JPS58199796A - Pulling device of crystal under sealing with liquid - Google Patents

Pulling device of crystal under sealing with liquid

Info

Publication number
JPS58199796A
JPS58199796A JP7923682A JP7923682A JPS58199796A JP S58199796 A JPS58199796 A JP S58199796A JP 7923682 A JP7923682 A JP 7923682A JP 7923682 A JP7923682 A JP 7923682A JP S58199796 A JPS58199796 A JP S58199796A
Authority
JP
Japan
Prior art keywords
crucible
crystal
liquid
diameter
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7923682A
Other languages
Japanese (ja)
Other versions
JPS6128634B2 (en
Inventor
Hideo Nakanishi
秀男 中西
Keigo Hoshikawa
圭吾 干川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7923682A priority Critical patent/JPS58199796A/en
Publication of JPS58199796A publication Critical patent/JPS58199796A/en
Publication of JPS6128634B2 publication Critical patent/JPS6128634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a pulling device of crystal which makes the control of the shape of the crystal easy and decreases dislocation density by pulling the crystal under sealing with liquid by using a crucible differing in diameter in the upper and lower parts, and controlling temp. distribution as desired by using two heating elements. CONSTITUTION:A crucible 1 designed to have a larger diameter in the upper part than in the lower part is placed and held in a crucible holder 2 and is supported from the lower part with a crucible shaft 3. A melt 10 of a raw material for crystal consisting essentially of GaAs or the like is disposed in the lower part of the small diameter of the crucible 1 and a liquid sealant 14 consisting essentially of B2O3 or the like is disposed in the upper part of the large diameter. An internal heating element 4 having a small diameter and an external heating element 5 having a large diameter are disposed so as to enclose the crucible 1 to control the temps. of the melt 10 and the sealant 14 independently. The crystal of low dislocation density is grown in the pulling method under sealing with liquid by the above-mentioned method.

Description

【発明の詳細な説明】 本発明は、揮発性元素を含む化合物半導体単結晶を液体
封止法により引上げる場合のホ、トゾー7の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of the tozo 7 when pulling a compound semiconductor single crystal containing a volatile element by a liquid confinement method.

揮発性元素を含む化合物半導体、例えばGaAs 。Compound semiconductors containing volatile elements, such as GaAs.

InP 、 GaP等の単結晶は、従来主にボート法お
よび液体封止引上げ法により宵成されている。このうち
液体封止引上げ法は、大形円形ウェハが得易いこと、結
晶に混入する不純物を低減できることなどの利点があり
、例えば、GaAs集積回路の基板単結晶自戒法として
その技術の開発が進められている。しかし、この方法は
ボート法に比べて結晶成長後に導入される転位密度が大
きく、この問題を解決することが大きな課題となってい
る。
Single crystals such as InP and GaP have conventionally been produced mainly by the boat method and the liquid-sealed pulling method. Among these, the liquid-sealed pulling method has advantages such as being able to easily obtain large circular wafers and reducing impurities mixed into the crystal.For example, the technology is being developed as a substrate single-crystal method for GaAs integrated circuits. It is being However, in this method, the density of dislocations introduced after crystal growth is greater than in the boat method, and solving this problem is a major issue.

液体封止引上げ法がボート法に比べ転位密度が大きい理
由については、以下の解釈が公知である。
The following explanation is known as to why the liquid-sealed pulling method has a higher dislocation density than the boat method.

すなわち、液体封止引上げ法では加圧雰囲気中で結晶育
成を行なうため、雰囲気ガスの対流により炉内温度分布
に強い不均一を生じる。その結果、成長結晶中に生ずる
急峻な温度勾配により大きな熱応力が発生12、転位導
入の原因となる。これに対し、ボート法では上記のよう
な炉内温度分布の不均一が小さいため、成長結晶中に生
ずる熱応力も小さく転位が少ない。
That is, in the liquid-sealed pulling method, since crystal growth is performed in a pressurized atmosphere, convection of atmospheric gas causes strong non-uniformity in the temperature distribution in the furnace. As a result, a large thermal stress is generated due to the steep temperature gradient generated in the growing crystal12, which causes the introduction of dislocations. On the other hand, in the boat method, since the above-mentioned non-uniformity of the temperature distribution in the furnace is small, the thermal stress generated in the growing crystal is also small and there are few dislocations.

