direction and the circumferential direction.

また、以上に述べた車輪用軸受装置では、凹凸嵌合構造Mのインボード側およびアウトボード側をそれぞれシールしているので、凹凸嵌合構造Mへの軸方向両端側からの雨水や異物の侵入が防止され、凸部32と凹部33との密着性を長期間安定して維持することが可能となる。   Further, in the wheel bearing device described above, since the inboard side and the outboard side of the concave / convex fitting structure M are sealed, rainwater and foreign matter from both ends in the axial direction to the concave / convex fitting structure M are prevented. Intrusion is prevented, and the adhesion between the convex portion 32 and the concave portion 33 can be stably maintained for a long period of time.

ハブ輪1に対して外側継手部材4の軸部11を圧入する際には、図3に示すように、凸部32の切り出しまたは押し出し作用で凹部33から材料がはみ出し、はみ出し部42が形成される。このはみ出し部42は、凸部32のうち、凹部33と嵌合する部分の容積に相当する量が生じる。このはみ出し部42を放置すれば、これが脱落して車両の内部に入り込むおそれがある。そこで、同図に示すように、軸部11の外径面に、はみ出し部42を収納するポケット部43を形成し、はみ出し部42をこのポケット部43内に収容するようにしている。詳述すると、このポケット部43は、例えば軸部11の雄スプライン39よりもアウトボード側の外径面に周方向溝44を設けることによって形成することができる。また、ポケット部43は、例えば凸部32の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することができる。   When the shaft portion 11 of the outer joint member 4 is press-fitted into the hub wheel 1, as shown in FIG. 3, the material protrudes from the concave portion 33 by the cutting or pushing action of the convex portion 32, and the protruding portion 42 is formed. The The protruding portion 42 has an amount corresponding to the volume of the portion of the convex portion 32 that fits into the concave portion 33. If the protruding portion 42 is left unattended, it may fall off and enter the vehicle. Therefore, as shown in the figure, a pocket portion 43 for accommodating the protruding portion 42 is formed on the outer diameter surface of the shaft portion 11, and the protruding portion 42 is accommodated in the pocket portion 43. Specifically, the pocket portion 43 can be formed, for example, by providing a circumferential groove 44 on the outer diameter surface on the outboard side of the male spline 39 of the shaft portion 11. Moreover, the pocket part 43 can be formed by cutting simultaneously, for example, when finishing the press-fitting start side end surface of the convex part 32 by cutting.

次に、以上のような凹凸嵌合構造Mによって連結された外側継手部材4とハブ輪1を分離する手順、並びに、分離した外側継手部材4とハブ輪1を再結合する手順を順に説明する。   Next, a procedure for separating the outer joint member 4 and the hub wheel 1 connected by the uneven fitting structure M as described above, and a procedure for reconnecting the separated outer joint member 4 and the hub wheel 1 will be described in order. .

外側継手部材4とハブ輪1を分離する際には、図1に示す状態から、ボルト部材37を取外した後、ハブ輪1と外側継手部材4の間に凹凸嵌合構造Mの嵌合力以上の引抜き力を与えてハブ輪1から外側継手部材4を引き抜く。この引き抜きは、図6に示すような治具45を用いて行うことができる。治具45は、基盤46と、この基盤46のボルト孔47に螺合する押圧用ボルト部材48と、軸部11のボルト孔36に螺合されるネジ軸49とを備える。基盤46には貫通孔50が設けられ、この貫通孔50にハブ輪1のハブボルト31が挿通され、ナット部材51がこのハブボルト31に螺合される。この際、基盤46とハブ輪1のフランジ19とが重ね合わされて、基盤46がハブ輪1に取り付けられる。   When the outer joint member 4 and the hub wheel 1 are separated, the bolt member 37 is removed from the state shown in FIG. 1 and then the fitting force of the concave-convex fitting structure M between the hub wheel 1 and the outer joint member 4 is exceeded. The outer joint member 4 is pulled out from the hub wheel 1 by applying a pulling force. This extraction can be performed using a jig 45 as shown in FIG. The jig 45 includes a base 46, a pressing bolt member 48 that is screwed into the bolt hole 47 of the base 46, and a screw shaft 49 that is screwed into the bolt hole 36 of the shaft portion 11. A through hole 50 is provided in the base 46, and the hub bolt 31 of the hub wheel 1 is inserted into the through hole 50, and the nut member 51 is screwed into the hub bolt 31. At this time, the base 46 and the flange 19 of the hub wheel 1 are overlapped, and the base 46 is attached to the hub wheel 1.

このように、基盤46をハブ輪1に取り付けた後、ネジ軸49が内壁20eからアウトボード側へ突出するように、軸部11のボルト孔36にネジ軸49を螺合させる。このネジ軸49の突出量は、凹凸嵌合構造Mの軸方向長さよりも長く設定される。また、ネジ軸49と、押圧用ボルト部材48とは、同一軸心上に配設される。   Thus, after attaching the base 46 to the hub wheel 1, the screw shaft 49 is screwed into the bolt hole 36 of the shaft portion 11 so that the screw shaft 49 protrudes from the inner wall 20e to the outboard side. The protruding amount of the screw shaft 49 is set longer than the axial length of the concave-convex fitting structure M. The screw shaft 49 and the pressing bolt member 48 are disposed on the same axis.

その後は、押圧用ボルト部材48をアウトボード側から基盤46のボルト孔47に螺着し、この状態で、矢印方向にボルト部材48を螺進させる。この際、ネジ軸49と、押圧用ボルト部材48とは、同一軸心上に配設されているので、ボルト部材48がネジ軸49をインボード側に押圧する。これによって、外側継手部材4がハブ輪1に対してインボード側へ移動して、ハブ輪1から外側継手部材4が外れ、凹凸嵌合構造Mが分離状態となる。これにより車輪用軸受装置が軸受側と等速自在継手側とに分離されるので、軸受側および等速自在継手側の一方または双方について補修作業を行うことができる。   Thereafter, the pressing bolt member 48 is screwed into the bolt hole 47 of the base 46 from the outboard side, and in this state, the bolt member 48 is screwed in the direction of the arrow. At this time, since the screw shaft 49 and the pressing bolt member 48 are disposed on the same axis, the bolt member 48 presses the screw shaft 49 toward the inboard side. Thereby, the outer joint member 4 moves to the inboard side with respect to the hub wheel 1, the outer joint member 4 is detached from the hub wheel 1, and the uneven fitting structure M is separated. Thereby, since the wheel bearing device is separated into the bearing side and the constant velocity universal joint side, the repair work can be performed on one or both of the bearing side and the constant velocity universal joint side.

