JPH05315000A - Polymer solid electrolyte-type fuel cell - Google Patents

Polymer solid electrolyte-type fuel cell

Info

Publication number
JPH05315000A
JPH05315000A JP3359943A JP35994391A JPH05315000A JP H05315000 A JPH05315000 A JP H05315000A JP 3359943 A JP3359943 A JP 3359943A JP 35994391 A JP35994391 A JP 35994391A JP H05315000 A JPH05315000 A JP H05315000A
Authority
JP
Japan
Prior art keywords
anode
cathode
particles
current collector
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3359943A
Other languages
Japanese (ja)
Inventor
Koichi Sakairi
弘一 坂入
Masahiko Inoue
井上  昌彦
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3359943A priority Critical patent/JPH05315000A/en
Publication of JPH05315000A publication Critical patent/JPH05315000A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To improve the mass transfer without lowering the reaction, by making the anode and cathode collectors porous, and reducing the gas moving distance from the faces of the collectors to the electrode particles forming the anode and cathode. CONSTITUTION: A fuel battery comprises a collector 1 for cathode, a collector 5 for anode, an ion resin 4 of high polymer solid electrode, or the like. These collectors 1, 5 are respectively porous, and the most of the cathode particles 2 and anode particles 6 are entered into the collectors 1, 5. Accordingly the gas moving distance from the opposite faces of the collectors 1, 5 to the particles 2, 6 are reduced, the mass transfer can be smoothened, and the mass transfer can be improved without lowering the reaction, thereby the high polymer solid electrolyte-type fuel battery by which the critical current density can be improved, and the reaction can be increased simultaneously, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン伝導性固体高分
子隔膜を用いる高分子固体電解質型燃料電池の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in polymer solid oxide fuel cells using an ion conductive solid polymer membrane.

【0002】[0002]

【従来技術及び問題点】高分子固体電解質型燃料電池は
リン酸型燃料電池と比較してコンパクトで高い電流密度
を取り出せることから電気自動車、宇宙船用の電源とし
て注目されている。又この分野の開発においても種々の
電極構造や触媒作製方法、システム構成等に関する提案
がなされている。ところで高い電流密度を取り出そうと
すると触媒電極表面への物質輸送が律速になると考えら
れるが、特に触媒電極内部の物質輸送を円滑にするため
にはカソード及びアノード側とも反応ガスがスムーズに
流入しかつカソード側で生成する水蒸気が酸素の流入の
妨げにならないよう系外に放出される必要がある。
2. Description of the Related Art Polymer solid oxide fuel cells are attracting attention as a power source for electric vehicles and spacecraft because they are compact and can obtain a high current density as compared with phosphoric acid fuel cells. Also in the development of this field, various electrode structures, catalyst production methods, system configurations, etc. have been proposed. By the way, it is considered that when trying to extract a high current density, the rate of mass transport to the surface of the catalyst electrode becomes rate-determining.In particular, in order to make the mass transport inside the catalyst electrode smooth, the reaction gas smoothly flows into both the cathode and anode sides and It is necessary that the water vapor generated on the cathode side be discharged outside the system so as not to hinder the inflow of oxygen.

【0003】従来の燃料電池の電極構造は、例えば図3
に示すようにカソード用集電体A/カソードB/高分子
固体電解質(イオン交換膜)C/アノードD/アノード
用集電体Eの5層サンドイッチ構造となっている。この
構造において物質輸送を円滑に行うためにはカソード及
びアノードの触媒金属の担持量を必要最小限に抑えた
り、高濃度触媒を用いてカソード及びアノードの電極層
を薄くする等が試みられている。しかし電極層を薄くす
ると物質輸送は良好になるが電極における触媒反応が律
速となり、つまり物質輸送の改善と触媒電極の反応量の
増加が相反し、両者を共に満足させることができないと
いう問題点があった。
An electrode structure of a conventional fuel cell is shown in FIG.
As shown in FIG. 5, the cathode current collector A / cathode B / polymer solid electrolyte (ion exchange membrane) C / anode D / anode current collector E has a five-layer sandwich structure. In order to facilitate mass transport in this structure, attempts have been made to minimize the amount of catalytic metal supported on the cathode and anode, and to thin the electrode layers on the cathode and anode using a high-concentration catalyst. .. However, if the electrode layer is made thin, the material transport will be good, but the catalytic reaction at the electrode will be rate-limiting, that is, the improvement of the material transport and the increase in the reaction amount of the catalyst electrode are contradictory, and there is a problem that both cannot be satisfied. there were.