液体月止引」二げ法においても、結晶中の急峻な温度勾
配を少なくするためにアフタヒータを設けて、るつぼ上
部を^温にして結晶を引上げる方法があるが、この場合
成体j・J止剤から出た結晶部分が高温雰囲気中に長時
間さらされるため、揮発性元素が結晶から解離して表面
の荒れた低品質の結晶となってしまう。
In the "liquid moon pull" method, there is a method in which an afterheater is installed to reduce the steep temperature gradient in the crystal, and the upper part of the crucible is heated to ^ temperature to pull the crystal. Since the crystal part released from the inhibitor is exposed to a high-temperature atmosphere for a long time, volatile elements dissociate from the crystal, resulting in a low-quality crystal with a rough surface.

一方、最近液体封止剤を厚くすることにょシ、結晶中の
温度勾配を低減できることが実験研究などで明らかにさ
れ、転位の低減に有効な方法と考えられている。
On the other hand, recent experimental studies have revealed that increasing the thickness of the liquid sealant can reduce the temperature gradient in the crystal, and this is considered an effective method for reducing dislocations.

本発明は、上述の考察をもとに、液体封止引上げ法にお
いて転位密度の低い結晶を育成するため、新しい構造の
るつぼとこれを加熱するための2つの発熱体とからなる
ことを特徴とする液体封止結晶引上げ一装置を提供する
ものである。
Based on the above considerations, the present invention is characterized by comprising a crucible with a new structure and two heating elements for heating the crucible, in order to grow crystals with low dislocation density using the liquid-sealed pulling method. The present invention provides a liquid-sealed crystal pulling device.

以下本発明の構成を一実施例について詳細に説明する。The configuration of the present invention will be described in detail below with reference to one embodiment.

第1図は、本発明の液体封止引上げ装置の構成例を示す
。以下本i明、により、GaAs単結晶を育成する場合
について具体的に説明する。
FIG. 1 shows an example of the configuration of a liquid-sealed pulling device of the present invention. Hereinafter, the case of growing a GaAs single crystal will be specifically explained according to the present invention.

第1図において、1は本発明に係わる上部の直径が下部
の直径より大きい構造のるっほであり、通常は石英(8
102)あるいはパイロリテ、クボロ/ナイトライド(
PBN)などの材質により構成される。2はるつぼlを
収納保持するるつぼホルダであり、グラファイト材にて
構成される。3はるつぼ軸であり、るつぼホルダ2を下
部から保持し、結晶育成時には必要に応じてるつぼホル
ダ2に回転を与えたり、また上下移動を与える。4およ
び5は本発明の主要部をなす円筒状の2つの発熱体であ
り、4は直径の小さい内部発熱体を、5は内部発熱体4
を囲むような構成の直径の大きい外部発熱体をそれぞれ
示す。6は保温材を、7は気密容器を示し、この容器内
は数気圧〜数10気圧の窒素あるいはアルボ/ガス雰囲
気に保たれる。気密¥、器7の上部には観察窓8を設け
、石英カラス欅9を通して炉内の観察を行なうごとく構
成されている。
In Fig. 1, reference numeral 1 is a glass with a structure in which the diameter of the upper part is larger than the diameter of the lower part, and is usually made of quartz (8
102) Or Pyrolyte, Kuboro/Nightride (
It is made of a material such as PBN). 2 is a crucible holder for storing and holding the crucible 1, and is made of graphite material. A crucible shaft 3 holds the crucible holder 2 from below, and rotates the crucible holder 2 as necessary during crystal growth and also provides vertical movement. 4 and 5 are two cylindrical heating elements that form the main part of the present invention, 4 is an internal heating element with a small diameter, and 5 is an internal heating element 4.
Each shows a large-diameter external heating element configured to surround a . Reference numeral 6 indicates a heat insulating material, and 7 indicates an airtight container, and the inside of this container is maintained in a nitrogen or arbo/gas atmosphere at several atmospheres to several tens of atmospheres. An observation window 8 is provided at the top of the airtight vessel 7, and the inside of the furnace can be observed through a quartz glass 9.