また、ハブ輪1から外側継手部材4が外れた状態からは、例えば、ボルト部材37を使用して再度、ハブ輪1の孔部20に外側継手部材4の軸部11を圧入し、凹凸嵌合構造Mを再構成することができる。すなわち、ハブ輪1から基盤46を取外すとともに、軸部11からネジ軸49を取外した状態として、図7(a)に示すように、軸部11の凸部32をガイド用凹部40に嵌合させる。これによって、軸部11側の凸部32と、前回の圧入によって形成されたハブ輪1の凹部33との位相が合う。   Further, after the outer joint member 4 is detached from the hub wheel 1, the shaft portion 11 of the outer joint member 4 is press-fitted into the hole 20 of the hub wheel 1 again using, for example, the bolt member 37, and the uneven fitting is performed. The combined structure M can be reconstructed. That is, the base 46 is removed from the hub wheel 1 and the screw shaft 49 is removed from the shaft 11, and the projection 32 of the shaft 11 is fitted into the guide recess 40 as shown in FIG. Let Thereby, the phase of the convex part 32 by the side of the axial part 11 and the recessed part 33 of the hub ring 1 formed by the last press-fitting suits.

この状態で、図8に示すように、ボルト部材37をハブ輪1の貫通孔38を介して軸部11のボルト孔36に螺合させ、ボルト部材37をボルト孔36に対して螺進させる。これによって、図7(b)に示すように、軸部11がハブ輪1内へ嵌入していく。この際、孔部20が僅かに拡径した状態となって、軸部11の軸方向の進入を許容し、加締部29の端面29aに外側継手部材4のマウス部10のバック面10aが当接するまで進入する。この場合、同時に図7(c)に示すように、凸部32の端面が凹部33の端面に当接する。そして、このように軸方向の移動が停止すれば、孔部20が元の径に戻ろうとして縮径する。これによって、前回の圧入と同様、凸部32の嵌合部位全体が対応する凹部33に対して密着する凹凸嵌合構造Mが再度構成され、外側継手部材4とハブ輪1が再結合される。以上に述べたハブ輪1と外側継手部材4の分離、および再結合は、図6および図8に示すように、軸受2の外方部材27を車両のナックル52に取り付けたままの状態で行うことができる。   In this state, as shown in FIG. 8, the bolt member 37 is screwed into the bolt hole 36 of the shaft portion 11 through the through hole 38 of the hub wheel 1, and the bolt member 37 is screwed into the bolt hole 36. . Thereby, as shown in FIG. 7B, the shaft portion 11 is fitted into the hub wheel 1. At this time, the hole portion 20 is slightly expanded in diameter, allowing the shaft portion 11 to enter in the axial direction, and the back surface 10a of the mouth portion 10 of the outer joint member 4 is formed on the end surface 29a of the crimping portion 29. Enter until it touches. In this case, at the same time, as shown in FIG. 7C, the end surface of the convex portion 32 comes into contact with the end surface of the concave portion 33. And if the movement of an axial direction stops in this way, the hole 20 will reduce in diameter so that it may return to the original diameter. As a result, similar to the previous press-fitting, the concave / convex fitting structure M in which the entire fitting portion of the convex portion 32 is in close contact with the corresponding concave portion 33 is formed again, and the outer joint member 4 and the hub wheel 1 are re-coupled. . Separation and recombination of the hub wheel 1 and the outer joint member 4 described above are performed with the outer member 27 of the bearing 2 attached to the knuckle 52 of the vehicle as shown in FIGS. 6 and 8. be able to.

1回目(孔部20の内径面34に凹部33を成形する圧入)の圧入では、圧入荷重が比較的大きいので、軸部11の圧入に際しては、プレス機等を使用する必要がある。これに対して、このような再度の圧入では、圧入荷重が1回目の圧入荷重よりも小さいため、プレス機等を使用することなく、安定して正確に軸部11をハブ輪1の孔部20に圧入することができる。このため、現場での外側継手部材4とハブ輪1との分離・連結が可能となる。   In the first press-fitting (press-fitting to form the recess 33 in the inner diameter surface 34 of the hole 20), the press-fitting load is relatively large. Therefore, when the shaft part 11 is press-fitted, it is necessary to use a press machine or the like. On the other hand, in such re-pressing, since the press-fitting load is smaller than the first press-fitting load, the shaft portion 11 can be stably and accurately inserted into the hole of the hub wheel 1 without using a press machine or the like. 20 can be press-fitted. For this reason, the outer joint member 4 and the hub wheel 1 can be separated and connected in the field.

また、貫通孔38の孔径とボルト部材37の非ネジ部37b2の軸径との径差をΔdとし、凹凸嵌合構造Mにおける外側継手部材4の軸部11の外径と凹凸嵌合構造Mにおけるハブ輪1の内径との径差をΔd2としたときに、0<Δd<Δd2としている。このため、貫通孔38が外側継手部材4の軸部11の再圧入時にボルト部材37をガイドするので、芯ずれすることなく、軸部11をハブ輪1の孔部20に案内することができる。このため、安定した再圧入が可能であり、再組立性の向上を図ることができる。   Further, the difference in diameter between the hole diameter of the through hole 38 and the shaft diameter of the non-threaded portion 37b2 of the bolt member 37 is Δd, and the outer diameter of the shaft portion 11 of the outer joint member 4 in the uneven fitting structure M and the uneven fitting structure M. When the diameter difference from the inner diameter of the hub wheel 1 is Δd2, 0 <Δd <Δd2. For this reason, since the through hole 38 guides the bolt member 37 when the shaft portion 11 of the outer joint member 4 is re-pressed, the shaft portion 11 can be guided to the hole portion 20 of the hub wheel 1 without misalignment. . For this reason, stable re-press fitting is possible, and improvement in reassembly can be achieved.

凹凸嵌合構造Mを再構成する際、凸部32が分離前に噛み合っていた凹部33と再度嵌合することは稀であり、分離前とは円周方向にずれた異なる凹部33に嵌合する場合が多い。その場合、円周方向の一部領域では、凸部32と凹部33の円周方向の位相が合致せず、圧入作業に支障を来し、あるいは圧入できても何れかの凸部32の歯面と凹部33との間に隙間が形成される場合がある。これに対して、雄スプライン39の凸部32の隣接ピッチ誤差を管理対象に設定し、このピッチ誤差を0.1mm(望ましくは0.06mm)以下に設定すれば、各凸部32のピッチが略一定となるので、たとえ分離前と異なる凹部33に凸部32が圧入されたとしても、各凸部32を凹部33にスムーズに圧入することができ、かつ凸部32と凹部33との間に隙間が形成されることがない。その結果、効率よく凹凸嵌合構造Mを再構成することができ、再結合後のハブ輪1と外側継手部材4との間の捩り強度の低下やガタの発生を抑制することができる。   When reconstructing the concave-convex fitting structure M, it is rare that the convex portion 32 is re-fitted with the concave portion 33 that has been engaged before separation, and the concave portion 33 is fitted in a different concave portion 33 that is shifted in the circumferential direction from that before separation. There are many cases to do. In that case, in a partial region in the circumferential direction, the phases of the circumferential direction of the convex portion 32 and the concave portion 33 do not match each other, which interferes with the press-fitting operation or can be press-fitted. A gap may be formed between the surface and the recess 33. On the other hand, if the adjacent pitch error of the convex part 32 of the male spline 39 is set as a management target and this pitch error is set to 0.1 mm (preferably 0.06 mm) or less, the pitch of each convex part 32 is Since the protrusions 32 are pressed into the recesses 33 different from those before separation, the protrusions 32 can be smoothly pressed into the recesses 33 and between the protrusions 32 and 33. No gap is formed in As a result, the concave-convex fitting structure M can be efficiently reconfigured, and a reduction in torsional strength and backlash between the hub wheel 1 and the outer joint member 4 after reconnection can be suppressed.