【0004】[0004]

【発明の目的】本発明は上記問題点に鑑み、物質輸送の
円滑化による限界電流密度の向上と反応量の増大を共に
達成し得る燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a fuel cell which can achieve both an increase in limiting current density and an increase in reaction amount by facilitating mass transport.

【0005】[0005]

【問題題を解決するための手段】本発明は、カソード用
集電体、カソード粒子を含むカソード、イオン交換膜、
アノード粒子を含むアノード及びアノード用集電体を積
層して成る高分子固体電解質型燃料電池において、両集
電体を多孔質とし前記カソード微粒子及びアノード微粒
子の少なくとも一部をそれぞれ前記カソード用集電体及
びアノード用集電体内に存在させたことを特徴とする高
分子固体電解質型燃料電池である。
The present invention includes a current collector for a cathode, a cathode containing cathode particles, an ion exchange membrane,
In a polymer solid oxide fuel cell comprising an anode containing anode particles and an anode current collector laminated, in which both current collectors are made porous, and at least a part of the cathode fine particles and the anode fine particles are collected respectively for the cathode current collector. The polymer solid oxide fuel cell is characterized in that it is present in the body and the current collector for the anode.

【0006】以下、本発明の詳細について説明する。前
述の通り従来の5層サンドイッチ構造では、カソード用
集電体及びアノード用集電体が多孔質ではないため該集
電体とアノード又はカソードとの間に明瞭な境界が存在
し、該集電体とアノード又はカソードをホットプレス等
で圧着してもアノード粒子又はカソード粒子の集電体内
部への進入深さは0〜5μm程度である。これに対し本
発明では集電体を多孔質とし、アノード及びカソードを
それぞれアノード用集電体及びカソード用集電体に圧着
することにより、アノード及びカソードを構成する電極
粒子をそれぞれ両集電体内部に深く進入させ該集電体内
部にも電極触媒が存在するように構成している。この電
極粒子は集電体の厚さ全体に亘って存在しても、集電体
とアノード又はカソードとの境界側のみに存在するよう
にしてもよく、その厚さ(深さ)は集電体の厚さにもよ
るが、通常10〜数百μmとする。この厚さは集電体の多
孔度や該集電体と電極粒子とのプレスによる製造時の溶
剤量により調節することができ、多孔度が大きいほどそ
して溶剤残量が多いほど電極粒子の進入度が大きくな
る。
The details of the present invention will be described below. As described above, in the conventional 5-layer sandwich structure, since the cathode current collector and the anode current collector are not porous, there is a clear boundary between the current collector and the anode or the cathode, and Even if the body and the anode or the cathode are pressure-bonded by hot pressing or the like, the depth of penetration of the anode particles or the cathode particles into the current collector is about 0 to 5 μm. On the other hand, in the present invention, the current collector is made porous, and the anode and the cathode are pressure-bonded to the current collector for the anode and the current collector for the cathode, respectively. The electrode catalyst is configured to penetrate deeply into the inside of the current collector. The electrode particles may exist over the entire thickness of the current collector, or may exist only on the boundary side between the current collector and the anode or the cathode. The thickness is usually 10 to several hundreds of μm, depending on the thickness of the body. This thickness can be adjusted by the porosity of the current collector and the amount of solvent during the production of the current collector and electrode particles by pressing. The higher the porosity and the higher the amount of solvent remaining, the more the electrode particles penetrate. The degree increases.

【0007】このように構成することにより、反応ガス
が供給される集電体の反対面からアノード及びカソード
を構成する電極粒子までのガスの移動距離が減少して物
質輸送が改善、つまり反応ガスの流入と水蒸気の放出を
円滑に行うことが可能になる。しかも電極粒子の量を減
少させることなく物質輸送の向上を行えるため、反応量
を維持させたまま物質輸送の改善を行うことができ、前
述の従来技術の問題点を解決することができる。本発明
の燃料電池における集電体は多孔質である限り特に限定
されないが、カーボンペーパや金属粒子の焼結シートあ
るいはカーボンや金属メッシュ等を好ましく使用でき
る。
According to this structure, the distance that the gas moves from the opposite surface of the collector to which the reaction gas is supplied to the electrode particles that form the anode and the cathode is reduced to improve the mass transport, that is, the reaction gas. It becomes possible to smoothly perform the inflow of water and the discharge of water vapor. Moreover, since the substance transport can be improved without reducing the amount of the electrode particles, the substance transport can be improved while maintaining the reaction amount, and the above-mentioned problems of the prior art can be solved. The current collector in the fuel cell of the present invention is not particularly limited as long as it is porous, but carbon paper, a sintered sheet of metal particles, carbon, a metal mesh or the like can be preferably used.

