JPH0531391A - Impact-type air current pulverizer and pulverization of raw material to powder - Google Patents

Impact-type air current pulverizer and pulverization of raw material to powder

Info

Publication number
JPH0531391A
JPH0531391A JP3190348A JP19034891A JPH0531391A JP H0531391 A JPH0531391 A JP H0531391A JP 3190348 A JP3190348 A JP 3190348A JP 19034891 A JP19034891 A JP 19034891A JP H0531391 A JPH0531391 A JP H0531391A
Authority
JP
Japan
Prior art keywords
raw material
collision
powder raw
powder
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3190348A
Other languages
Japanese (ja)
Other versions
JP3093343B2 (en
Inventor
Satoshi Mitsumura
聡 三ツ村
Kazuhiko Komata
一彦 小俣
Hitoshi Kanda
仁志 神田
Yasuhide Goseki
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03190348A priority Critical patent/JP3093343B2/en
Publication of JPH0531391A publication Critical patent/JPH0531391A/en
Application granted granted Critical
Publication of JP3093343B2 publication Critical patent/JP3093343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of pulverization of an impact-type air current pulverizer used for the manufacture of color resin powder for toner. CONSTITUTION:The subject impact-type air current pulverizer is composed of a speed acceleration tube 3 for accelerating the speed of raw material for powder transported using a high pressure air, a pulyarization chamber 5 and an impact member 6 provided at an opposite position to the speed acceleration tube outlet in the pulverization chamber. In addition, supply apertures 1 for raw material for powder are provided in the speed acceleration tube, and a secondary air introduction aperture 11 for the speed acceleration tube is formed between the supply aperture for raw material for powder and the speed acceleration tube outlet. Further, the gradient angle (psi) of the secondary air introduction aperture with the center shaft of the speed acceleration tube satisfies 10 deg.<=psi<=80 deg., the gradient angle (rho) of the secondary air introduction aperture with a cross section which is vertical to the speed acceleration tube satisfies 10 deg.<=rho<=80 deg., and the tip of a collision surface of the impact member is allowed to assume a conical shape with a vertical angle of 110 deg. or larger to 180 deg. or smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用いた衝突式気流粉砕機及び粉体原料の粉砕方法
に関し、特に、電子写真法による画像形成方法に用いら
れるトナーまたはトナー用着色樹脂粉体を効率良く生成
するための衝突式気流粉砕機及び粉体原料の粉砕方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type air flow pulverizer using a jet air flow (high pressure gas) and a method for pulverizing powder raw materials, and more particularly to toner or toner for use in an image forming method by electrophotography. The present invention relates to a collision type air flow pulverizer and a pulverizing method of powder raw materials for efficiently producing a colored resin powder.

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流で粉体原料を搬送し、粉体原料を衝突
部材に衝突させ、その衝撃力により粉砕するものであ
る。
2. Description of the Related Art A collision type air flow crusher using a jet air flow conveys a powder raw material by a jet air flow, collides the powder raw material with a collision member, and pulverizes the powder by the impact force.

【0003】以下に、その詳細を図9に基づいて説明す
る。
The details will be described below with reference to FIG.

【0004】圧縮気体供給ノズル2を接続した加速管1
3の出口14に対向して衝突部材16を設け、前記加速
管13に供給した高圧気体の流動により、加速管13の
中途に連通させた粉体原料供給口1から加速管13の内
部に粉体原料15を吸引し、これを高圧気体とともに噴
射して衝突部材16の衝突面に衝突させ、その衝撃によ
って粉砕するようにしたものである。そして、粉体原料
15を所望の粒度に粉砕するために使用する場合には、
粉体原料供給口1と排出口9の間に分級機を配して閉回
路とし、分級機に粉体原料15を供給し、その粗粉を粉
体原料供給口1から供給し、粉砕を行い、その粉砕物を
排出口9から分級機に戻すようにして再度分級するよう
にしてあり、その微粉が所望の粒度の微粉砕物となる。
Acceleration tube 1 connected to a compressed gas supply nozzle 2
3 is provided with a collision member 16 facing the outlet 14, and the flow of the high-pressure gas supplied to the accelerating pipe 13 causes the powder raw material supply port 1 communicated with the accelerating pipe 13 to enter the accelerating pipe 13. The body material 15 is sucked, jetted with high-pressure gas to collide with the collision surface of the collision member 16, and the impact is crushed. When the powder raw material 15 is used for pulverizing to a desired particle size,
A classifier is arranged between the powder raw material supply port 1 and the discharge port 9 to form a closed circuit, the powder raw material 15 is supplied to the classifier, and the coarse powder is supplied from the powder raw material supply port 1 for pulverization. The pulverized product is returned to the classifier from the discharge port 9 and classified again, and the fine powder becomes a fine pulverized product having a desired particle size.

【0005】しかしながら、上記従来例では、加速管1
3内に吸引導入された粉体原料15を高圧気流中で充分
に分散させることは困難であることから、加速管出口1
4から噴出する粉流は粉塵濃度の濃い流れとうすい流れ
に分離してしまう。
However, in the above conventional example, the acceleration tube 1
Since it is difficult to sufficiently disperse the powder raw material 15 sucked and introduced into the high pressure gas stream 3, the acceleration pipe outlet 1
The powder flow ejected from No. 4 is separated into a flow having a high dust concentration and a light flow.

【0006】そのため、対向する衝突面17にあたる粉
流は、部分的(局所的)なものとなり、効率が低下し、
処理能力の低下を引き起こす。また、このような状態で
処理能力を大きくしようとすれば、更に粉塵濃度が部分
的に高くなるため、効率がより低下し、特に樹脂含有物
では衝突面17上で融着物が発生し、好ましくない。
Therefore, the powder flow which hits the collision surface 17 facing each other becomes partial (local), and the efficiency is lowered,
Causes a decrease in processing capacity. In addition, if the treatment capacity is increased in such a state, the dust concentration is further increased locally, so that the efficiency is further reduced, and particularly in the case of the resin-containing material, a fused substance is generated on the collision surface 17, which is preferable. Absent.

【0007】その上、粗粒を多く含む粉体原料7を加速
管13内に吸引導入させると、粉体原料供給口1の吸込
能力が低下し、その結果、処理能力の低下を引き起こ
す。
Moreover, when the powder raw material 7 containing a large amount of coarse particles is introduced into the accelerating tube 13 by suction, the suction capacity of the powder raw material supply port 1 is lowered, and as a result, the processing capacity is lowered.

【0008】加速管13内部での粒子の粉砕の効率を上
げるために、加速管出口14の手前側に二次高圧ガスを
噴出せしめる高圧ガス給送管を設けた粉砕管が特公昭4
6−22778号公報で提案されている。これは加速管
13内部での衝突を促進させることを意図しており、加
速管13内でのみ粉砕を行うような粉砕機には有用な手
段であるが、衝突部材16に衝突させて粉砕を行う衝突
式気流粉砕機では、有用な方法ではない。なぜならば、
加速管13内で衝突を促進させるために二次高圧ガスを
導入すれば、圧縮気体供給ノズル2から導入される高圧
気体による搬送気流が阻害され、加速管出口14から噴
出する粉流の速度が低下してしまう。そのため衝突部材
16に衝突する衝撃力が低下し、粉砕効率が低下してし
まい好ましくない。
In order to improve the efficiency of crushing particles inside the accelerating tube 13, a crushing tube provided with a high-pressure gas feed tube for ejecting secondary high-pressure gas in front of the accelerating tube outlet 14 is disclosed in JP-B-4.
It is proposed in Japanese Patent Publication No. 6-22778. This is intended to promote the collision inside the acceleration tube 13, and is a useful means for a crusher that crushes only inside the acceleration tube 13, but it is made to collide with the collision member 16 to perform crushing. It is not a useful method in a collision-type airflow mill. because,
If the secondary high-pressure gas is introduced to accelerate the collision in the acceleration tube 13, the carrier gas flow due to the high-pressure gas introduced from the compressed gas supply nozzle 2 is obstructed, and the velocity of the powder flow ejected from the acceleration tube outlet 14 is increased. Will fall. Therefore, the impact force that collides with the collision member 16 decreases, and the pulverization efficiency decreases, which is not preferable.

【0009】一方、従来かかる粉砕機における衝突部材
の衝突面は、図9及び図10に示すように、粉体原料を
載せた高圧気流方向(加速管の軸方向)に対し垂直ある
いは傾斜(例えば45°)している平面状のものが用い
られてきた(特開昭57−50554号公報及び特開昭
58−143853号公報参照)。
On the other hand, as shown in FIGS. 9 and 10, the collision surface of the collision member in the conventional crusher is perpendicular or inclined (eg, to the axial direction of the accelerating tube) to the high-pressure air stream on which the powder material is placed. A flat surface having an angle of 45 ° has been used (see JP-A-57-50554 and JP-A-58-143853).