ここでいう「隣接ピッチ誤差」は、JISB1702の「平歯車及びはすば歯車の精度」に規定された隣接ピッチ誤差の概念を流用したものである。JISB1702において、「隣接ピッチ誤差」は、“ピッチ円上の隣り合った二つのピッチの差”、と定義されている。凹凸嵌合構造Mにおいては、図4に示すように、凸部32の高さ方向の中間点を通る円をピッチ円Cpとする。従って、凸部32のピッチ円Cp上の隣り合った二つのピッチP1,P2の差が本発明でいう「隣接ピッチ誤差」となる。隣接ピッチ誤差が上記規定値以下であるか否かは、雄スプライン39のアウトボード側端部において、任意の隣接する二つのピッチを測定することで判定される。   The “adjacent pitch error” here is a diversion of the concept of the adjacent pitch error defined in “Accuracy of spur gears and helical gears” of JIS B1702. In JISB1702, “adjacent pitch error” is defined as “the difference between two adjacent pitches on a pitch circle”. In the concavo-convex fitting structure M, as shown in FIG. 4, a circle passing through an intermediate point in the height direction of the convex portion 32 is defined as a pitch circle Cp. Accordingly, the difference between the two adjacent pitches P1 and P2 on the pitch circle Cp of the convex portion 32 is the “adjacent pitch error” in the present invention. Whether or not the adjacent pitch error is equal to or less than the specified value is determined by measuring two adjacent pitches on the outboard side end of the male spline 39.

図2(a),(b)に示す雄スプライン39では、一例として、凸部32のピッチと凹部33のピッチとが同一値に設定されている。このため、図2(b)に示すように、凸部32の高さ方向の中間部において、凸部32の周方向厚さLと、隣接する凸部間の溝幅L0とがほぼ同一となっている。   In the male spline 39 shown in FIGS. 2A and 2B, as an example, the pitch of the convex portions 32 and the pitch of the concave portions 33 are set to the same value. For this reason, as shown in FIG. 2B, the circumferential thickness L of the convex portion 32 and the groove width L0 between the adjacent convex portions are substantially the same in the intermediate portion in the height direction of the convex portion 32. It has become.

これに対して、図9(a)に示すように、凸部32の高さ方向の中間部において、凸部32の周方向厚さL2を、隣接する凸部間の溝幅L1よりも小さくしてもよい。換言すれば、凸部32の高さ方向の中間部において、軸部11側の凸部32の周方向厚さ(歯厚)L2を、ハブ輪1側の突出部分53の周方向厚さ(歯厚)L1よりも小さくする。   On the other hand, as shown in FIG. 9A, the circumferential thickness L2 of the convex portion 32 is smaller than the groove width L1 between the adjacent convex portions at the intermediate portion in the height direction of the convex portion 32. May be. In other words, at the intermediate portion in the height direction of the convex portion 32, the circumferential thickness (tooth thickness) L2 of the convex portion 32 on the shaft portion 11 side is set to the circumferential thickness of the protruding portion 53 on the hub wheel 1 side ( Tooth thickness) is smaller than L1.

各凸部32において上記関係を満たすことにより、軸部11側の凸部32の周方向厚さL2の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の突出部分53の周方向厚さの総和Σ(A1+A2+A3+・・・)よりも小さく設定することが可能となる。これによって、ハブ輪1側の突出部分53のせん断面積を大きくすることができ、捩り強度を確保することができる。しかも、凸部32の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。   By satisfying the above relationship in each convex portion 32, the total sum Σ (B1 + B2 + B3 +...) Of the circumferential thickness L2 of the convex portion 32 on the shaft portion 11 side is set to the circumferential thickness of the protruding portion 53 on the hub wheel 1 side. Can be set smaller than the total sum Σ (A1 + A2 + A3 +...). As a result, the shear area of the protruding portion 53 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 32 is small, a press-fit load can be made small and a press-fit property can be aimed at.

この場合、全ての凸部32と突出部分53について、L2<L1の関係を満足させる必要はなく、凸部32における周方向厚さの総和がハブ輪1側の突出部分53における周方向厚さの総和よりも小さくなる限り、一部の凸部32と突出部分53については、L2=L1とし、あるいはL2>L1に設定することができる。   In this case, it is not necessary to satisfy the relationship of L2 <L1 for all the convex portions 32 and the protruding portions 53, and the sum of the circumferential thicknesses of the convex portions 32 is the circumferential thickness of the protruding portion 53 on the hub wheel 1 side. As long as it is smaller than the sum of the above, some of the convex portions 32 and the protruding portions 53 can be set to L2 = L1 or L2> L1.

図9(a)では、凸部32を断面台形に形成しているが、図9(b)に示すように、インボリュート形状の断面に形成することもできる。   In FIG. 9A, the convex portion 32 is formed in a trapezoidal cross section, but may be formed in an involute-shaped cross section as shown in FIG. 9B.

以上の実施形態では、軸部11に雄スプライン39を形成することで、軸部側に凸部32を形成した場合を例示しているが、これとは逆に、図10(a),(b)に示すように、ハブ輪1の孔部20の内径面に雌スプライン54を形成することで、ハブ輪1側に凸部32を形成してもよい。この場合、軸部11に雄スプライン39を形成した場合と同様に、例えば、ハブ輪1に雌スプライン54に熱硬化処理を施し、軸部11の外径面は未焼き状態とする等の手段で、ハブ輪1の凸部32の硬度を軸部の外径面よりもHRCで20ポイント以上硬くする。雌スプライン54は、公知のブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することができる。熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   In the above embodiment, the case where the convex part 32 is formed on the shaft part side by forming the male spline 39 on the shaft part 11 is illustrated, but conversely, FIG. As shown in b), a convex portion 32 may be formed on the hub wheel 1 side by forming a female spline 54 on the inner diameter surface of the hole 20 of the hub wheel 1. In this case, as in the case where the male spline 39 is formed on the shaft portion 11, for example, a means for subjecting the hub wheel 1 to thermosetting treatment on the female spline 54 and making the outer diameter surface of the shaft portion 11 unburned, etc. Thus, the hardness of the convex portion 32 of the hub wheel 1 is made 20 points or more harder than the outer diameter surface of the shaft portion by HRC. The female spline 54 can be formed by various processing methods such as known broaching, cutting, pressing, and drawing. As the thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed.