第1図において、GaAs結晶を引上げている場合、る
つぼlのド部にはGaAs融液10が収納されており、
11は引上げられたGaAs単結晶、12は種子結晶、
13は結晶引上げ軸をそれぞれ示す。また、るつぼlの
上部はB2O3なる液体封止剤14にて満たし、GaA
s融液lOおよび引上げられたGaAs単結晶11の表
面を覆っている。
In FIG. 1, when a GaAs crystal is being pulled, a GaAs melt 10 is stored in the corner of the crucible l.
11 is a pulled GaAs single crystal, 12 is a seed crystal,
13 indicates the crystal pulling axis. In addition, the upper part of the crucible 1 is filled with a liquid sealant 14 called B2O3, and GaA
s melt lO and the surface of the pulled GaAs single crystal 11 are covered.

以上説明したごとき構成の本発明の効果について以下に
説明する。本発明のねらいは、成長した結晶部中の温度
勾配を低減し、結晶の冷却過程で多量に発生する転位を
低減するのに適したホットゾーンを実現することにある
。このために、本発明では深いるつぼを用いて液体封止
剤の部分を極端に厚くシ、この部分での温度勾配が小と
なると・とくホットゾーンを構成して結晶を引上けてい
る。
The effects of the present invention configured as described above will be explained below. The aim of the present invention is to reduce the temperature gradient in the grown crystal part and to realize a hot zone suitable for reducing dislocations generated in large quantities during the cooling process of the crystal. For this reason, in the present invention, a deep crucible is used to make the liquid sealant part extremely thick, and when the temperature gradient in this part becomes small, a particularly hot zone is formed and the crystal is pulled up.

上記のねらいに対して本発明のホットゾーンは最適な構
成である。すなわち、上部の直径が大きいるつぼ1を用
いることKより、多量の液体封止剤の充填を行い易く、
容易に液体封止剤14の厚さを大とすることが可能であ
る。また、結晶を引上ける際に重要な成長界面の観察も
、結晶引上げ開始時から終了時まで観察が可能であるな
どの利点がある。さらに、このるつはlの上部の液体封
止剤14を収納する大きい直径部分を主に直径の大きい
外部発熱体5で加熱し、るつぼlの下部の主にGaAs
融液を収納する直径の小さい部分を主に直径の小さい内
部発熱体4で加熱することにより、GaAs融液10と
液体封止剤14の温度を独立に制御することができる。
The hot zone of the present invention has an optimal configuration for the above aims. That is, it is easier to fill a large amount of liquid sealant than using a crucible 1 with a large diameter at the top.
It is possible to easily increase the thickness of the liquid sealant 14. Furthermore, there is an advantage that the growth interface, which is important when pulling a crystal, can be observed from the start to the end of crystal pulling. Furthermore, this crucible heats the large diameter part of the upper part of the crucible l which houses the liquid sealant 14 mainly with the large diameter external heating element 5, and the lower part of the crucible l mainly heats the GaAs
The temperatures of the GaAs melt 10 and the liquid sealant 14 can be controlled independently by heating the small diameter portion that accommodates the melt mainly with the small diameter internal heating element 4.

これにより、従来液体封止剤をti くする柱形状制御
が雛しくなっていた問題を解決でき、かつ、液体封止剤
14の上部の温度を一定温度(例えば1000℃)以上
に保つことが可能であり、この液体封止剤14中の結晶
引上げ軸方向の。
As a result, it is possible to solve the problem that conventional columnar shape control for increasing the Ti of the liquid sealant has become difficult, and also to maintain the temperature of the upper part of the liquid sealant 14 at a certain temperature (for example, 1000°C) or higher. possible, and the direction of the crystal pulling axis in this liquid sealant 14.