【0010】しかしながら、図9のように加速管13の
軸方向と垂直な衝突面17の場合、加速管出口14から
吹き出される粉体原料15と衝突面17で反射される粉
砕物とが衝突面17の近傍で共存する割合が高く、その
ため、衝突面17近傍での粉体(粉体原料及び粉砕物)
濃度が高くなり、粉砕効率が良くない。
However, in the case of the collision surface 17 perpendicular to the axial direction of the acceleration tube 13 as shown in FIG. 9, the powder material 15 blown out from the acceleration tube outlet 14 collides with the pulverized material reflected on the collision surface 17. The coexistence ratio is high in the vicinity of the surface 17, and therefore the powder (powder raw material and pulverized material) in the vicinity of the collision surface 17
The concentration is high and the pulverization efficiency is not good.

【0011】さらに、衝突面17における一次衝突が主
体であり、粉砕室内壁8との二次衝突を有効に利用して
いるとはいえない。さらに、熱可塑性樹脂を粉砕すると
きには、衝突時の局部発熱により融着及び凝集物が発生
し易く、装置の安定した運転が困難になり、粉砕能力低
下の原因となる。そのために、粉体原料濃度を高くして
使用することが困難であった。
Further, the primary collision on the collision surface 17 is the main component, and it cannot be said that the secondary collision with the crushing chamber inner wall 8 is effectively utilized. Furthermore, when crushing the thermoplastic resin, fusion and agglomerates are likely to occur due to local heat generation at the time of collision, which makes stable operation of the device difficult and causes a decrease in crushing ability. Therefore, it was difficult to increase the powder raw material concentration and use it.

【0012】また、図10の粉砕機においては、衝突面
27が加速管13の軸方向に対して傾斜しているため
に、衝突面27近傍の粉体濃度は図9の粉砕機と比較し
て低くなるが、高圧気流による衝突力が分散されて低下
する。さらに、粉砕室内壁8との二次衝突を有効に利用
しているとはいえない。例えば、図10に示す如く、衝
突面27の角度が加速管に対し45°傾斜のものでは、
熱可塑性樹脂を粉砕するときに上記のような問題点は少
ない。しかしながら、衝突する際に粉砕に使われる衝撃
力が小さく、さらに粉砕室内壁8との二次衝突による粉
砕が少ないので粉砕能力は、図9の粉砕機と比較して1
/2〜1/1.5に粉砕能力が落ちる。
Further, in the crusher of FIG. 10, since the collision surface 27 is inclined with respect to the axial direction of the acceleration tube 13, the powder concentration in the vicinity of the collision surface 27 is smaller than that of the crusher of FIG. However, the collision force due to the high pressure air flow is dispersed and decreases. Further, it cannot be said that the secondary collision with the crushing chamber inner wall 8 is effectively utilized. For example, as shown in FIG. 10, when the angle of the collision surface 27 is 45 ° with respect to the acceleration tube,
When crushing the thermoplastic resin, the above problems are few. However, since the impact force used for the crushing at the time of collision is small and the crushing due to the secondary collision with the crushing chamber inner wall 8 is small, the crushing capacity is 1 compared with the crusher of FIG.
The crushing ability drops to / 2 to 1 / 1.5.

【0013】それ故、粉砕効率の良好な粉砕機及び粉砕
方法が待望されている。
Therefore, a crusher and a crushing method having good crushing efficiency have been desired.

【0014】一方、電子写真法による画像形成方法に用
いられるトナーまたはトナー用着色樹脂粉体は、通常結
着樹脂及び着色剤または磁性粉を少なくとも含有してい
る。トナーは、潜像担持体に形成された静電荷像を現像
し、形成されたトナー像は普通紙またはプラスチックフ
ィルムの如き転写材へ転写され、加熱定着手段、圧力ロ
ーラ定着手段または加熱加圧ローラ定着手段の如き定着
装置によって転写材上のトナー像は転写材に定着され
る。したがって、トナーに使用される結着樹脂は、熱及
び/または圧力が付加されると塑性変形する特性を有す
る。
On the other hand, the toner or the colored resin powder for toner used in the image forming method by electrophotography usually contains at least a binder resin and a colorant or magnetic powder. The toner develops the electrostatic image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and is heated and fixed, a pressure roller and a heating roller, or a heat and pressure roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as fixing means. Therefore, the binder resin used for the toner has a characteristic of being plastically deformed when heat and / or pressure is applied.

【0015】現在、トナーまたはトナー用着色樹脂粉体
は、結着樹脂及び着色剤または磁性粉(必要により、さ
らに第三成分を含有)を少なくとも含有する混合物を溶
融混練し、溶融混練物を冷却し、冷却物を粉砕し、粉砕
物を分級して調製される。冷却物の粉砕は、通常、機械
的衝撃式粉砕機により粗粉砕(または中粉砕)され、次
いで粉砕粗粉をジェット気流を用いた衝突式気流粉砕機
で微粉砕しているのが一般的である。
At present, a toner or a colored resin powder for a toner is melt-kneaded with a mixture containing at least a binder resin and a colorant or a magnetic powder (and optionally a third component), and the melt-kneaded product is cooled. Then, the cooled product is crushed and the crushed product is classified. Generally, the crushed product is roughly crushed (or medium crushed) by a mechanical impact crusher, and then the crushed coarse powder is finely crushed by a collision type air flow crusher using a jet stream. is there.

【0016】かかる場合、従来の図9に示すような衝突
式気流粉砕機及び粉砕方式では、処理能力を更に向上さ
せようとすれば、加速管13に設けられる粉体原料供給
口1に吸引不足が起こり、又は、衝突面17上で融着物
が発生し、安定生産が行えない。そのため、電子写真法
による画像形成方法に用いられるトナーまたはトナー用
着色樹脂粉体を更に効率良く生成するため、上記問題点
を解決した、効率のよい衝突式気流粉砕機及び粉砕方法
が望まれている。
In such a case, in the conventional collision type air flow crusher and crushing method as shown in FIG. 9, if it is attempted to further improve the processing capacity, the powder raw material supply port 1 provided in the accelerating pipe 13 is insufficiently sucked. Occurs, or a fusion product is generated on the collision surface 17, and stable production cannot be performed. Therefore, in order to more efficiently generate the toner or the colored resin powder for the toner used in the image forming method by electrophotography, an efficient collision type airflow crusher and a crushing method that solve the above problems are desired. There is.

【0017】[0017]

【発明が解決しようとする課題】本発明の目的は、上記
問題点が解消された効率のよい衝突式気流粉砕機及び粉
体原料の粉砕方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an efficient collision type air flow crusher and a powder raw material crushing method in which the above problems are solved.

【0018】本発明の目的は、熱可塑性樹脂を主体とす
る粉体を効率良く粉砕する衝突式気流粉砕機及び粉体原
料の粉砕方法を提供することにある。
An object of the present invention is to provide a collision type air flow pulverizer for efficiently pulverizing powder mainly composed of a thermoplastic resin and a pulverizing method for powder raw material.

【0019】本発明の目的は、熱可塑性樹脂を主体とす
る粉体を効率良く粉砕する衝突式気流粉砕機及び粉体原
料の粉砕方法を提供することにある。
An object of the present invention is to provide a collision type air flow pulverizer for efficiently pulverizing a powder mainly composed of a thermoplastic resin and a method for pulverizing a powder raw material.

【0020】本発明の目的は、加熱加圧ローラ定着手段
を有する複写機及びプリンタに使用されるトナーまたは
トナー用着色樹脂粒子を効率良く生成し得る衝突式気流
粉砕機及び粉体原料の粉砕方法を提供することにある。
An object of the present invention is to provide a collision type airflow pulverizer and a powder raw material pulverizing method capable of efficiently producing toner or colored resin particles for toner used in a copying machine and a printer having a heating and pressing roller fixing means. To provide.

【0021】本発明の目的は、平均粒径20〜2000
μmを有する樹脂粒子を平均粒径3〜15μmに効率良
く微粉砕し得る衝突式気流粉砕機及び粉体原料の粉砕方
法を提供することにある。
The object of the present invention is to obtain an average particle size of 20 to 2000.
An object of the present invention is to provide a collision type air flow pulverizer and a powder raw material pulverizing method capable of efficiently finely pulverizing resin particles having an average particle diameter of 3 to 15 μm.

【0022】本発明の目的は、加速管出口から分散良く
粉体を噴出させ、加速管内での凝集粉を防ぐことによ
り、効率良く粉砕する衝突式気流粉砕機及び粉体原料の
粉砕方法を提供することにある。
An object of the present invention is to provide a collision type air flow pulverizer and a pulverizing method of powder raw material which efficiently pulverize by ejecting the powder from the outlet of the accelerating tube with good dispersion to prevent agglomerated powder in the accelerating tube. To do.