そして、軸部11をハブ輪1の孔部20に圧入すれば、ハブ輪1側の凸部32で、軸部11の外周面に凸部32と嵌合する凹部33が形成され、これによって、凸部32と凹部33の嵌合部位全体を密着させた凹凸嵌合構造Mが構成される。凸部32と凹部33の嵌合部位は、図10(b)に示す範囲Bである。軸部11の外周面よりも外径側で、かつ周方向に隣り合う凸部32間には隙間55が形成される。   Then, when the shaft portion 11 is press-fitted into the hole portion 20 of the hub wheel 1, the convex portion 32 on the hub wheel 1 side forms a concave portion 33 that fits the convex portion 32 on the outer peripheral surface of the shaft portion 11, thereby A concave-convex fitting structure M is formed in which the entire fitting portion of the convex portion 32 and the concave portion 33 is in close contact. The fitting part of the convex part 32 and the recessed part 33 is the range B shown in FIG.10 (b). A gap 55 is formed between the convex portions 32 that are on the outer diameter side of the outer peripheral surface of the shaft portion 11 and adjacent in the circumferential direction.

凸部32の高さは、圧入時に凸部32が凹部形成前の軸部11の外周面に食い込み、かつ歯底54bが該外周面と干渉しない寸法に設定する。すなわち、軸部11の外径寸法D4は、雌スプライン54の凸部32の最小内径寸法D5(雌スプライン54の歯先54aをとおる内接円の直径寸法)よりも大きく、雌スプライン54の最大内径寸法D6(雌スプライン54の歯底54bを結ぶ円の直径寸法)よりも小さく設定される(D5<D4<D6)。   The height of the convex portion 32 is set to such a size that the convex portion 32 bites into the outer peripheral surface of the shaft portion 11 before the concave portion is formed during press-fitting, and the tooth bottom 54b does not interfere with the outer peripheral surface. That is, the outer diameter dimension D4 of the shaft portion 11 is larger than the minimum inner diameter dimension D5 of the convex portion 32 of the female spline 54 (the diameter dimension of the inscribed circle passing through the tooth tip 54a of the female spline 54). It is set smaller than the inner diameter dimension D6 (diameter dimension of a circle connecting the tooth bottom 54b of the female spline 54) (D5 <D4 <D6).

なお、この場合であっても、圧入によってはみ出し部42が形成されるので、このはみ出し部42を収納するポケット部43を設けるのが好ましい。はみ出し部42は軸部11のインボード側に形成されるので、ポケット部43は、凹凸嵌合構造Mよりもインボード側で、かつハブ輪1側に設ける。このポケット部43は、例えばハブ輪1の孔部20における雌スプライン54よりもインボード側の内径面に周方向溝を設けることによって形成することができる。また、このポケット部43は、例えば凸部32の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成することができる。   Even in this case, since the protruding portion 42 is formed by press-fitting, it is preferable to provide a pocket portion 43 for storing the protruding portion 42. Since the protruding portion 42 is formed on the inboard side of the shaft portion 11, the pocket portion 43 is provided on the inboard side with respect to the uneven fitting structure M and on the hub wheel 1 side. This pocket portion 43 can be formed, for example, by providing a circumferential groove on the inner diameter surface on the inboard side of the female spline 54 in the hole portion 20 of the hub wheel 1. Moreover, this pocket part 43 can be formed by cutting simultaneously, for example, when finishing the press-fitting start side end surface of the convex part 32 by cutting.

このように、ハブ輪1の孔部20の内径面に凹凸嵌合構造Mの凸部32を設ける場合、軸部11側の熱硬化処理を行う必要がないので、等速自在継手3の外側継手部材4の生産性に優れる、という利点が得られる。   As described above, when the convex portion 32 of the concave-convex fitting structure M is provided on the inner diameter surface of the hole portion 20 of the hub wheel 1, it is not necessary to perform the thermosetting treatment on the shaft portion 11 side. The advantage that the productivity of the joint member 4 is excellent is obtained.

図10に示す実施形態においても、凹凸嵌合構造Mを効率的に再構成することができ、再構成後のハブ輪1と外側継手部材4との間の捩り強度の低下やガタの発生を抑制するため、雌スプライン54の凸部32の隣接ピッチ誤差を管理対象に設定し、このピッチ誤差を0.1mm(望ましくは0.06mm)以下に設定する。これにより、各凸部32のピッチが略一定となるので、たとえ分離前と異なる凹部33に凸部32が圧入されたとしても、各凸部32を凹部33にスムーズに圧入することができ、かつ凸部32と凹部33との間に隙間が形成されることがない。隣接ピッチ誤差は、図11に示すように、雌スプライン54の凸部32の高さ方向の中間点を通るピッチ円Cp’上の隣り合った二つのピッチP1’、P2’との差で定義される。   Also in the embodiment shown in FIG. 10, the concave-convex fitting structure M can be efficiently reconfigured, and a decrease in torsional strength and backlash between the hub wheel 1 and the outer joint member 4 after reconfiguration are caused. In order to suppress this, the adjacent pitch error of the convex portion 32 of the female spline 54 is set as a management target, and this pitch error is set to 0.1 mm (preferably 0.06 mm) or less. Thereby, since the pitch of each convex part 32 becomes substantially constant, even if the convex part 32 is press-fitted into the concave part 33 different from that before separation, each convex part 32 can be smoothly press-fitted into the concave part 33, In addition, no gap is formed between the convex portion 32 and the concave portion 33. As shown in FIG. 11, the adjacent pitch error is defined by the difference between two adjacent pitches P1 ′ and P2 ′ on the pitch circle Cp ′ passing through the intermediate point in the height direction of the convex portion 32 of the female spline 54. Is done.

図12は、本発明の実施形態に係る車輪用軸受装置の変形例を示す断面図である。同図に示す車輪用軸受装置が、図1に示す実施形態に係る車輪用軸受装置と相違するところは、ハブ輪1に内壁20eを一体的に設けずに、この内壁20eの代わりにリング体56をハブ輪1の孔部20に装着した点にある。すなわち、ハブ輪1の孔部20にリング嵌合用切欠部57を設け、このリング嵌合用切欠部57にリング体56を嵌合させている。この際、リング嵌合用切欠部57の切欠端面57aにリング体56が係合する。リング体56には、ボルト部材37が挿通される貫通孔58が形成される。   FIG. 12 is a cross-sectional view showing a modification of the wheel bearing device according to the embodiment of the present invention. The wheel bearing device shown in the figure is different from the wheel bearing device according to the embodiment shown in FIG. 1 in that the inner wall 20e is not integrally provided in the hub wheel 1, but a ring body is used instead of the inner wall 20e. 56 is attached to the hole 20 of the hub wheel 1. That is, a ring fitting notch 57 is provided in the hole 20 of the hub wheel 1, and the ring body 56 is fitted to the ring fitting notch 57. At this time, the ring body 56 is engaged with the notch end surface 57a of the ring fitting notch 57. A through-hole 58 through which the bolt member 37 is inserted is formed in the ring body 56.