温度勾配を小さく保つことができる。また、従来液体封
止剤】4の上部が曇ってしまい結晶成長界面の観察が困
難になるごとき問題も解決できるなど多くの利点がある
Temperature gradients can be kept small. It also has many advantages, such as being able to solve problems such as the upper part of the conventional liquid sealant [4] becoming cloudy and making it difficult to observe the crystal growth interface.

以F1本発明により実際に低転位密度のGaAs単結晶
をYr成した例を説明する。使用したるつぼの直径は、
下部の小さい部分が100m++φ、上部の大きい部分
が160 yφである。実現したGaAs@液は約15
00gであり、液体封圧剤の厚さは約100Iである。
Hereinafter, an example in which a GaAs single crystal with a low dislocation density is actually formed using Yr according to the present invention will be explained. The diameter of the crucible used was
The smaller part at the bottom is 100 m++φ and the larger part at the top is 160 yφ. The realized GaAs @ liquid is approximately 15
00g, and the thickness of the liquid sealant is approximately 100I.

炉内は約2気圧のアルゴンガス雰囲気である。第2図は
原料融解開始時のるつぼl内の状1とおよび2つの発熱
体による発熱分布を示す。図において、15はるつぼ1
の下部に充填したGaAs原料、16はこのGaAs原
料15の上部に充填した固形の液体封止剤である。図の
ように配置したるつぼに対して曲線17に示した温度分
布のごとく発熱体4および5の加熱電力を制御し、まず
固形の液体封止剤16を軟化させ、GaAs原料15を
完全に覆うごとくした。次に、第3図の曲線18に示し
た温度分布のごとく発熱体4および5の加熱電力を制御
し、GaAs原料15を融解し、GaAs融液lOおよ
び液体封止剤14を形成した。以下、通常の結晶育成工
程により、直径約50mφ長さ120MのGaAs単結
晶を引上げた。この場合、成長した結晶全体が液体封止
剤中にある状態で結晶引上げを終了し、その後炉内温度
を下降させながら成長結晶を液体封止剤中から上部に引
上けて結晶育成工程を終了した。
The inside of the furnace was an argon gas atmosphere of approximately 2 atmospheres. FIG. 2 shows the distribution of heat generated by the shape 1 and the two heating elements in the crucible 1 at the start of melting of the raw materials. In the figure, 15 means crucible 1
16 is a solid liquid sealant filled in the upper part of the GaAs raw material 15. The heating power of the heating elements 4 and 5 is controlled according to the temperature distribution shown by the curve 17 for the crucible arranged as shown in the figure, and the solid liquid sealant 16 is first softened to completely cover the GaAs raw material 15. I did it. Next, the heating power of the heating elements 4 and 5 was controlled according to the temperature distribution shown by the curve 18 in FIG. 3, and the GaAs raw material 15 was melted to form a GaAs melt lO and a liquid sealant 14. Thereafter, a GaAs single crystal with a diameter of about 50 mφ and a length of 120 M was pulled by a normal crystal growth process. In this case, the crystal pulling process is completed while the entire grown crystal is in the liquid sealant, and then the growing crystal is pulled up from the liquid sealant to the top while lowering the temperature in the furnace, and the crystal growth process is started. finished.

得られた結晶の表面は金属光沢を示し、結晶表面からの
A8の解離蒸発の様子は全く見られなかった。
The surface of the obtained crystal showed metallic luster, and no signs of dissociation and evaporation of A8 from the crystal surface were observed.

第4図の曲線19は引上げ結晶20の中心部の転位密度
の引上げ軸方向分布を示す。第5図の曲線21は代表的
な転位冨度の面内分布を示す。これらの結果からも本発
明装置による結晶は従来の引上げ法によるGaAs結晶
に比べて”10 = ”/ 100の低転位密度で均一
な分布であることが確認された。
A curve 19 in FIG. 4 shows the distribution of dislocation density in the center of the pulled crystal 20 in the pulling axis direction. Curve 21 in FIG. 5 shows a typical in-plane distribution of dislocation density. From these results, it was confirmed that the crystal produced by the apparatus of the present invention has a lower dislocation density of "10="/100 and a uniform distribution than the GaAs crystal produced by the conventional pulling method.