【0023】本発明の目的は、加速管出口から噴射され
て衝突部材の衝突面に衝突した粉体原料がさらに粉砕室
内壁にさらに衝突する二次衝突を効果的に行なうことの
できる衝突式気流粉砕機及び粉体原料の粉砕方法を提供
することにある。
An object of the present invention is to provide a collision-type air flow which can effectively carry out a secondary collision in which the powder raw material injected from the outlet of the accelerating tube and colliding with the collision surface of the collision member further collides with the inner wall of the grinding chamber. An object of the present invention is to provide a pulverizer and a method for pulverizing powder raw materials.

【0024】[0024]

【課題を解決するための手段及び作用】本発明は、高圧
気体により粉体原料15を搬送加速するための加速管
3、粉砕室5及び該加速管3より噴出する粉体原料15
を衝突力により粉砕するための衝突部材6を具備し、該
衝突部材6を加速管出口4に対向して粉砕室5内に設け
た衝突式気流粉砕機において、該加速管3に複数の粉体
原料供給口1を設け、粉体原料供給口1と加速管出口4
との間に加速管二次空気導入口11を設け、該二次空気
導入口11の加速管3の中心軸に対する傾斜角(ψ)が 10°≦ψ≦80° を満足し、該二次空気導入口11の加速管3の中心軸に
垂直な断面に対する傾斜角(ρ)が 10°≦ρ≦80° を満足し、該衝突部材6の衝突面7の先端部分が頂角1
10°以上180°未満の錐体形状であることを特徴と
する衝突式気流粉砕機に関する。
According to the present invention, an accelerating tube 3, a crushing chamber 5 for accelerating and conveying a powder material 15 by a high pressure gas, and a powder material 15 ejected from the accelerating tube 3.
In the collision type air flow pulverizer, which is provided with a collision member 6 for crushing by means of a collision force, the collision member 6 being provided in the crushing chamber 5 facing the acceleration tube outlet 4, The body raw material supply port 1 is provided, and the powder raw material supply port 1 and the acceleration pipe outlet 4 are provided.
And an acceleration pipe secondary air inlet 11 is provided between the secondary air inlet 11 and the secondary air inlet 11, and the inclination angle (ψ) of the secondary air inlet 11 with respect to the central axis of the acceleration pipe 3 satisfies 10 ° ≦ ψ ≦ 80 °. The inclination angle (ρ) of the air inlet 11 with respect to the cross section perpendicular to the central axis of the acceleration tube 3 satisfies 10 ° ≦ ρ ≦ 80 °, and the tip portion of the collision surface 7 of the collision member 6 has an apex angle 1
The present invention relates to a collision type airflow pulverizer having a cone shape of 10 ° or more and less than 180 °.

【0025】本発明は、加速管内3で高圧気体により粉
体原料15を搬送加速し、粉砕室5内に加速管出口4か
ら粉体原料15を噴出させ、対向する衝突部材6に衝突
させて粉砕する粉砕原料の粉砕方法において、該加速管
3に設けた複数の粉体原料供給口1から粉体原料15を
導入し、該加速管3の粉体原料供給口1と加速管出口4
との間に設けた加速管二次空気導入口11から該加速管
3内に二次空気を導入し、その導入方向が加速管3の中
心軸に対する傾斜角(ψ)を10°≦ψ≦80°とし、
加速管3の中心軸に垂直な断面に対する傾斜角(ρ)を
10°≦ρ≦80°として、衝突面7の先端部分が頂角
110°以上180°未満の錐体形状を有する衝突部材
6に粉体原料15を衝突させて粉砕し、衝突後の粉砕物
をさらに粉砕室内壁8に二次衝突させて粉体原料15を
粉砕することを特徴とする粉体原料の粉砕方法に関す
る。
According to the present invention, the powder material 15 is conveyed and accelerated by the high pressure gas in the accelerating tube 3, the powder material 15 is jetted from the accelerating tube outlet 4 into the crushing chamber 5, and the powder material 15 is made to collide with the opposing collision member 6. In the crushing method of the crushed raw material to be crushed, the powder raw material 15 is introduced from a plurality of powder raw material supply ports 1 provided in the acceleration tube 3, and the powder raw material supply port 1 and the acceleration tube outlet 4 of the acceleration tube 3 are introduced.
Secondary air is introduced into the accelerating tube 3 from the accelerating tube secondary air introduction port 11 provided between the accelerating tube 3 and the accelerating tube 3 and the inclination angle (ψ) with respect to the central axis of the accelerating tube 3 is 10 ° ≦ ψ ≦ 80 degrees,
The inclination angle (ρ) with respect to the cross section perpendicular to the central axis of the acceleration tube 3 is 10 ° ≦ ρ ≦ 80 °, and the collision member 6 has a cone shape in which the tip portion of the collision surface 7 has an apex angle of 110 ° or more and less than 180 °. The powder raw material 15 is crushed by colliding with the powder raw material 15, and the pulverized material after the collision is further secondary collided with the crushing chamber inner wall 8 to pulverize the powder raw material 15.

【0026】本発明の衝突式気流粉砕機及び粉体原料の
粉砕方法によれば、被粉体原料である粉体を効率良く高
速気流を利用して数μmのオーダーまで粉砕することが
できる。
According to the collision type air flow pulverizer and the method for pulverizing the powder raw material of the present invention, the powder which is the raw material to be powder can be efficiently pulverized to the order of several μm by utilizing the high-speed air flow.

【0027】特に、熱可塑性樹脂の粉体または熱可塑性
樹脂を主成分とする粉体を効率良く、高速気流を利用し
て数μmのオーダまで粉砕することができる。
In particular, the powder of the thermoplastic resin or the powder containing the thermoplastic resin as the main component can be efficiently pulverized to the order of several μm by utilizing the high-speed air stream.

【0028】ここで、本発明を添付図面に基づいて詳細
に説明する。図1は、本発明の衝突式気流粉砕機の概略
的断面図及び該粉砕機を使用した粉砕工程及び分級機に
よる分級工程を組み合せた粉砕方法のフローチャートを
示した図である。粉砕されるべき粉体原料15は、加速
管3に設けられた粉体原料投入口1より、加速管3に供
給される。加速管3には圧縮空気の如き圧縮気体が圧縮
気体供給ノズル2から導入されており、加速管3に供給
された粉体原料15は、瞬時に加速されて、高速度を有
するようになる。高速度で加速管出口4から粉砕室5に
吐出された粉体原料15は、衝突部材6の衝突面7に衝
突して粉砕される。
The present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a collision type air flow crusher of the present invention and a flowchart of a crushing method in which a crushing process using the crusher and a classifying process by a classifier are combined. The powder raw material 15 to be crushed is supplied to the accelerating tube 3 through the powder raw material charging port 1 provided in the accelerating tube 3. A compressed gas such as compressed air is introduced into the accelerating tube 3 from the compressed gas supply nozzle 2, and the powder raw material 15 supplied to the accelerating tube 3 is instantaneously accelerated to have a high speed. The powder material 15 discharged into the crushing chamber 5 from the accelerating pipe outlet 4 at high speed collides with the collision surface 7 of the collision member 6 and is pulverized.

【0029】本発明は、図1のC−C′部断面である図
2に示すように、加速管3に対した複数個の粉体原料投
入口1を設け、加速管3の複数個の粉体原料投入口1と
加速管出口4との間に二次空気導入口11を設け、二次
空気を加速管3に導入することにより、加速管3内の粉
体を分散し、加速管出口4から粉体をより均一に噴出さ
せ、衝突部材6の対向する衝突面7に効率よく衝突させ
ることで粉砕効率を従来より向上させることができる。
粉砕されるべき粉体原料15は図1において加速管3の
上方に設けられた7つの粉体原料供給口1より、粉体原
料15を分散させて加速管3に供給される。加速管3に
は、圧縮空気の如き圧縮気体が圧縮気体供給ノズル2か
ら導入されており、加速管3に供給された粉体原料15
は瞬時に加速されて、高速度を有するようになる。高速
度で加速管出口4から粉砕室51に吐出された粉体原料
15は衝突部材6の衝突面7に衝突して粉砕される。ま
た、かかる粉砕機において、加速管3の粉体原料供給口
1と加速管出口4との間に二次空気導入口11を設け、
二次空気を加速管3に導入することにより、粉体原料供
給口1の吸引能力を向上させ、加速管3内の粉体原料1
5を分散し、加速管出口4から粉体原料15をより均一
に噴出させ、対向する衝突部材6の衝突面7に効率良く
衝突させることにより粉砕性を従来より向上することが
できる。ここで、導入される二次空気は、加速管3内を
高速移動する粉体原料15の凝集を解きほぐし、分散さ
せるために寄与している。また、加速管3内で加速気体
流速分布の遅い部分である加速管内壁に沿う流れを加速
する効果がある。
According to the present invention, as shown in FIG. 2 which is a sectional view taken along the line CC ′ of FIG. 1, a plurality of powder raw material charging ports 1 are provided for the acceleration tube 3, and a plurality of acceleration tube 3 are provided. A secondary air introduction port 11 is provided between the powder raw material charging port 1 and the acceleration pipe outlet 4, and the secondary air is introduced into the acceleration pipe 3 to disperse the powder in the acceleration pipe 3 and By more uniformly ejecting the powder from the outlet 4 and efficiently colliding with the opposing collision surface 7 of the collision member 6, the pulverization efficiency can be improved as compared with the conventional case.
The powder raw material 15 to be crushed is supplied to the accelerating pipe 3 by dispersing the powder raw material 15 from seven powder raw material supply ports 1 provided above the accelerating pipe 3 in FIG. Compressed gas such as compressed air is introduced into the accelerating tube 3 from the compressed gas supply nozzle 2, and the powder raw material 15 supplied to the accelerating tube 3 is supplied.
Is instantly accelerated and has a high velocity. The powder raw material 15 discharged into the crushing chamber 51 from the accelerating pipe outlet 4 at high speed collides with the collision surface 7 of the collision member 6 and is pulverized. Further, in such a crusher, a secondary air inlet 11 is provided between the powder raw material supply port 1 of the acceleration tube 3 and the acceleration tube outlet 4.
By introducing the secondary air into the acceleration tube 3, the suction capacity of the powder material supply port 1 is improved and the powder material 1 in the acceleration tube 3 is introduced.
By dispersing 5 and more uniformly ejecting the powder raw material 15 from the accelerating pipe outlet 4, and making it collide with the collision surface 7 of the opposing collision member 6 efficiently, pulverizability can be improved more than before. Here, the secondary air introduced contributes to deagglomerate and disperse the agglomeration of the powder raw material 15 that moves at high speed in the acceleration tube 3. In addition, there is an effect of accelerating the flow along the inner wall of the accelerating pipe, which is a portion where the accelerating gas flow velocity distribution is slow in the accelerating pipe 3.

【0030】図5及び図6に加速管の拡大側面図を示す
ことにより、より詳細に説明する。導入される二次空気
の導入方法については、鋭意検討を重ねた結果、次のよ
うな結論に到達した。
This will be described in more detail by showing enlarged side views of the accelerating tube in FIGS. 5 and 6. As a result of extensive studies on the method of introducing the secondary air to be introduced, the following conclusion was reached.

【0031】即ち、二次空気の導入の位置については、
図8において粉体原料投入口1と加速管出口4との距離
をx,粉体原料投入口1と二次空気導入口11との距離
をyとした場合、xとyが
That is, regarding the position of the introduction of the secondary air,
In FIG. 8, assuming that the distance between the powder raw material charging port 1 and the acceleration tube outlet 4 is x and the distance between the powder raw material charging port 1 and the secondary air inlet 11 is y, x and y are

【0032】[0032]

【外3】 を満たした時良好な結果が得られた。[Outside 3] Good results were obtained when

【0033】また、二次空気導入口11の導入角度につ
いては、加速管の軸方向に対する角度をψ(図5)とし
た時、ψが10°≦ψ≦80°、より好ましくは20°
≦ψ≦80°の条件を満たし、さらに、加速管の中心軸
に垂直な断面方向に対する角度をρ(図6)とした時、
ρが10°≦ρ≦80°、より好ましくは20°≦ρ≦
80°の条件を満たした場合に、良好な粉砕結果が得ら
れた。
Regarding the introduction angle of the secondary air introduction port 11, when the angle with respect to the axial direction of the acceleration tube is ψ (FIG. 5), ψ is 10 ° ≦ ψ ≦ 80 °, more preferably 20 °.
When the condition of ≦ ψ ≦ 80 ° is satisfied and the angle with respect to the cross-sectional direction perpendicular to the central axis of the acceleration tube is ρ (FIG. 6),
ρ is 10 ° ≦ ρ ≦ 80 °, more preferably 20 ° ≦ ρ ≦
Good crushing results were obtained when the condition of 80 ° was satisfied.

【0034】また、導入される二次空気の風量について
は、圧縮気体供給ノズル2から導入される高圧気体によ
る搬送気流の風量をaNm3/min、二次空気導入口
から導入される二次空気の総風量をbNm3/minと
した時、
Regarding the air volume of the secondary air to be introduced, the air volume of the carrier air flow by the high pressure gas introduced from the compressed gas supply nozzle 2 is aNm 3 / min, and the secondary air introduced from the secondary air inlet port. When the total air volume of bNm 3 / min is

【0035】[0035]

【外4】 を満足する条件下で粉砕を行った場合に良好な結果が得
られた。
[Outside 4] Good results were obtained when pulverization was carried out under the conditions satisfying

【0036】本発明における技術思想は、圧縮気体供給
ノズルから導入される高圧気体による搬送気流に粉体原
料を投入し、加速管出口から噴出させ、対向する衝突部
材面に衝突させて粉砕を行う衝突式気流粉砕機におい
て、加速管内での粉体の分散状態が粉砕効率に影響を及
ぼすのではないかという考え方に基づいている。すなわ
ち、加速管から供給される粉体原料は、凝集した状態で
加速管に流入するため、加速管内の分散が不充分とな
り、そのため加速管出口から噴出する時、粉塵濃度にバ
ラツキが生じ、衝突部材面を有効に利用できず、粉砕効
率が低下するものと考えた。この現象は粉砕処理量が大
きくなるほど顕著になる。
The technical idea of the present invention is that a powder material is introduced into a carrier gas stream of high-pressure gas introduced from a compressed gas supply nozzle, jetted from an outlet of an accelerating tube, and collided with an opposing collision member surface to pulverize. It is based on the idea that the dispersion state of the powder in the acceleration tube may affect the pulverization efficiency in the collision type air flow pulverizer. That is, since the powder raw material supplied from the accelerating tube flows into the accelerating tube in an agglomerated state, the dispersion in the accelerating tube becomes insufficient, and when it is ejected from the accelerating tube outlet, the dust concentration varies and collides. It was thought that the member surface could not be used effectively and the crushing efficiency would decrease. This phenomenon becomes more remarkable as the crushing amount increases.

【0037】そこで、本発明者らは、これを解決するた
めに、複数の粉体原料投入口を設けることと二次空気の
導入を考え出した。二次空気を高圧気体による搬送気流
を阻害しないで、粉体原料を分散させるように加速管に
導入するという考えに基づいて、本発明に到った。かか
る二次空気としては、高圧縮気体、常圧気体のいずれを
用いてもよい。二次空気導入口にバルブの如き開閉装置
を取り付け、導入風量を制御することは非常に好まし
い。
In order to solve this, the present inventors have devised the provision of a plurality of powder raw material charging ports and the introduction of secondary air. The present invention has been accomplished based on the idea that secondary air is introduced into an accelerating tube so as to disperse the powder raw material without disturbing the carrier flow of high-pressure gas. As the secondary air, either a highly compressed gas or a normal pressure gas may be used. It is very preferable to install an opening / closing device such as a valve at the secondary air inlet to control the amount of introduced air.

【0038】また、加速管の円周方向のどの位置に何本
導入口を取り付けるかは、粉体原料、目標粒子径等によ
り適宜設定すればよい。図7に一例として、加速管の円
周方向に二次空気導入口を8ケ所取り付けた場合の図6
におけるB−B′視断面図を示す。この場合、8ケ所か
らどのような配分で二次空気を導入するかは適宜設定す
ればよい。また加速管の断面は円形に限定されるもので
はない。
The number of inlets to be attached at which position in the circumferential direction of the accelerating tube may be appropriately set depending on the powder raw material, the target particle size and the like. As an example, FIG. 7 shows a case where eight secondary air inlets are attached in the circumferential direction of the acceleration tube.
7 is a sectional view taken along line BB ′ in FIG. In this case, the distribution of the secondary air from the eight locations may be appropriately set. Further, the cross section of the acceleration tube is not limited to the circular shape.

【0039】加速管出口4の内径は、通常10〜100
mmを有し、衝突部材6の直径よりも小さい内径を有す
ることが好ましい。
The inner diameter of the accelerating tube outlet 4 is usually 10 to 100.
It is preferable to have an inner diameter of mm and an inner diameter smaller than the diameter of the collision member 6.

【0040】加速管出口4と衝突部材6の先端部との距
離は、衝突部材6の直径の0.3倍乃至3倍が好まし
い。0.3倍未満では、過粉砕が生じる傾向があり、3
倍を越える場合は、粉砕効率が低下する傾向がある。
The distance between the acceleration tube outlet 4 and the tip of the collision member 6 is preferably 0.3 to 3 times the diameter of the collision member 6. If it is less than 0.3 times, over-milling tends to occur, and 3
If it exceeds twice, the pulverization efficiency tends to decrease.

【0041】一方、図1の粉砕機において、衝突面7が
頂角110°以上180°未満、好ましくは160°近
傍を有する円錐形状を有しているので、粉砕された粉砕
物は実質的に全周方向に分散され、粉砕室内壁8と二次
衝突を起こし、さらに粉砕される。図8は、図1に示す
衝突式気流粉砕機のA−A′面における視断面を概略的
に示した図であり、衝突面7で衝突した後の粉砕物の分
散状態を模式的に示している。図8からは、本発明の気
流式粉砕機では、粉砕室内壁8における粉砕物の二次衝
突が有効に利用されていることが知見される。さらに、
本発明の粉砕機においては、図1に示す如く衝突面7で
粉砕物が良好に衝突部材の径方向に拡散されるので、粉
砕室内壁8が広く二次衝突に利用される。そのため、衝
突面7の近傍における(被)粉砕物の濃度が濃くならな
いので、粉砕の処理能率を向上させることができ、衝突
面7における(被)粉砕物の融着を良好に抑制すること
が可能である。
On the other hand, in the crusher of FIG. 1, since the collision surface 7 has a conical shape having an apex angle of 110 ° or more and less than 180 °, preferably around 160 °, the crushed pulverized material is substantially The particles are dispersed in the entire circumferential direction, cause a secondary collision with the crushing chamber inner wall 8, and are further crushed. FIG. 8 is a diagram schematically showing a cross section taken along the line AA ′ of the collision type airflow crusher shown in FIG. 1, and schematically showing a dispersed state of the pulverized material after the collision on the collision surface 7. ing. From FIG. 8, it is found that the air current type crusher of the present invention effectively utilizes the secondary collision of the crushed material on the crushing chamber inner wall 8. further,
In the crusher of the present invention, as shown in FIG. 1, the crushed material is well diffused in the radial direction of the collision member on the collision surface 7, so that the crushing chamber inner wall 8 is widely used for the secondary collision. Therefore, the concentration of the (crushed) material in the vicinity of the collision surface 7 does not become high, so that the processing efficiency of the crushing can be improved, and the fusion of the (crushed) material on the collision surface 7 can be effectively suppressed. It is possible.

【0042】粉砕室5に導入された粉体原料15は、衝
突面7における一次の衝突による粉砕が行われ、次いで
粉砕室内壁8における二次の衝突による粉砕がさらに行
われ、場合により、粉砕された粉砕物は排出口9に搬送
されるまでに粉砕室内壁8及び衝突部材6の側面との三
次(及び四次)の衝突によりさらに粉砕される。排出口
9から排出された粉砕物は固定壁式気流分級機の如き分
級機で細粉と粗粉とに分級される。分級された細粉は粉
砕製品として取り出される。分級された粗粉は、新たに
投入される粉体原料15とともに粉体原料供給口1に投
入される。
The powder material 15 introduced into the crushing chamber 5 is crushed by the primary collision on the collision surface 7, and then further crushed by the secondary collision on the inner wall 8 of the crushing chamber. The crushed material is further crushed by the tertiary (and quaternary) collision with the crushing chamber inner wall 8 and the side surface of the collision member 6 before being conveyed to the discharge port 9. The pulverized product discharged from the discharge port 9 is classified into fine powder and coarse powder by a classifier such as a fixed wall airflow classifier. The classified fine powder is taken out as a crushed product. The classified coarse powder is fed into the powder raw material supply port 1 together with the powder raw material 15 which is newly fed.

【0043】他の例として図3及び図4に加速管3に2
つ及び4つの粉体原料供給口1を設けた断面図(図1の
C−C′部断面)を示す。また、加速管3の断面は円形
に限定されるものではない。
As another example, FIG. 3 and FIG.
FIG. 2 is a cross-sectional view (cross section taken along the line CC ′ in FIG. 1) in which one and four powder raw material supply ports 1 are provided. Further, the cross section of the acceleration tube 3 is not limited to the circular shape.

【0044】なお、本発明における衝突式気流粉砕機の
粉砕室5は図1に示す箱型に限定されるものではない。
The crushing chamber 5 of the collision type airflow crusher according to the present invention is not limited to the box type shown in FIG.

【0045】以上説明したように、本発明の装置及び方
法によれば、加速管内の粉体原料の分散が良好になるこ
とで、衝突部材の衝突面に効率良く衝突し、粉砕効率が
向上する。即ち、従来の粉砕機に比べ、処理能力が向上
し、また、同一処理能力では得られる製品の粒子径をよ
り小さくできる。
As described above, according to the apparatus and method of the present invention, the powder raw material is well dispersed in the accelerating tube, so that the powder collides efficiently with the collision surface of the collision member and the pulverization efficiency is improved. . That is, compared with the conventional crusher, the processing capacity is improved, and the particle size of the obtained product can be made smaller with the same processing capacity.

【0046】また、従来例では、粉体原料が凝集した状
態で、衝突部材の衝突面に衝突するため、特に熱可塑性
樹脂を主体とする粉体を原料とした場合、融着物を発生
し易かったが、本発明によれば、分散された状態で、衝
突部材の衝突面に衝突するため、融着物を発生しにく
い。
Further, in the conventional example, since the powder raw material collides with the collision surface of the collision member in a state where the powder raw material is agglomerated, a fusion material is easily generated especially when powder mainly containing a thermoplastic resin is used as the raw material. However, according to the present invention, since the colliding member collides with the colliding surface of the colliding member in a dispersed state, it is difficult to generate a fused substance.

【0047】さらに、従来例では粉体原料が凝集してい
るため、過粉砕を生じ易く、そのため得られる粉砕品の
粒度分布が幅広のものとなるという問題があったが、本
発明によれば、過粉砕を防止でき、粒度分布のシャープ
な粉砕品が得られる。
Further, in the conventional example, since the powder raw material is agglomerated, there is a problem that over-pulverization is likely to occur, and the resulting pulverized product has a wide particle size distribution, but according to the present invention. It is possible to prevent excessive pulverization and obtain a pulverized product with a sharp particle size distribution.

【0048】さらに、二次空気を効率良く導入すること
で、粉体原料入口での空気の吸込能力が向上し、そのた
め、粉体原料の加速管内での搬送能力が向上し、粉砕処
理量を従来より高めることができる。本発明の装置及び
方法は粒径が小さくなる程、効果が顕著になる。
Further, by efficiently introducing the secondary air, the air suction capacity at the powder raw material inlet is improved, so that the powder raw material conveying ability in the accelerating pipe is improved and the pulverization processing amount is improved. It can be higher than before. The effect of the apparatus and method of the present invention becomes more remarkable as the particle size becomes smaller.

【0049】さらに、従来例では、加速管出口から噴射
されて衝突部材の衝突面に衝突した粉体原料は、加速管
出口から噴射された粉体原料とが共存する割合が高く粉
体濃度が高くなり粉砕効率が良くなかったが、本発明に
よれば、衝突部材の衝突面は先端が頂角110°以上1
80°未満の錐体形状であることから衝突面に衝突後の
粉砕物は粉砕室内壁側に反射するため粉体濃度が高くな
ることがなく或いは少なく粉砕効率が向上する。
Further, in the conventional example, the powder material injected from the accelerating tube outlet and colliding with the collision surface of the collision member has a high coexistence ratio with the powder material injected from the accelerating tube outlet and has a high powder concentration. However, according to the present invention, the tip of the collision surface of the collision member has an apex angle of 110 ° or more.
Since it has a cone shape of less than 80 °, the pulverized material after colliding with the collision surface is reflected to the inner wall side of the pulverization chamber, so that the powder concentration does not increase or is small, and the pulverization efficiency is improved.

【0050】さらに、衝突面に衝突後の粉砕物は粉砕室
内壁に衝突する二次衝突が効果的に行なわれるため粉砕
効率はさらに向上する。
Further, the crushed material after the collision with the collision surface effectively collides with the inner wall of the crushing chamber, so that the secondary collision is effectively performed, so that the pulverization efficiency is further improved.

【0051】[0051]

【実施例】【Example】

実施例1 ポリエステル樹脂 100重量部(重量平均分子量(M
w)=50,000, Tg=60℃ フタロシアニン系顔料 6重量部 低分子量ポリエチレン 2重量部 負荷電性制御剤 2重量部(アゾ系金属錯体)
Example 1 100 parts by weight of polyester resin (weight average molecular weight (M
w) = 50,000, Tg = 60 ° C. Phthalocyanine pigment 6 parts by weight Low molecular weight polyethylene 2 parts by weight Negative charge control agent 2 parts by weight (azo metal complex)

【0052】上記原料をヘンシェルミキサーにて混合
し、混合物を得た。次にこの混合物をエクストルーダー
にて約180℃で溶融混練した後、冷却して固化し、溶
融混練物の冷却物をハンマーミルで100〜1000μ
mの粒子に粗粉砕した。この粗粉砕物を粉体原料7と
し、図1、2、5、6、7及び8に示す粉砕機及びフロ
ーで粉砕を行った。粉砕された粉体を細粉と粗粉とに分
級するための分級手段としては、固定壁式風力分級機を
使用した。
The above raw materials were mixed with a Henschel mixer to obtain a mixture. Next, this mixture is melt-kneaded at about 180 ° C. in an extruder, then cooled and solidified, and a cooled product of the melt-kneaded product is heated to 100 to 1000 μm with a hammer mill.
Coarsely crushed into m particles. This coarsely pulverized material was used as the powder raw material 7 and pulverized with the pulverizer and the flow shown in FIGS. 1, 2, 5, 6, 7 and 8. A fixed wall type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

【0053】ここで、衝突式気流粉砕機は、加速管3の
出口4の内径が25mmであり、図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=40° 二次空気導入口11…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックで形成された円柱状で、衝
突面7の先端部が頂角160°を有する円錐形状を有し
ていた。加速管3の中心軸と衝突部材6の先端とは一致
していた。加速管出口4から衝突面7までの最近接距離
は60mmであり、衝突部材6と粉砕室内壁8との最近
接距離は18mmであった。
Here, in the collision type airflow crusher, the inner diameter of the outlet 4 of the acceleration tube 3 is 25 mm, and x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 40 ° in FIGS. 5 and 6. Next air inlet 11 ... 8 conditions are satisfied in the circumferential direction, the collision member 6 is a columnar shape made of aluminum oxide ceramic having a diameter of 60 mm, and the tip of the collision surface 7 has an apex angle of 160 °. Had a conical shape with. The central axis of the acceleration tube 3 and the tip of the collision member 6 were aligned. The closest distance from the acceleration pipe outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the crushing chamber inner wall 8 was 18 mm.

【0054】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量6.4Nm3/min(圧力6.0kg/cm2
の圧縮空気を導入し、図2に示す粉体原料供給口1から
48kg/時間の割合で粉体原料15を供給した。粉砕
された粉体原料15は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び粉体原料供給口1より粉体
原料15と共に加速管3に投入した。二次空気は図7に
おけるA,B,C,D,E,F,G及びHの8ケ所か
ら、各0.1Nm3/min(5.0kg/cm2)の圧
縮空気を導入した。
Flow rate 6.4 Nm 3 / min (pressure 6.0 kg / cm 2 ) from the compressed gas supply nozzle of the collision type air flow crusher.
The compressed air was introduced to supply the powder raw material 15 from the powder raw material supply port 1 shown in FIG. 2 at a rate of 48 kg / hour. The pulverized powder raw material 15 was conveyed to a classifier, fine powder was removed as a classified powder, and coarse powder was again fed into the accelerating tube 3 together with the powder raw material 15 from the powder raw material supply port 1. As the secondary air, 0.1 Nm 3 / min (5.0 kg / cm 2 ) of compressed air was introduced from each of 8 locations A, B, C, D, E, F, G and H in FIG. 7.

【0055】[0055]

【外5】 [Outside 5]

【0056】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
48kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder has a volume average particle diameter of 7.5.
Milled powder (measured by Coulter Counter) was collected at a rate of 48 kg / hour. Further, no fusion deposit was generated even after continuous operation for 6 hours.

【0057】尚、トナーの粒度分布は種々の方法によっ
て測定できるが、本実施例においてはコールターカウン
ターを用いて行った。
The particle size distribution of the toner can be measured by various methods, but in this embodiment, it was measured using a Coulter counter.

【0058】すなわち、測定装置としてはコールターカ
ウンターTA−II型(コールター社製)を用い、個数
分布、体積分布を出力するインターフェイス(日科機
製)及びCX−1パーソナルコンピュータ(キヤノン
製)を接続し、電解液は1級塩化ナトリウムを用いて1
%NaCl水溶液を調製する。測定法としては前記電解
水溶液100〜150ml中に分散剤として界面活性
剤、好ましくはアルキルベンゼンスルホン酸塩を0.1
〜5ml加え、更に測定試料を2〜20mg加える。試
料を懸濁した電解液は超音波分散器で約1〜3分間分散
処理を行い、前記コールターカウンターTA−II型に
より、アパチャーとして100μmアパチャーを用い
て、個数を基準として2〜40μmの粒子の粒度分布を
測定して、それから本実施例に係るところの値を求め
た。
That is, a Coulter counter TA-II type (manufactured by Coulter) is used as a measuring device, and an interface (manufactured by Nikkaki) for outputting number distribution and volume distribution and a CX-1 personal computer (manufactured by Canon) are connected. , Electrolyte is 1st class sodium chloride
% NaCl aqueous solution is prepared. As a measuring method, a surfactant, preferably an alkylbenzene sulfonate, as a dispersant is added in an amount of 0.1 to 100 ml in the electrolytic aqueous solution of 100 to 150 ml.
Add ~ 5 ml, and then add 2 to 20 mg of the measurement sample. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes by an ultrasonic disperser, and a Coulter Counter TA-II type is used to form a 100 μm aperture as an aperture, and a particle number of 2 to 40 μm is used as a reference. The particle size distribution was measured and then the values according to this example were determined.

【0059】実施例2 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=45° 二次空気導入口…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックスで形成された円柱状で衝
突面7の先端が頂角120°を有する円錐形状を有して
いた。加速管3の中心軸と衝突部材6の先端とは一致し
ていた。加速管出口4から衝突面7までの最近接距離は
60mmであり、衝突部材6と粉砕室内壁8との最近接
距離は18mmであった。
Example 2 The powder raw material used in Example 1 was prepared with the acceleration tube outlet 4 having an inner diameter of 2
5 mm, and x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 45 ° in FIGS. 5 and 6, secondary air inlets ... Eight conditions are satisfied in the circumferential direction, and the collision member 6 is It was a columnar body made of aluminum oxide ceramics having a diameter of 60 mm, and the tip of the collision surface 7 had a conical shape with an apex angle of 120 °. The central axis of the acceleration tube 3 and the tip of the collision member 6 were aligned. The closest distance from the acceleration pipe outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the crushing chamber inner wall 8 was 18 mm.

【0060】衝突式気流粉砕機の圧縮気体供給ノズルか
ら6.4Nm3/min(6kgf/cm2)の圧縮空気
を導入し、二次空気は、図7におけるA,B,C,D,
E,F,G及びHの8か所から各0.1Nm3/min
(5kgf/cm2)の圧縮空気を導入し、図3に示す
粉体原料供給口1から40kg/時間の割合で粉体原料
15を供給した。粉砕された粉体原料15は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び粉体
原料供給口1より粉体原料15と共に加速管3に投入し
た。
Compressed air of 6.4 Nm 3 / min (6 kgf / cm 2 ) was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the secondary air was changed to A, B, C, D in FIG.
0.1 Nm 3 / min each from 8 locations of E, F, G and H
Compressed air of (5 kgf / cm 2 ) was introduced, and the powder material 15 was supplied from the powder material supply port 1 shown in FIG. 3 at a rate of 40 kg / hour. The pulverized powder raw material 15 was conveyed to a classifier, fine powder was removed as a classified powder, and coarse powder was again fed into the accelerating tube 3 together with the powder raw material 15 from the powder raw material supply port 1.

【0061】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
40kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder has a volume average particle diameter of 7.5.
A pulverized powder of μm (measured by Coulter counter) was collected at a rate of 40 kg / hour. Further, no fusion deposit was generated even after continuous operation for 6 hours.

【0062】実施例3 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり、図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=45° 二次空気導入口…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックスで形成された円柱状で衝
突面7の先端が頂角120°を有する円錐形状を有して
いた。加速管3の中心軸と衝突部材6の先端とは一致し
ていた。加速管出口4から衝突面7までの最近接距離は
60mmであり、衝突部材6と粉砕室内壁8との最近接
距離は18mmであった。
Example 3 The powder raw material used in Example 1 was used, and the inner diameter of the accelerating tube outlet 4 was 2
5 mm, x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 45 ° in FIGS. 5 and 6, secondary air inlets ... 8 conditions are satisfied in the circumferential direction, and the collision member 6 Was a columnar shape made of aluminum oxide ceramics having a diameter of 60 mm, and the tip of the collision surface 7 had a conical shape with an apex angle of 120 °. The central axis of the acceleration tube 3 and the tip of the collision member 6 were aligned. The closest distance from the acceleration pipe outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the crushing chamber inner wall 8 was 18 mm.