【0008】又アノード及びカソードを構成する電極粒
子はカーボン粉末に白金等の触媒金属を担持させた従来
のものをそのまま使用すればよい。又この電極粒子はそ
の全てに触媒が担持されている必要はなく触媒担持粒子
と無担持粒子の混合物としてもよい。更に該電極触媒粒
子上にイオン交換樹脂を被覆しイオン交換膜との親和性
を向上させることが望ましい。アノードとカソードを区
画するイオン交換膜も従来の燃料電池で使用されている
ものをそのまま使用すれば良く、例えばパーフルオロカ
ーボンスルホン酸型イオン交換膜(商品名ナフィオン)
又はカルボン酸型イオン交換膜を使用することが好まし
い。
Further, as the electrode particles constituting the anode and the cathode, the conventional particles in which carbon powder is supported by a catalytic metal such as platinum may be used as they are. The electrode particles do not have to have a catalyst supported on all of them, and may be a mixture of catalyst-supported particles and unsupported particles. Furthermore, it is desirable to coat the electrode catalyst particles with an ion exchange resin to improve the affinity with the ion exchange membrane. As the ion exchange membrane for partitioning the anode and the cathode, the one used in the conventional fuel cell may be used as it is. For example, perfluorocarbon sulfonic acid type ion exchange membrane (trade name Nafion)
Alternatively, it is preferable to use a carboxylic acid type ion exchange membrane.

【0009】図1は、本発明に係わる高分子固体電解質
型燃料電池の一例を示す部分断面図である。この燃料電
池は、カソード用多孔質集電体1とカソード粒子2が一
体化した集電体付カソード3、イオン交換膜4及びアノ
ード用多孔質集電体5とアノード粒子6が一体化した集
電体付アノード7から構成され、カソード粒子2及びア
ノード粒子6のそれぞれの一部がそれぞれ前記カソード
用多孔質集電体1とアノード用多孔質集電体5内に進入
している。図示の燃料電池では両集電体1、5内にカソ
ード粒子2及びアノード粒子6が進入して、前記集電体
1、5の実質的な厚さが減少しているため、反応ガスの
流入と生成する水蒸気の系外への放出を容易に行うこと
ができ物質輸送が大きく改良される。そしてカソード粒
子2及びアノード粒子6にイオン交換樹脂を被覆してお
くことにより触媒反応の活性点及びイオン導電性が得ら
れる。
FIG. 1 is a partial cross-sectional view showing an example of a solid polymer electrolyte fuel cell according to the present invention. In this fuel cell, a cathode 3 with a current collector, in which a porous cathode current collector 1 and cathode particles 2 are integrated, an ion exchange membrane 4, a porous current collector 5 for an anode, and an anode particle 6 are integrated. It is composed of an anode 7 with an electric body, and a part of each of the cathode particles 2 and the anode particles 6 has entered into the cathode porous current collector 1 and the anode porous current collector 5, respectively. In the illustrated fuel cell, the cathode particles 2 and the anode particles 6 are introduced into both the current collectors 1 and 5, and the substantial thickness of the current collectors 1 and 5 is reduced. The generated water vapor can be easily released to the outside of the system, and mass transport is greatly improved. Then, by coating the cathode particles 2 and the anode particles 6 with an ion-exchange resin, active points of catalytic reaction and ionic conductivity can be obtained.

【0010】[0010]

【実施例】次に本発明に係わる燃料電池の実施例を記載
するが、本実施例は本発明を限定するものではない。カ
ーボン粉末10gに塩化白金酸水溶液(白金濃度5g/リ
ットル)を含浸させた後、熱分解処理を行って白金担持
量が20重量%である白金カーボン触媒を調製した。該カ
ーボン触媒を市販のイオン交換樹脂分散溶液(ナフィオ
ン溶液)に浸漬しその後乾燥してその表面にイオン交換
樹脂層を形成した。この触媒粉末を担持白金量が平均0.
3 mg/cm2 となるように分別し、アルコール中に再
分散させた。
EXAMPLES Next, examples of the fuel cell according to the present invention will be described, but the present examples do not limit the present invention. 10 g of carbon powder was impregnated with a chloroplatinic acid aqueous solution (platinum concentration: 5 g / liter) and then subjected to a thermal decomposition treatment to prepare a platinum carbon catalyst having a platinum loading of 20% by weight. The carbon catalyst was immersed in a commercially available ion exchange resin dispersion solution (Nafion solution) and then dried to form an ion exchange resin layer on the surface. The amount of platinum supported on this catalyst powder is on average 0.
Fractionation was carried out to 3 mg / cm 2 and redispersion in alcohol.

【0011】次にこの分散液を弱い吸引下で濾過して濾
紙上に前記触媒粉末をアルコールが若干残るように付着
させた後、該濾紙を集電体として機能する撥水化処理し
た厚さ360 μmのカーボンペーパとともに25kg/cm
2 の圧力で冷間プレスして前記触媒粉末をカーボンペー
バ内に埋め込んで、一方面にアノード又はカソードが形
成された集電体付電極を調製した。この電極2枚を厚さ
150 μmのナフィオン(イオン交換樹脂)を挟んで触媒
粉末側が対向する状態で、圧力5kg/cm2、温度130
℃の条件でホットプレスしてイオン交換膜を中間に挟
んだサンドイッチ構造の本実施例の燃料電池を得た。こ
の電極粒子の集電体内への進入深さは約100 μmであっ
た。一方前記分散液の濾過を完全に行い濾紙上にアルコ
ールを残さないようにしたこと以外は同様にして比較例
の燃料電池を製造した。この燃料電池における電極粒子
の集電体内への進入深さは約5μm以下であった。
Next, this dispersion liquid is filtered under a weak suction to deposit the catalyst powder on the filter paper so that alcohol remains slightly, and then the filter paper is made water-repellently thick to function as a current collector. 25 kg / cm with 360 μm carbon paper
The catalyst powder was embedded in a carbon paver by cold pressing at a pressure of 2 to prepare an electrode with a collector having an anode or a cathode formed on one surface. Thickness of these two electrodes
Pressure of 5 kg / cm 2 and temperature of 130 with catalyst powder side facing each other with Nafion (ion exchange resin) of 150 μm in between.
The fuel cell of this example having a sandwich structure in which an ion exchange membrane was sandwiched in between was obtained by hot pressing at a temperature of ° C. The depth of penetration of the electrode particles into the current collector was about 100 μm. On the other hand, a fuel cell of a comparative example was manufactured in the same manner except that the dispersion liquid was completely filtered so that alcohol was not left on the filter paper. The depth of penetration of the electrode particles into the current collector in this fuel cell was about 5 μm or less.

【0012】実施例及び比較例の燃料電池を使用して、
両燃料電池の特性を限界電流密度値を下記条件で測定す
ることにより評価した。つまりアノード及びカソードへ
の供給ガスはそれぞれ1気圧の水素及び酸素とし、80℃
におけるIRフリーの電流密度(mA/cm2 )と得ら
れる電圧(mV)の関係をそれぞれの燃料電池について
測定した。その結果を図2のグラフに示した。なお図2
の横軸は対数目盛である。図2から明らかなように、両
燃料電池とも約0.8 mV以上では電流密度に差は生じな
いが、実施例の燃料電池の限界電流密度の方が大きく、
約1500mA/cm2 に達し、比較例の燃料電池の限界電
流密度は約800 mA/cm2 であった。
Using the fuel cells of Examples and Comparative Examples,
The characteristics of both fuel cells were evaluated by measuring the limiting current density value under the following conditions. That is, the gas supplied to the anode and cathode is hydrogen and oxygen at 1 atm, respectively,
The relationship between the IR-free current density (mA / cm 2 ) and the obtained voltage (mV) was measured for each fuel cell. The results are shown in the graph of FIG. Figure 2
The horizontal axis of is a logarithmic scale. As is clear from FIG. 2, there is no difference in current density between both fuel cells at about 0.8 mV or more, but the limiting current density of the fuel cell of the example is larger,
It reached about 1500 mA / cm 2, and the limiting current density of the fuel cell of Comparative Example was about 800 mA / cm 2 .

【0013】[0013]

【発明の効果】本発明は、カソード用集電体、触媒金属
を担持した微粒子を含みカソード、イオン交換膜、触媒
金属を担持した微粒子を含むアノード及びアノード用集
電体を積層して成る高分子固体電解質型燃料電池におい
て、両集電体を多孔質とし前記カソード微粒子及びアノ
ード微粒子の少なくとも一部をそれぞれ前記カソード用
集電体及びアノード用集電体内に存在させたことを特徴
とする高分子固体電解質型燃料電池である。
Industrial Applicability The present invention comprises a stack of a cathode current collector, a cathode containing fine particles supporting a catalytic metal, an ion exchange membrane, an anode containing fine particles supporting a catalytic metal, and an anode current collector. In the molecular solid oxide fuel cell, both current collectors are porous, and at least a part of the cathode fine particles and the anode fine particles are present in the cathode current collector and the anode current collector, respectively. It is a molecular solid oxide fuel cell.

【0014】本発明では、アノード粒子及びカソード粒
子が集電体内部に進入しているため反応ガスが供給され
る集電体の反対面からアノード及びカソードを構成する
電極粒子までのガスの移動距離が減少して反応ガスの流
入と水蒸気の放出を円滑に行うことが可能になる。しか
も従来のように電極粒子の量を減少させて物質輸送を改
善していないため反応量が低下して取り出せるエネルギ
量が減少することもなく、従来達成し得なかった反応量
を維持したままの物質輸送の改善を可能にしている。
In the present invention, since the anode particles and the cathode particles have entered the inside of the current collector, the moving distance of the gas from the opposite surface of the current collector to which the reaction gas is supplied to the electrode particles constituting the anode and the cathode. Is reduced and the inflow of reaction gas and the release of water vapor can be smoothly performed. Moreover, since the amount of electrode particles is not reduced to improve mass transport as in the conventional case, the reaction amount does not decrease and the amount of energy that can be taken out does not decrease, and the reaction amount that could not be achieved in the past is maintained. Enables improved mass transport.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一例を示す部分断面図。FIG. 1 is a partial sectional view showing an example of a fuel cell of the present invention.

【図2】実施例及び比較例の燃料電池の電圧と限界電流
密度の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the voltage and the limiting current density of the fuel cells of Examples and Comparative Examples.

【図3】従来の燃料電池の一例を示す部分断面図。FIG. 3 is a partial cross-sectional view showing an example of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1・・・カソード用多孔質集電体 2・・・カソード粒
子 3・・・集電体付カソード 4・・・イオン交換膜
5・・・アノード用多孔質集電体 6・・・アノード
粒子 7・・・集電体付アノード
DESCRIPTION OF SYMBOLS 1 ... Porous current collector for cathode 2 ... Cathode particle 3 ... Cathode with current collector 4 ... Ion exchange membrane 5 ... Porous current collector for anode 6 ... Anode particle 7 ... Anode with current collector

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000218166 渡辺 政廣 山梨県甲府市和田町2421番地の8 (72)発明者 坂入 弘一 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 (72)発明者 井上 昌彦 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 (72)発明者 渡辺 政廣 山梨県甲府市和田町2412番地8 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000218166 Masahiro Watanabe 8421, 2421 Wada-cho, Kofu-shi, Yamanashi Prefecture (72) Inventor Koichi Sakairi 2-73, Shinmachi, Hiratsuka-shi, Kanagawa Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center (72) Inventor Masahiko Inoue No. 73-2 Shinmachi, Hiratsuka City, Kanagawa Prefecture Tanaka Kikinzoku Kogyo Co., Ltd. Technical Development Center (72) Inventor Masahiro Watanabe 2412 Wadacho, Kofu City, Yamanashi Prefecture 8

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カソード用集電体、カソード粒子を含む
カソード、イオン交換膜、アノード粒子を含むアノード
及びアノード用集電体を積層して成る高分子固体電解質
型燃料電池において、両集電体を多孔質とし前記カソー
ド微粒子及びアノード微粒子の少なくとも一部をそれぞ
れ前記カソード用集電体及びアノード用集電体内に存在
させたことを特徴とする高分子固体電解質型燃料電池。
1. A polymer solid oxide fuel cell comprising a cathode current collector, a cathode containing cathode particles, an ion exchange membrane, an anode containing anode particles, and a current collector for an anode, which are laminated together. Is a porous solid, and at least a part of the cathode fine particles and the anode fine particles are present in the cathode current collector and the anode current collector, respectively.
【請求項2】 両粒子の表面にイオン交換樹脂が被覆さ
れている請求項1に記載の燃料電池。
2. The fuel cell according to claim 1, wherein the surfaces of both particles are coated with an ion exchange resin.
JP3359943A 1991-12-31 1991-12-31 Polymer solid electrolyte-type fuel cell Pending JPH05315000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359943A JPH05315000A (en) 1991-12-31 1991-12-31 Polymer solid electrolyte-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359943A JPH05315000A (en) 1991-12-31 1991-12-31 Polymer solid electrolyte-type fuel cell

Publications (1)

Publication Number Publication Date
JPH05315000A true JPH05315000A (en) 1993-11-26

Family

ID=18467101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359943A Pending JPH05315000A (en) 1991-12-31 1991-12-31 Polymer solid electrolyte-type fuel cell

Country Status (1)

Country Link
JP (1) JPH05315000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
WO2004082048A1 (en) * 2003-03-10 2004-09-23 Honda Motor Co., Ltd. Fuel cell
US7049024B2 (en) 2003-04-30 2006-05-23 Hewlett-Packard Development Company, L.P. Membrane electrode assemblies and method for manufacture
WO2005045963A3 (en) * 2003-11-05 2006-07-06 Honda Motor Co Ltd Electrolyte-electrode joined assembly and method for producing the same
WO2006112257A1 (en) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. Membrane electrode assembly for fuel cell and fuel cell
JP2011009226A (en) * 2010-07-20 2011-01-13 Gs Yuasa Corp Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
WO2004082048A1 (en) * 2003-03-10 2004-09-23 Honda Motor Co., Ltd. Fuel cell
EP1603178A1 (en) * 2003-03-10 2005-12-07 HONDA MOTOR CO., Ltd. Fuel cell
EP1603178A4 (en) * 2003-03-10 2007-05-23 Honda Motor Co Ltd Fuel cell
CN100386909C (en) * 2003-03-10 2008-05-07 本田技研工业株式会社 Fuel cell
US7482089B2 (en) 2003-03-10 2009-01-27 Honda Motor Co., Ltd. Fuel cell
KR101015934B1 (en) * 2003-03-10 2011-02-23 혼다 기켄 고교 가부시키가이샤 Fuel cell
US7049024B2 (en) 2003-04-30 2006-05-23 Hewlett-Packard Development Company, L.P. Membrane electrode assemblies and method for manufacture
WO2005045963A3 (en) * 2003-11-05 2006-07-06 Honda Motor Co Ltd Electrolyte-electrode joined assembly and method for producing the same
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
WO2006112257A1 (en) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. Membrane electrode assembly for fuel cell and fuel cell
JP2011009226A (en) * 2010-07-20 2011-01-13 Gs Yuasa Corp Composite catalyst, its manufacturing method, and method of electrode for manufacturing fuel cell using the composite catalyst

Similar Documents

Publication Publication Date Title
JP3271801B2 (en) Polymer solid electrolyte fuel cell, humidifying method of the fuel cell, and manufacturing method
US5607785A (en) Polymer electrolyte electrochemical cell and process of preparing same
JP2842150B2 (en) Polymer electrolyte fuel cell
US6106965A (en) Polymer electrolyte fuel cell
US5885729A (en) Hydrophilic, graphite fuel cell electrode for use with an ionomer membrane and method of making a fuel cell.
US4585711A (en) Hydrogen electrode for a fuel cell
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
JPH0151856B2 (en)
RU2414772C2 (en) Structures for gas diffusion electrodes
JP3711545B2 (en) Polymer electrolyte fuel cell
JPH08162123A (en) Polymer electrolyte-type electro-chemical cell and its manufacture
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
US3453149A (en) Fluorocarbon matrix membrane containing free acid and method of fabricating
US5453332A (en) Electrode structure for fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JPH07134996A (en) Fuel cell
JP3711546B2 (en) Fuel cell electrode structure and manufacturing method thereof
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
JPH08111226A (en) Solid polyelectrolyte type electrochemistry cell and its preparation
JP2002313363A (en) Solid polymer electrolyte film and its manufacturing method
JP2003151564A (en) Electrode for solid high polymer fuel cell
JPH09120827A (en) Solid polymer electrolyte fuel cell
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JPH08148151A (en) Fuel cell electrode and manufacture thereof