以上説明したように、本発明によれば、特別の形状のる
つぼを用いることにより実現した厚い液体封止剤中でも
成長界面の様子の観察を可能にし、かつ、2つの発熱体
を用いて融液部および液体封止剤部の温度分布を任意に
制御することにより、結晶形状の制御を容易にして、従
来、液体封止結晶引上げ法の最大欠点であった転位密度
の低減が可能であるなど、多大の利点がある。
As explained above, according to the present invention, it is possible to observe the state of the growth interface even in a thick liquid sealant, which is achieved by using a specially shaped crucible, and the melt is melted by using two heating elements. By arbitrarily controlling the temperature distribution of the liquid-sealed crystal part and the liquid sealant part, it is possible to easily control the crystal shape and reduce the dislocation density, which was the biggest drawback of the conventional liquid-sealed crystal pulling method. , has many advantages.

なお、上述のGaAs結晶育成例では、原料としてGa
As多結晶を用いた例について説明したが、他の方法と
してGa 、!: A8金属を用いて直接GaAs融液
を実現し、しかる後に単結晶引上げ工程に入る場合にも
、同様に本発明を適用できることは言うまでもない。
In addition, in the above-mentioned GaAs crystal growth example, Ga is used as a raw material.
Although we have explained an example using As polycrystal, other methods include Ga,! : It goes without saying that the present invention can be similarly applied to the case where a GaAs melt is directly produced using A8 metal and then subjected to a single crystal pulling process.

また、本実施例と結晶育成fyl)では代表的な化合物
半導体であるGaAs結晶について説明したが、InP
 、 GaP等の他の結晶についても、全く同様に適用
可能である。
In addition, although GaAs crystal, which is a typical compound semiconductor, was explained in this example and crystal growth fyl), InP
, GaP, and other crystals can be applied in exactly the same way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図は本発明
により結晶育成を行う場合の原料融解開始時のホットゾ
ーン状態とその発熱分布を示す断面図及び特性図、第3
図は原料融解後のホットゾーン状態とその発熱分布を示
す断面図及び特性図、第4図と第5図は本発明を適用し
て引上げたGaAs単結晶中の転位密度の軸方向分布と
面内分布を示す特性図である。 1・・・るつぼ、  2・・・るつぼホルダ、  3・
・・るつぼ軸、  4.5・・・発熱体、  6・・・
保温材、  7・・・気密容器、  8・・・観察窓、
9・・・石英ガラス棒、10−−・GaAs融液、11
 =−GaAs単結晶、  12 ・’種子結晶、 1
3・・・結晶引上げ軸、 14・・・液体封止剤、 1
5・・・GaAs原料、 16・・・固形液体封止剤、
17 、18・・・温度分布曲線、19・・・転位密度
の分布曲線、20・・・引上げ結晶、21・・・転位の
分布曲線O 第 17 第 2  図 6 第 31¥l
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view and characteristic diagram showing the hot zone state and its heat generation distribution at the start of melting of the raw material when crystal growth is performed according to the present invention, and FIG.
The figure is a cross-sectional view and characteristic diagram showing the hot zone state after melting the raw material and its heat generation distribution, and Figures 4 and 5 are the axial distribution and plane of the dislocation density in the GaAs single crystal pulled using the present invention. FIG. 3 is a characteristic diagram showing the internal distribution. 1... Crucible, 2... Crucible holder, 3.
... Crucible shaft, 4.5... Heating element, 6...
Heat insulating material, 7... Airtight container, 8... Observation window,
9... Quartz glass rod, 10--GaAs melt, 11
=-GaAs single crystal, 12 ・'seed crystal, 1
3... Crystal pulling axis, 14... Liquid sealant, 1
5...GaAs raw material, 16...solid liquid sealant,
17, 18...Temperature distribution curve, 19...Dislocation density distribution curve, 20...Pulled crystal, 21...Dislocation distribution curve O No. 17 No. 2 Figure 6 No. 31\l

Claims (4)