このように貫通孔58をハブ輪1とは別部材のリング体56で形成すれば、貫通孔58を高精度に安定して形成することができる。また、リング体56が損傷等した場合にも交換することができ、ハブ輪1全体を交換する必要がなく、コスト低減を図ることができる。   Thus, if the through hole 58 is formed by the ring body 56 which is a member different from the hub wheel 1, the through hole 58 can be stably formed with high accuracy. Further, when the ring body 56 is damaged or the like, it can be replaced, and it is not necessary to replace the hub wheel 1 as a whole, and the cost can be reduced.

リング体56のアウトボード側の端面56aは、ボルト部材37の頭部37aの座面37a1が当接するボルト受け面として機能する。図1に示す実施形態と同様に、軸部嵌合孔20aの内径面34に対する、リング体56のアウトボード側の端面56aの直角度が管理対象として設定され、この直角度として0.1mm以下の許容値が付与されている。また、この直角度に加えて、リング体56のアウトボード側の端面56aの平面度が管理対象として設定され、この平面度として0.1mm以下の許容値が付与される。なお、この場合でも、ボルト部材37の頭部37aの座面37a1との接触を考慮すれば、上述した実施形態と同様に、リング体56のアウトボード側の端面56aの表面硬さは、50HRC以上とすることが好ましく、硬化方法としては高周波焼入れを採用することが好ましい。また、リング体56のアウトボード側の端面56aの一部をインボード側に窪ませて凹部を形成し、その凹部の底面でボルト受け面を構成してもよい。   The end surface 56a on the outboard side of the ring body 56 functions as a bolt receiving surface with which the seat surface 37a1 of the head portion 37a of the bolt member 37 abuts. As in the embodiment shown in FIG. 1, the perpendicularity of the end surface 56a on the outboard side of the ring body 56 with respect to the inner diameter surface 34 of the shaft portion fitting hole 20a is set as a management target, and this perpendicularity is 0.1 mm or less. Is allowed. In addition to this squareness, the flatness of the end surface 56a on the outboard side of the ring body 56 is set as a management target, and an allowable value of 0.1 mm or less is given as this flatness. Even in this case, if the contact with the seating surface 37a1 of the head portion 37a of the bolt member 37 is taken into consideration, the surface hardness of the end surface 56a on the outboard side of the ring body 56 is 50 HRC as in the above-described embodiment. It is preferable to use the above, and it is preferable to employ induction hardening as a curing method. Alternatively, a part of the end surface 56a on the outboard side of the ring body 56 may be recessed toward the inboard side to form a recess, and the bolt receiving surface may be configured by the bottom surface of the recess.

貫通孔58は、図1に示す実施形態の貫通孔38と同様に、その孔径とボルト部材37の非ネジ部37b2の軸径との径差をΔdとし、凹凸嵌合構造Mにおける外側継手部材4の軸部11の外径と凹凸嵌合構造Mにおけるハブ輪1の内径との径差をΔd2としたときに、0<Δd<Δd2とする。詳述すれば、凹凸嵌合構造Mにおける外側継手部材4の軸部11の外径は、図2(a)に例示する凸部32の最大外径寸法D2であり、凹凸嵌合構造Mにおけるハブ輪1の内径は、図2(a)に例示する内径面34の内径寸法D1である。これにより、貫通孔58は、前記実施形態の貫通孔38と同様に、外側継手部材4の軸部11を再圧入する際のガイドとして機能する。   As in the case of the through hole 38 of the embodiment shown in FIG. 1, the through hole 58 has a diameter difference between the hole diameter and the shaft diameter of the non-threaded portion 37 b 2 of the bolt member 37, and the outer joint member in the uneven fitting structure M. When the diameter difference between the outer diameter of the shaft portion 11 and the inner diameter of the hub wheel 1 in the concave-convex fitting structure M is Δd2, 0 <Δd <Δd2. More specifically, the outer diameter of the shaft portion 11 of the outer joint member 4 in the concave-convex fitting structure M is the maximum outer diameter D2 of the convex portion 32 illustrated in FIG. The inner diameter of the hub wheel 1 is an inner diameter dimension D1 of the inner diameter surface 34 illustrated in FIG. Thereby, the through-hole 58 functions as a guide at the time of re-pressing the axial part 11 of the outer joint member 4 similarly to the through-hole 38 of the said embodiment.

図12に示す車輪用軸受装置の他の構成は、図1に示す車輪用軸受装置と同様であるので、図1と同一部材を図1と同一の符号を附してそれらの説明を省略する。   Other configurations of the wheel bearing device shown in FIG. 12 are the same as those of the wheel bearing device shown in FIG. 1, and therefore, the same members as those in FIG. .

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能である。例えば、上記の実施形態では、凹凸嵌合構造Mの分離後に、同一の組のハブ輪1と外側継手部材4を再結合する場合を説明しているが、本発明はこれに限定されるものではない。すなわち、凹凸嵌合構造Mの分離後、ハブ輪1と外側継手部材4のうち凸部32を設けた一方を交換し、交換した部材の凸部32を、再使用する部材の凹部33に圧入して凹凸嵌合構造Mを再構成する場合にも適用可能である。この場合にも、スプラインの凸部32の隣接ピッチ誤差を管理対象に設定し、この隣接ピッチ誤差を0.1mm(望ましくは0.06mm)以下に設定する。これにより、交換作業後の凹凸嵌合構造Mの再構成をスムーズに行うことができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be variously modified. For example, in the above-described embodiment, the case where the hub wheel 1 and the outer joint member 4 of the same set are re-coupled after the uneven fitting structure M is separated has been described, but the present invention is limited to this. is not. That is, after separation of the uneven fitting structure M, one of the hub wheel 1 and the outer joint member 4 provided with the convex portion 32 is replaced, and the convex portion 32 of the replaced member is press-fitted into the concave portion 33 of the reused member. Thus, the present invention can also be applied to the case where the uneven fitting structure M is reconfigured. Also in this case, the adjacent pitch error of the convex part 32 of the spline is set as a management target, and this adjacent pitch error is set to 0.1 mm (preferably 0.06 mm) or less. Thereby, the uneven | corrugated fitting structure M after replacement | exchange operation | work can be performed smoothly.

また、上記実施形態では、軸方向に延びる凸部32を有するものとして、スプラインを例に説明したが、これに限定されるものではなく、例えばセレーションであってもよい。   Moreover, in the said embodiment, although the spline was demonstrated as an example as having the convex part 32 extended in an axial direction, it is not limited to this, For example, a serration may be sufficient.

また、上記の実施形態では、マウス部10のバック面10aをハブ輪1の端部(上記の実施形態では加締部29の端面29a)と接触させた場合を説明したが、両者を非接触としてもよい。すなわち、図13(a),(b)に示すように、ハブ輪1の加締部29の端面29aとマウス部10のバック面10aとの間に隙間を設けてもよい。このようにすれば、マウス部10とハブ輪1の接触が不適切な状態にある場合に生じる異音の発生を確実に防止することができる。また、この場合、同図(a)に示すように、ハブ輪1の加締部29とマウス部10のバック面10aとの間の隙間にシール部材S3を嵌着し、このシール部材S3でインボード側からの雨水や異物の侵入を防止するようにしてもよい。シール部材S3としては、例えば、図13(a)に示すような市販のOリング等を使用することができるが、ハブ輪1の端部とマウス部10の底部との間に介在可能である限り、Oリング以外にも例えば図13(b)に示すようなガスケット等のようなものも使用できる。   In the above embodiment, the case where the back surface 10a of the mouse portion 10 is brought into contact with the end portion of the hub wheel 1 (in the above embodiment, the end surface 29a of the crimping portion 29) has been described. It is good. That is, as shown in FIGS. 13A and 13B, a gap may be provided between the end surface 29 a of the caulking portion 29 of the hub wheel 1 and the back surface 10 a of the mouth portion 10. In this way, it is possible to reliably prevent the generation of abnormal noise that occurs when the contact between the mouse unit 10 and the hub wheel 1 is in an inappropriate state. Further, in this case, as shown in FIG. 5A, a seal member S3 is fitted into the gap between the crimped portion 29 of the hub wheel 1 and the back surface 10a of the mouth portion 10, and the seal member S3 You may make it prevent the penetration | invasion of rain water and a foreign material from the inboard side. As the seal member S3, for example, a commercially available O-ring as shown in FIG. 13A can be used, but can be interposed between the end of the hub wheel 1 and the bottom of the mouth portion 10. As far as the O-ring is concerned, a gasket or the like as shown in FIG.

また、凹凸嵌合構造Mの凸部32の断面形状は、上述した形状に特に限定されるものではなく、半円形状、半楕円形状、矩形形状等の種々の断面形状を採用することができ、凸部32の面積、数、周方向配設ピッチ等も任意に変更できる。   Moreover, the cross-sectional shape of the convex part 32 of the uneven | corrugated fitting structure M is not specifically limited to the shape mentioned above, Various cross-sectional shapes, such as a semicircle shape, a semi-elliptical shape, and a rectangular shape, can be employ | adopted. Also, the area and number of the convex portions 32, the circumferential arrangement pitch, and the like can be arbitrarily changed.

また、ハブ輪1の孔部20としては円孔以外の多角形孔等の異形孔であってよく、この孔部20に嵌挿する軸部11の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1に軸部11を圧入する際には、凸部32の少なくとも圧入開始側の端面を含む端部領域の硬度が、圧入される側の硬度よりも高ければよく、必ずしも凸部32の全体の硬度を高くする必要がない。また、図2(b)および図10(b)では、スプラインの歯底と凹部33が形成された部材との間に隙間35,55が形成されているが、凸部32間の溝の全体を相手側の部材で充足させてもよい。   Further, the hole portion 20 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the shaft portion 11 to be inserted into the hole portion 20 may be other than a circular cross section. An irregular cross section such as a square may be used. Furthermore, when the shaft portion 11 is press-fitted into the hub wheel 1, it is sufficient that the hardness of the end region including at least the end surface on the press-fitting start side of the convex portion 32 is higher than the hardness of the press-fitted side. There is no need to increase the overall hardness of 32. 2B and 10B, gaps 35 and 55 are formed between the spline root and the member in which the recess 33 is formed, but the entire groove between the protrusions 32 is formed. May be satisfied with the other member.

凹部が形成される部材の凹部形成面には、予め、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部33の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部32の圧入時に形成されるはみ出し部42の容量を減少させることができるので、圧入抵抗の低減を図ることができる。また、はみ出し部42を少なくできるので、ポケット部43の容積を小さくでき、ポケット部43の加工性及びポケット部43が設けられる部材の強度の向上を図ることができる。なお、小凹部の形状は、三角形状、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   You may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction previously in the recessed part formation surface of the member in which a recessed part is formed. The small recess needs to be smaller than the volume of the recess 33. By providing such a small concave portion, the capacity of the protruding portion 42 formed when the convex portion 32 is press-fitted can be reduced, so that the press-fit resistance can be reduced. Moreover, since the protrusion part 42 can be decreased, the volume of the pocket part 43 can be reduced, and the workability of the pocket part 43 and the strength of the member provided with the pocket part 43 can be improved. In addition, the shape of a small recessed part can employ | adopt various things, such as a triangle shape, semi-ellipse shape, and a rectangle, and can also set the number arbitrarily.

また、上述の実施形態では、ガイド用凹部40の底部が、その径方向深さが圧入方向に沿って一定となる平坦面をなす場合を説明したが、その径方向深さが圧入方向(圧入進行方向)に沿って縮径しながら傾斜する傾斜面をなすようにしてもよい。また、ガイド用凹部40の断面形状としては、凸部32が嵌合可能なものであれば、特に限定されるものではなく、凸部32の断面形状等に応じて種々変更できる。   In the above-described embodiment, the case where the bottom of the guide recess 40 forms a flat surface whose radial depth is constant along the press-fitting direction has been described. An inclined surface that is inclined while being reduced in diameter along the traveling direction) may be formed. In addition, the cross-sectional shape of the guide concave portion 40 is not particularly limited as long as the convex portion 32 can be fitted therein, and can be variously changed according to the cross-sectional shape of the convex portion 32 and the like.

また、軸受2の転動体として、ボール28以外にころを使用することもできる。さらに、前記実施形態では、本発明を第3世代の車輪用軸受装置に適用しているが、第1世代や第2世代、さらには第4世代の車輪軸受装置にも同様に適用することができる。なお、凸部32を圧入する場合、凹部33が形成される側を固定して、凸部32を形成している側を移動させても、逆に、凸部32を形成している側を固定して、凹部33が形成される側を移動させてもよい。あるいは、両者を移動させてもよい。等速自在継手3において、内側継手部材5とシャフト8とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   In addition to the balls 28, rollers can be used as the rolling elements of the bearing 2. Furthermore, in the above-described embodiment, the present invention is applied to the third generation wheel bearing device. However, the present invention can be similarly applied to the first generation, second generation, and further fourth generation wheel bearing devices. it can. In addition, when press-fitting the convex portion 32, even if the side where the concave portion 33 is formed is fixed and the side where the convex portion 32 is formed is moved, the side where the convex portion 32 is formed is reversed. You may fix and move the side in which the recessed part 33 is formed. Alternatively, both may be moved. In the constant velocity universal joint 3, the inner joint member 5 and the shaft 8 may be integrated via the concave-convex fitting structure M described in each of the above embodiments.

本発明は上記実施形態に限定されることなく、その技術的思想の範囲内であれば、様々な変形が可能である。   The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the technical idea.

1 ハブ輪
2 車輪用軸受
3 等速自在継手
4 外側継手部材
5 内側継手部材
6 ボール
7 ケージ
8 シャフト
10 マウス部
10a バック面
11 軸部
18 筒部
19 フランジ
20 孔部
20a 軸部嵌合孔
20b テーパ孔
20c 大径孔
20d テーパ部
20e 内壁
20e1 ボルト受け面
22 内輪
23,24 内側軌道面
25,26 外側軌道面
27 外方部材
28 ボール
29 加締部
32 凸部
33 凹部
34 内径面
36 ボルト孔
37 ボルト部材
37a 頭部
37a1 座面
37b 軸部
37b1 ネジ部
37b2 非ネジ部
38 貫通孔
40 ガイド用凹部
42 はみ出し部
43 ポケット部
44 周方向溝
H1 硬化層
H2 硬化層
M 凹凸嵌合構造
P1 ピッチ
P2 ピッチ
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Wheel bearing 3 Constant velocity universal joint 4 Outer joint member 5 Inner joint member 6 Ball 7 Cage 8 Shaft 10 Mouse part 10a Back surface 11 Shaft part 18 Tube part 19 Flange 20 Hole part 20a Shaft part fitting hole 20b Tapered hole 20c Large diameter hole 20d Tapered portion 20e Inner wall 20e1 Bolt receiving surface 22 Inner ring 23, 24 Inner raceway surface 25, 26 Outer raceway surface 27 Outer member 28 Ball 29 Clamping portion 32 Convex portion 33 Concavity 34 Inner diameter surface 36 Bolt hole 37 Bolt member 37a Head portion 37a1 Seat surface 37b Shaft portion 37b1 Screw portion 37b2 Non-screw portion 38 Through hole 40 Guide recess 42 Extruded portion 43 Pocket portion 44 Circumferential groove H1 Hardened layer H2 Hardened layer M Concave and convex fitting structure P1 Pitch P2 pitch

Claims (14)

内周に複列の外側軌道面を有する外方部材と、車輪に固定するためのフランジが設けられたハブ輪を有し、前記外側軌道面に対向する複列の内側軌道面が形成された内方部材と、外側継手部材を有する等速自在継手とを備え、前記ハブ輪と、ハブ輪の孔部に嵌挿される前記外側継手部材の軸部とが結合された車輪用軸受装置であって、
外側継手部材の軸部の外径面とハブ輪の孔部の内径面とのうち、どちらか一方の円周方向複数箇所に設けられた軸方向に延びる凸部を、軸方向に沿って他方に圧入し、他方に凸部により凸部に密着嵌合する凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、かつこの凹凸嵌合構造は軸方向の引き抜き力付与による分離を許容する車輪用軸受装置において、
凸部の隣接ピッチ誤差を管理対象に設定し、この隣接ピッチ誤差を0.1mm以下に設定したことを特徴とする車輪用軸受装置。
An outer member having a double-row outer raceway surface on the inner periphery and a hub wheel provided with a flange for fixing to a wheel, and a double-row inner raceway surface facing the outer raceway surface was formed. A wheel bearing device comprising an inner member and a constant velocity universal joint having an outer joint member, wherein the hub wheel and a shaft portion of the outer joint member fitted into a hole of the hub wheel are coupled. And
Of the outer diameter surface of the shaft portion of the outer joint member and the inner diameter surface of the hole portion of the hub wheel, the convex portion extending in the axial direction provided at a plurality of locations in either circumferential direction is the other along the axial direction. The concave and convex fitting structure is formed by forming a concave portion that is press-fitted into the convex portion and the convex portion is in close contact with the convex portion, and the entire fitting contact portion between the convex portion and the concave portion is in close contact. Is a wheel bearing device that allows separation by applying an axial pulling force,
A wheel bearing device, wherein an adjacent pitch error of a convex portion is set as a management target, and the adjacent pitch error is set to 0.1 mm or less.
隣接ピッチ誤差を0.06mm以下に設定したことを特徴とする請求項1記載の車輪用軸受装置。   The wheel bearing device according to claim 1, wherein the adjacent pitch error is set to 0.06 mm or less. 前記外側継手部材の軸部をハブ輪に圧入状態で、外側継手部材の軸部に設けたネジ孔にハブ輪を介してボルト部材を螺合し、かつ凹凸嵌合構造の分離後、外側継手部材の軸部をハブ輪の孔部に再圧入する際に、ボルト部材をハブ輪でガイドすることを特徴とする請求項1又は2に記載の車輪用軸受装置。   After the shaft portion of the outer joint member is press-fitted into the hub wheel, the bolt member is screwed into the screw hole provided in the shaft portion of the outer joint member via the hub wheel, and after the uneven fitting structure is separated, the outer joint is The wheel bearing device according to claim 1 or 2, wherein the bolt member is guided by the hub wheel when the shaft portion of the member is re-press-fitted into the hole of the hub wheel. 前記ボルト部材はネジ部と非ネジ部とを有するとともに、ハブ輪に、ボルト部材の非ネジ部が挿通される貫通孔を設け、貫通孔の孔径とボルト部材の非ネジ部の軸径との径差をΔdとし、凹凸嵌合構造における外側継手部材の軸部外径と凹凸嵌合構造におけるハブ輪内径との径差をΔd2としたときに、0<Δd<Δd2としたことを特徴とする請求項3に記載の車輪用軸受装置。   The bolt member has a threaded portion and a non-threaded portion, and the hub wheel is provided with a through-hole through which the non-threaded portion of the bolt member is inserted, and the hole diameter of the through-hole and the shaft diameter of the non-threaded portion of the bolt member are When the diameter difference is Δd and the diameter difference between the shaft outer diameter of the outer joint member in the concave-convex fitting structure and the hub ring inner diameter in the concave-convex fitting structure is Δd2, 0 <Δd <Δd2. The wheel bearing device according to claim 3. 前記ハブ輪の孔部にこの内部を仕切る内壁を設けるとともに、この内壁に前記貫通孔を設けたことを特徴とする請求項4に記載の車輪用軸受装置。   The wheel bearing device according to claim 4, wherein an inner wall for partitioning the inside of the hub wheel is provided in the hole portion of the hub wheel, and the through hole is provided in the inner wall. 前記ハブ輪に前記ボルト部材の頭部座面が当接し且つ硬化処理が施されたボルト受け面を設けるとともに、該ボルト受け面の表面硬さを管理対象として設定し、該表面硬さとして50HRC以上の許容値を付与したことを特徴とする請求項3〜5のいずれか1項に記載の車輪用軸受装置。   A bolt receiving surface in which the head seating surface of the bolt member abuts on the hub wheel and is subjected to a hardening process is provided, and the surface hardness of the bolt receiving surface is set as a management target, and the surface hardness is set to 50 HRC. The wheel bearing device according to any one of claims 3 to 5, wherein the above-described allowable value is given. 前記硬化処理が、高周波焼入れであることを特徴とする請求項6に記載の車輪用軸受装置。   The wheel bearing device according to claim 6, wherein the hardening treatment is induction hardening. 前記外側継手部材の軸部に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くしたことを特徴とする請求項1〜7のいずれか1項に記載の車輪用軸受装置。   The convex portion of the concave-convex fitting structure is provided on the shaft portion of the outer joint member, and at least the hardness of the axial end portion of the convex portion is made higher than the inner diameter portion of the hole portion of the hub wheel. The wheel bearing apparatus of any one of 1-7. 前記外側継手部材の軸部に、前記凸部と、前記圧入によって生じるはみ出し部を収容するポケット部とを形成し、該ポケット部を、この凸部の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成したことを特徴とする請求項8に記載の車輪用軸受装置。   The shaft portion of the outer joint member is formed with the convex portion and a pocket portion that accommodates the protruding portion generated by the press-fitting, and when the pocket portion is finished by pressing the press-fitting start side end surface of the convex portion. The wheel bearing device according to claim 8, wherein the wheel bearing device is formed by cutting at the same time. 前記ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材の軸部の外径部よりも高くしたことを特徴とする請求項1〜7のいずれか1項に記載の車輪用軸受装置。   A convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and at least the hardness of the axial end portion of the convex portion is larger than the outer diameter portion of the shaft portion of the outer joint member of the constant velocity universal joint. The wheel bearing device according to any one of claims 1 to 7, wherein the wheel bearing device is also made higher. 前記軸部ハブ輪の孔部に、前記凸部と、前記圧入によって生じるはみ出し部を収容するポケット部とを形成し、該ポケット部を、この凸部の圧入開始側端面を切削加工で仕上げる際に同時に切削加工で形成したことを特徴とする請求項10に記載の車輪用軸受装置。   When forming the convex part and a pocket part for accommodating the protruding part generated by the press-fitting in the hole part of the shaft part hub wheel, and finishing the press-fitting start side end surface of the convex part by cutting. The wheel bearing device according to claim 10, wherein the wheel bearing device is formed by cutting simultaneously. 前記内方部材が、前記ハブ輪と、該ハブ輪におけるインボード側の端部の外周に圧入される内輪とで構成され、前記ハブ輪の外周面および内輪の外周面にそれぞれ前記内側軌道面が形成されていることを特徴とする請求項1〜11のいずれか1項に記載の車輪用軸受装置。   The inner member is composed of the hub ring and an inner ring that is press-fitted into an outer periphery of an end portion on the inboard side of the hub ring, and the inner raceway surface is respectively formed on an outer peripheral surface of the hub ring and an outer peripheral surface of the inner ring. The wheel bearing device according to claim 1, wherein the wheel bearing device is formed. 請求項1〜12の何れか1項に記載した凹凸嵌合構造の分離後、ハブ輪と外側継手部材のどちらか一方を交換し、交換した部材にスプラインを設け、該スプラインの凸部を再使用する部材の前記凹部に圧入して凹凸嵌合構造を再構成するものにおいて、スプラインの凸部の隣接ピッチ誤差を管理対象に設定し、この隣接ピッチ誤差を0.1mm以下に設定したことを特徴とする車輪用軸受装置。   After separation of the concave-convex fitting structure according to any one of claims 1 to 12, either the hub wheel or the outer joint member is replaced, a spline is provided on the replaced member, and the convex portion of the spline is re-applied. In what reconfigures the concave-convex fitting structure by press-fitting into the concave portion of the member to be used, the adjacent pitch error of the convex portion of the spline is set as a management target, and this adjacent pitch error is set to 0.1 mm or less A wheel bearing device. スプラインの凸部の隣接ピッチ誤差を0.06mm以下に設定したことを特徴とする請求項13記載の車輪用軸受装置。   14. The wheel bearing device according to claim 13, wherein the adjacent pitch error of the convex part of the spline is set to 0.06 mm or less.
JP2010097915A 2010-04-21 2010-04-21 Bearing device for wheel Pending JP2011225142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097915A JP2011225142A (en) 2010-04-21 2010-04-21 Bearing device for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097915A JP2011225142A (en) 2010-04-21 2010-04-21 Bearing device for wheel

Publications (1)

Publication Number Publication Date
JP2011225142A true JP2011225142A (en) 2011-11-10

Family

ID=45041064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097915A Pending JP2011225142A (en) 2010-04-21 2010-04-21 Bearing device for wheel

Country Status (1)

Country Link
JP (1) JP2011225142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093270A1 (en) * 2017-11-13 2019-05-16 オイレス工業株式会社 Mating mechanism
WO2024084739A1 (en) * 2022-10-21 2024-04-25 日東工器株式会社 Diaphragm pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320825A (en) * 1992-05-19 1993-12-07 Ntn Corp Solid shaft for driving shaft
JP2003065316A (en) * 2001-08-27 2003-03-05 Toyota Industries Corp Joining structure between two members and propeller shaft
JP2004336965A (en) * 2003-05-12 2004-11-25 Denso Corp Rotor for rotary electric machine and rotor for magnet type ac generator
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel
JP2007331457A (en) * 2006-06-13 2007-12-27 Ntn Corp Bearing device for wheel
JP4302758B2 (en) * 2007-08-30 2009-07-29 Ntn株式会社 Wheel bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320825A (en) * 1992-05-19 1993-12-07 Ntn Corp Solid shaft for driving shaft
JP2003065316A (en) * 2001-08-27 2003-03-05 Toyota Industries Corp Joining structure between two members and propeller shaft
JP2004336965A (en) * 2003-05-12 2004-11-25 Denso Corp Rotor for rotary electric machine and rotor for magnet type ac generator
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel
JP2007331457A (en) * 2006-06-13 2007-12-27 Ntn Corp Bearing device for wheel
JP4302758B2 (en) * 2007-08-30 2009-07-29 Ntn株式会社 Wheel bearing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093270A1 (en) * 2017-11-13 2019-05-16 オイレス工業株式会社 Mating mechanism
CN111344500A (en) * 2017-11-13 2020-06-26 奥依列斯工业株式会社 Embedding mechanism
CN111344500B (en) * 2017-11-13 2022-06-14 奥依列斯工业株式会社 Embedding mechanism
WO2024084739A1 (en) * 2022-10-21 2024-04-25 日東工器株式会社 Diaphragm pump

Similar Documents

Publication Publication Date Title
US8998731B2 (en) Wheel bearing device
JP5323337B2 (en) Wheel bearing device
WO2011077903A1 (en) Wheel bearing device
JP5826788B2 (en) Manufacturing method of wheel bearing device
JP5236348B2 (en) Wheel bearing device
JP2011225153A (en) Bearing device for wheel
JP5683773B2 (en) Wheel bearing device
JP5160358B2 (en) Wheel bearing device
JP5398999B2 (en) Wheel bearing device
JP5323339B2 (en) Wheel bearing device
JP2011225142A (en) Bearing device for wheel
JP2010137766A (en) Joining method and joining jig for wheel bearing device
WO2011132706A1 (en) Bearing device for wheel
JP5642343B2 (en) Wheel bearing device
JP5410267B2 (en) Wheel bearing device
WO2010058719A1 (en) Bearing device for wheel
JP5425610B2 (en) Wheel bearing device
JP2010116144A (en) Wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP5823437B2 (en) Manufacturing method of wheel bearing device
JP5410265B2 (en) Wheel bearing device
JP2010163051A (en) Bearing device for wheel
JP2012025259A (en) Bearing device for wheel
JP2011230540A (en) Bearing device for wheel
JP2010260475A (en) Bearing device for driving wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401