【0063】衝突式気流粉砕機の圧縮気体供給ノズルか
ら6.4Nm3/min(6kgf/cm2)の圧縮空気
を導入し、二次空気は、図7におけるA,B,C,D,
E,F,G及びHの8か所から各0.1Nm3/min
(5kgf/cm2)の圧縮空気を導入し、図4に示す
粉体原料供給口1から45kg/時間の割合で粉体原料
15を供給した。粉砕された粉体原料15は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び粉体
原料供給口1より粉体原料15と共に加速管3に投入し
た。
Compressed air of 6.4 Nm 3 / min (6 kgf / cm 2 ) was introduced from the compressed gas supply nozzle of the collision type air flow crusher, and the secondary air was A, B, C, D in FIG.
0.1 Nm 3 / min each from 8 locations of E, F, G and H
Compressed air (5 kgf / cm 2 ) was introduced, and the powder material 15 was supplied from the powder material supply port 1 shown in FIG. 4 at a rate of 45 kg / hour. The pulverized powder raw material 15 was conveyed to a classifier, fine powder was removed as a classified powder, and coarse powder was again fed into the accelerating tube 3 together with the powder raw material 15 from the powder raw material supply port 1.

【0064】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
45kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder has a volume average particle diameter of 7.5.
Pulverized powder of μm (measured by Coulter counter) was collected at a rate of 45 kg / hour. Further, no fusion deposit was generated even after continuous operation for 6 hours.

【0065】比較例1 実施例1で用いた粉砕原料を、図9に示す従来の衝突式
粉砕機で粉砕した。該粉砕機において、衝突部材6の先
端の衝突面17は加速管12の軸方向に対して垂直であ
る平面であり、加速管出口14の内径は25mmであ
る。加速管12には、圧縮気体供給ノズル2から7.2
Nm3/min(6kgf/cm2)の圧縮気体を供給
し、細粉(粉砕製品)が重量平均粒径7.5μmになる
よう分級機を設定し粉砕を行った。衝突面17に衝突し
た粉砕物は、加速管からの吐出方向と対向する方向に反
射されるために、衝突面近傍の粉砕物と粉体原料との存
在濃度は著しく高くなった。そのため粉体原料の供給割
合が4.5kg/時間を超えると、衝突部材16の衝突
面17上で、融着、凝集物が生じはじめ、融着物が粉砕
室内や分級機を詰まらせる場合があった。従って、粉砕
処理量を1時間当たり15kgに低下させることを余儀
なくされ、これが粉砕能力の限界となった。
Comparative Example 1 The pulverized raw material used in Example 1 was pulverized by a conventional collision type pulverizer shown in FIG. In the crusher, the collision surface 17 at the tip of the collision member 6 is a plane perpendicular to the axial direction of the acceleration tube 12, and the inner diameter of the acceleration tube outlet 14 is 25 mm. The accelerating tube 12 is connected to the compressed gas supply nozzles 2 to 7.2.
Compressed gas of Nm 3 / min (6 kgf / cm 2 ) was supplied, and fine powder (crushed product) was crushed by setting a classifier so that the weight average particle diameter was 7.5 μm. The crushed material that collided with the collision surface 17 is reflected in the direction opposite to the discharge direction from the accelerating tube, so that the existing concentrations of the pulverized material and the powder raw material in the vicinity of the collision surface are remarkably high. Therefore, if the supply rate of the powder raw material exceeds 4.5 kg / hour, fusion and agglomerates may start to occur on the collision surface 17 of the collision member 16, and the fusion may clog the crushing chamber or the classifier. It was Therefore, it was forced to reduce the crushing amount to 15 kg per hour, which became the limit of the crushing capacity.

【0066】また、重量平均粒径11μmの細粉(粉砕
製品)が得られるように粉砕を行った場合、粉体原料の
供給割合が9kg/時間を超えると、衝突部材16の衝
突面17上で融着、凝集物が生じはじめ、これが粉砕能
力の限界となった。
When fine powder (crushed product) having a weight average particle diameter of 11 μm is obtained, if the feed rate of the powder raw material exceeds 9 kg / hour, the collision surface 17 of the collision member 16 will be affected. At this point, fusion and agglomerates began to occur, which became the limit of the crushing ability.

【0067】比較例2 実施例1で用いた粉体原料を、図10に示す衝突式気流
粉砕機を用いて比較例1と同様に粉砕した。該粉砕機
は、衝突部材6の先端の衝突面27が加速管12の軸方
向に対して45°の傾斜を有する平面であることを除い
ては、全て比較例1で用いた粉砕機と同じである。
Comparative Example 2 The powder raw material used in Example 1 was pulverized in the same manner as Comparative Example 1 using the collision type air flow pulverizer shown in FIG. The crusher is the same as the crusher used in Comparative Example 1 except that the collision surface 27 at the tip of the collision member 6 is a plane having an inclination of 45 ° with respect to the axial direction of the acceleration tube 12. Is.

【0068】衝突面に衝突した粉砕物は、比較例1に比
べ、加速管出口14から離れる方向へ反射されるので衝
突部材26の衝突面27上には融着及び凝集物は生じな
かった。しかし、衝突する際に、衝撃力が弱くなるた
め、粉砕効率が悪く、重量平均粒径7.5μmの細粉
(粉砕製品)は、1時間当り約15kgしか得られなか
った。
The crushed material that collided with the collision surface was reflected in a direction away from the acceleration tube outlet 14 as compared with Comparative Example 1, so that fusion and agglomeration did not occur on the collision surface 27 of the collision member 26. However, since the impact force becomes weak upon collision, the pulverization efficiency was poor, and only about 15 kg of fine powder (pulverized product) having a weight average particle diameter of 7.5 μm was obtained per hour.

【0069】また、重量平均粒径11μmの細粉(粉砕
製品)を得る場合には、1時間当り約9kgしか得られ
なかった。
Further, when obtaining fine powder (crushed product) having a weight average particle diameter of 11 μm, only about 9 kg per hour was obtained.

【0070】以上により得られた実施例1乃至3及び比
較例1及び2の結果を表1に示す。
Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 and 2 obtained as described above.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【発明の効果】以上述べたように、本発明の衝突式気流
粉砕機及び粉体原料の粉砕方法によれば、高圧気体によ
り粉体原料を搬送加速するための加速管、粉砕室及び加
速管より噴出する粉体原料を衝突力により粉砕するため
の衝突部材を具備した粉砕機において、加速管に複数の
粉体原料供給口を設けることにより、粉体原料を分散さ
せて加速管内に供給させ、なおかつ、二次空気をスパイ
ラル状に導入させて粉体原料の吸引能力を高めさらに分
散良く加速管内から噴出させ、衝突部材の衝突面に効率
よく被粉砕物が衝突するので粉砕効率が向上する。
As described above, according to the collision type air flow pulverizer and the method for pulverizing the powder raw material according to the present invention, the acceleration tube, the pulverizing chamber and the accelerating tube for accelerating the transportation of the powder raw material by the high pressure gas. In a crusher equipped with a collision member for crushing the powder material ejected more by collision force, the powder material is dispersed and supplied into the acceleration tube by providing a plurality of powder material supply ports in the acceleration tube. In addition, the secondary air is introduced in a spiral shape to enhance the suction ability of the powder raw material, and the powder material is ejected from the acceleration tube with good dispersion, and the crushed object efficiently collides with the collision surface of the collision member, so that the pulverization efficiency is improved. .

【0073】さらに、衝突部材の衝突面の形状を特定の
錐体形状にすることにより、被粉砕物粉砕時における融
着、凝集物の発生を防げ、装置の安定した運転を可能に
する。その上、粉砕物が粉砕室内壁へ強く二次衝突する
ために、従来の粉砕能力を著しく向上することができ
る。
Furthermore, by making the shape of the collision surface of the collision member a specific cone shape, it is possible to prevent fusion and agglomerates from being generated when the object to be crushed is crushed, and to enable stable operation of the apparatus. In addition, since the crushed material strongly collides against the inner wall of the crushing chamber, the conventional crushing ability can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式粉砕機の概略的断面図及び該粉
砕機と分級機を組合せた粉体原料の粉砕方法のフローチ
ャートの一例を示した図である。
FIG. 1 is a schematic cross-sectional view of a collision type crusher of the present invention and an example of a flowchart of a method for pulverizing a powder raw material in which the pulverizer and a classifier are combined.

【図2】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIG. 2 shows a specific example of a powder raw material supply port, and FIGS.
FIG. 9 is a sectional view taken along line CC ′ of FIG.

【図3】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIG. 3 is a view showing a specific example of a powder raw material supply port, and FIGS.
FIG. 9 is a sectional view taken along line CC ′ of FIG.

【図4】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIG. 4 is a view showing a specific example of a powder raw material supply port.
FIG. 9 is a sectional view taken along line CC ′ of FIG.

【図5】粉砕室内を表す図1のA−A′視断面図であ
る。
5 is a cross-sectional view taken along the line AA ′ of FIG. 1 showing the crushing chamber.

【図6】本発明の衝突式粉砕機の加速管を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing an acceleration tube of the collision type crusher of the present invention.

【図7】本発明の衝突式粉砕機の加速管を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing an acceleration tube of the collision type crusher of the present invention.

【図8】二次空気供給口を示す図5及び図6のB−B′
視断面図である。
FIG. 8 is a BB ′ of FIGS. 5 and 6 showing a secondary air supply port.
FIG.

【図9】従来例の衝突式粉砕機の概略的断面図及び粉砕
方法のフローチャートを示した図である。
FIG. 9 is a diagram showing a schematic cross-sectional view of a collision type crusher of a conventional example and a flowchart of a crushing method.

【図10】従来例の衝突式粉砕機の概略的断面図及び粉
砕方法のフローチャートを示した図である。
FIG. 10 is a diagram showing a schematic sectional view of a collision type crusher of a conventional example and a flowchart of a crushing method.

【符号の説明】[Explanation of symbols]

1 粉体原料供給口 2 圧縮気体供給ノズル 3 加速管 4 加速管出口 5 粉砕室 6 衝突部材 7 衝突面 8 粉砕室内壁 9 排出口 11 二次空気供給口 13 加速管 14 加速管出口 15 粉体原料 16 衝突部材 17 衝突面 26 衝突部材 27 衝突面 1 Powder raw material supply port 2 Compressed gas supply nozzle 3 Accelerator 4 Accelerator outlet 5 crushing room 6 collision member 7 collision surface 8 crushing room wall 9 outlet 11 Secondary air supply port 13 Accelerator 14 Accelerator outlet 15 Powder raw material 16 Collision member 17 Collision surface 26 Collision member 27 Collision surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhide Goseki             Kyano, 3-30-2 Shimomaruko, Ota-ku, Tokyo             Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高圧気体により粉体原料を搬送加速する
ための加速管、粉砕室及び該加速管より噴出する粉体原
料を衝突力により粉砕するための衝突部材を具備し、該
衝突部材を加速管出口に対向して粉砕室内に設けた衝突
式気流粉砕機において、該加速管に複数の粉体原料供給
口を設け、、粉体原料供給口と加速管出口との間に加速
管二次空気導入口を設け、該二次空気導入口の加速管の
中心軸に対する傾斜角(ψ)が 10°≦ψ≦80° を満足し、該二次空気導入口の加速管の中心軸に垂直な
断面に対する傾斜角(ρ)が 10°≦ρ≦80° を満足し、該衝突部材の衝突面の先端部分が頂角110
°以上180°未満の錐体形状であることを特徴とする
衝突式気流粉砕機。
1. A collision member for crushing the powder raw material ejected from the accelerating pipe by a collision force, the accelerating tube for accelerating the powder raw material by high-pressure gas, and the crushing member. In a collision type air flow crusher provided in the crushing chamber facing the acceleration pipe outlet, the acceleration pipe is provided with a plurality of powder raw material supply ports, and the acceleration pipe two is provided between the powder raw material supply port and the acceleration pipe outlet. A secondary air introduction port is provided, and an inclination angle (ψ) of the secondary air introduction port with respect to the central axis of the acceleration pipe satisfies 10 ° ≦ ψ ≦ 80 °, and the secondary air introduction port has a central axis of the acceleration pipe. The inclination angle (ρ) with respect to the vertical cross section satisfies 10 ° ≦ ρ ≦ 80 °, and the tip portion of the collision surface of the collision member has an apex angle of 110.
A collision-type airflow crusher characterized by having a cone shape of not less than 180 ° and less than 180 °.
【請求項2】 加速管に設けられた粉体原料供給口と加
速管出口との距離をx,粉体原料供給口と加速管に設け
られた加速管二次空気導入口との距離をyとした場合、
xとyが、 【外1】 を満足することを特徴とする請求項1記載の衝突式気流
粉砕機。
2. The distance between the powder raw material supply port provided in the acceleration pipe and the acceleration pipe outlet is x, and the distance between the powder raw material supply port and the acceleration pipe secondary air introduction port provided in the acceleration pipe is y. If
x and y are The collision type airflow crusher according to claim 1, wherein
【請求項3】 加速管内で高圧気体により粉体原料を搬
送加速し、粉砕室内に加速管出口から粉体原料を噴出さ
せ、対向する衝突部材に衝突させて粉砕する粉砕原料の
粉砕方法において、該加速管に設けた複数の粉体原料供
給口から粉体原料を導入し、該加速管の粉体原料供給口
と加速管出口との間に設けた加速管二次空気導入口から
該加速管内に二次空気導入し、その導入方向が加速管の
中心軸に対する傾斜角(ψ)を10°≦ψ≦80°と
し、加速管の中心軸に垂直な断面に対する傾斜角(ρ)
を10°≦ρ≦80°として、衝突面の先端部分が頂角
110°以上180°未満の錐体形状を有する衝突部材
に粉体原料を衝突させて粉砕し、衝突後の粉砕物をさら
に粉砕室内壁に二次衝突させて粉体原料を粉砕すること
を特徴とする粉体原料の粉砕方法。
3. A method for pulverizing a pulverizing raw material, which comprises accelerating a powder raw material by high-pressure gas in an accelerating tube, jetting the powder raw material from an accelerating tube outlet into a pulverizing chamber, and crushing the powder raw material by colliding with an opposing collision member. The powder raw material is introduced from a plurality of powder raw material supply ports provided in the acceleration tube, and the acceleration is performed from an acceleration tube secondary air introduction port provided between the powder raw material supply port of the acceleration tube and the acceleration tube outlet. Secondary air is introduced into the tube, and the direction of introduction is such that the inclination angle (ψ) with respect to the central axis of the acceleration tube is 10 ° ≦ ψ ≦ 80 °, and the inclination angle (ρ) with respect to the cross section perpendicular to the central axis of the acceleration tube.
Is 10 ° ≦ ρ ≦ 80 °, and the powder raw material is crushed by colliding the powder raw material with a collision member having a cone shape with the tip portion of the collision surface having an apex angle of 110 ° or more and less than 180 °, and the pulverized product after the collision is further A method of pulverizing a powder raw material, which comprises crushing the powder raw material by secondary collision with a crushing chamber wall.
【請求項4】 加速管に導入される被粉砕物を搬送加速
する高圧気体の風量をaNm3/min、加速管に導入
される二次空気の風量をbNm3/minとした場合、
aとbが 【外2】 を満足する条件下で粉砕することを特徴とする請求項3
記載の粉体原料の粉砕方法。
4. If air amount ANM 3 / min of high pressure gas for transporting accelerate grinding object that is introduced into the acceleration tube, the air volume of the secondary air introduced into the acceleration tube was BNM 3 / min,
a and b are [outside 2] 4. Grinding under conditions satisfying
A method for pulverizing the powder raw material as described.
JP03190348A 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method Expired - Fee Related JP3093343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03190348A JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03190348A JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Publications (2)

Publication Number Publication Date
JPH0531391A true JPH0531391A (en) 1993-02-09
JP3093343B2 JP3093343B2 (en) 2000-10-03

Family

ID=16256704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03190348A Expired - Fee Related JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Country Status (1)

Country Link
JP (1) JP3093343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134661A (en) * 2019-02-19 2020-08-31 キヤノン株式会社 Toner production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134661A (en) * 2019-02-19 2020-08-31 キヤノン株式会社 Toner production method

Also Published As

Publication number Publication date
JP3093343B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH01254266A (en) Impact type air crusher and crushing method
JP3114040B2 (en) Collision type air crusher
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2759499B2 (en) Powder grinding method
JP2704787B2 (en) Powder material grinding method
JP2654989B2 (en) Powder grinding method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2805332B2 (en) Grinding method
JPH03296446A (en) Impact type jet grinder and grinding method
JP2663041B2 (en) Collision type air crusher
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH0696126B2 (en) Collision type airflow crusher and crushing method
JP3101786B2 (en) Collision type air crusher
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JPH0651130B2 (en) Collision type airflow crusher and crushing method
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH0651131B2 (en) Collision type airflow crusher and crushing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

LAPS Cancellation because of no payment of annual fees