【特許請求の範囲】[Claims] (1)2種以上の直径を有して上部の直径が下部の直径
よシ大きくなるごとく一体形成されたるつぼと、該るつ
ぼを保持するるつt!ホルダと、前記るつぼ及び前記る
つぼホルダとを保持するためのるつば軸と、前記るつぼ
を囲むように互いに同軸上に配置され発熱量を独立に制
御できる直径の異なる2つの円部状の発熱体とを備えた
液体封止結晶引上げ装置。
(1) A crucible that has two or more diameters and is integrally formed so that the upper diameter is larger than the lower diameter, and a crucible that holds the crucible! a holder, a crucible shaft for holding the crucible and the crucible holder, and two circular heating elements having different diameters that are arranged coaxially with each other so as to surround the crucible and can independently control the amount of heat generated. A liquid-sealed crystal pulling device equipped with
(2)同軸上に配置した前記2つの発熱体のうち、大き
い直径の外部発熱体が小さい直径の内部発熱体を凹むよ
うな構造としたことを特徴とする特許請求の範囲第1項
記載の液体封止結晶引上げ装置。
(2) Of the two heating elements disposed coaxially, the external heating element with a larger diameter is configured to recess the internal heating element with a smaller diameter. Liquid sealed crystal pulling device.
(3)同軸上に配置した前記2つの発熱体のうち、外部
発熱体は主に上部の直径の大きいるつぼ部分を加熱し、
内部発熱体は主に下部の直径の小さいるつは部分を加熱
するような発熱構造としたことを特徴とする特許請求の
範囲第1項記載の液体封止結晶引上は装置。
(3) Of the two heating elements arranged coaxially, the external heating element mainly heats the upper part of the crucible with a large diameter,
2. The liquid-sealed crystal pulling apparatus according to claim 1, wherein the internal heating element has a heat-generating structure that mainly heats a lower portion of the melt having a small diameter.
(4)結晶引上げ開始時において、前記るっほの直径の
小さい下部に主に引上げ結晶用原料融液が配置され、該
るつほの直径の大きい上部に主に液体封止剤が配置され
゛たことを特徴とする特許請求の範囲第1項記載の液体
封止結晶引上げ装置。
(4) At the start of crystal pulling, the pulling crystal raw material melt is mainly placed in the lower part of the rutsuho where the diameter is small, and the liquid sealant is mainly placed in the upper part of the rutsuho where the diameter is large. A liquid-sealed crystal pulling device according to claim 1, characterized in that:
JP7923682A 1982-05-13 1982-05-13 Pulling device of crystal under sealing with liquid Granted JPS58199796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7923682A JPS58199796A (en) 1982-05-13 1982-05-13 Pulling device of crystal under sealing with liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7923682A JPS58199796A (en) 1982-05-13 1982-05-13 Pulling device of crystal under sealing with liquid

Publications (2)

Publication Number Publication Date
JPS58199796A true JPS58199796A (en) 1983-11-21
JPS6128634B2 JPS6128634B2 (en) 1986-07-01

Family

ID=13684225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7923682A Granted JPS58199796A (en) 1982-05-13 1982-05-13 Pulling device of crystal under sealing with liquid

Country Status (1)

Country Link
JP (1) JPS58199796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116195A (en) * 1982-12-23 1984-07-04 Toshiba Corp Manufacture of compound semiconductor single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116195A (en) * 1982-12-23 1984-07-04 Toshiba Corp Manufacture of compound semiconductor single crystal

Also Published As

Publication number Publication date
JPS6128634B2 (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JP2008239480A (en) Semiconductor crystal
US3649193A (en) Method of forming and regularly growing a semiconductor compound
US3261722A (en) Process for preparing semiconductor ingots within a depression
JPH0244798B2 (en)
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2004203721A (en) Apparatus and method for growing single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS6217496Y2 (en)
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2002234792A (en) Method of producing single crystal
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
Capper et al. Growert
JPH0524964A (en) Production of compound semiconductor single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JP2000327496A (en) Production of inp single crystal
JPH01145395A (en) Production of compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal