JPH05313022A - Optical fiber containing cable identifying method - Google Patents

Optical fiber containing cable identifying method

Info

Publication number
JPH05313022A
JPH05313022A JP4113713A JP11371392A JPH05313022A JP H05313022 A JPH05313022 A JP H05313022A JP 4113713 A JP4113713 A JP 4113713A JP 11371392 A JP11371392 A JP 11371392A JP H05313022 A JPH05313022 A JP H05313022A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
distortion
cable
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4113713A
Other languages
Japanese (ja)
Inventor
Tsuneo Kuwabara
恒夫 桑原
Tsuneo Horiguchi
常雄 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4113713A priority Critical patent/JPH05313022A/en
Publication of JPH05313022A publication Critical patent/JPH05313022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide a method of identifying an optical fiber from a remote place without installing a special device outdoors. CONSTITUTION:Light is injected to at least one optical fiber previously included in each of plural optical cables from a wavelength sweep type light source 5 and an optical pulse light source 6, and the wavelength shift quantity of brilliant scattered light generated according to the distortion generated to the optical fiber at this time is measured by a light receiver 7 and a data analysis device 8 so as to measure this distortion and store it into a data base 9. At the time of measuring the distortion of an optional optical fiber in the same way, the measured result is compared with the distortion of the optical fibers cable by cable stored in the data base 9 by the data analysis device 8 so as to identify in which of plural optical cables this optional optical fiber is contained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光線路の設備管理に利
用される光心線収容ケーブルの識別方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of identifying a cable containing an optical fiber, which is used for facility management of an optical line.

【0002】[0002]

【従来の技術】従来、通信線路の設備管理は、1箇所に
設置されたデータベースに依存する手法を取っており、
新設備の導入や設備変更の際に設備情報をその都度、手
作業で入力していた。ところが、この手法では誤入力に
よるデータベースの信頼性の低下や手作業による稼働の
増大が問題となっていた。このうち、心線の管理はその
数が膨大であるため、特に問題となっていた。
2. Description of the Related Art Conventionally, facility management of communication lines has been performed by relying on a database installed at one location.
Whenever introducing new equipment or changing equipment, equipment information was manually input each time. However, this method has problems that the reliability of the database is lowered due to erroneous input and the operation is increased by manual work. Of these, the management of the core wire has been a particular problem because the number thereof is huge.

【0003】通信線路に使用する心線には金属心線と光
心線(光ファイバ)とがあるが、このような事情に鑑み
て、最近、光心線のコネクタ部分に半導体メモリを配
し、ここに光心線の識別番号を記憶させておき、遠隔で
この識別番号を読み出すことにより光心線の識別を行お
うとする方法が提案された(山下 他「リアルタイム光
線路設備管理システムの検討」電子情報通信学会論文誌
Vol.J74-B-I 1991-1 pp48-57 参照)。
There are a metal core wire and an optical core wire (optical fiber) as a core wire used for a communication line. In view of such a situation, recently, a semiconductor memory is arranged in a connector portion of the optical core wire. , A method has been proposed in which the identification number of the optical fiber is stored here, and the optical fiber is identified by reading this identification number remotely (Yamashita et al. “Study of real-time optical fiber equipment management system”. ] IEICE Transactions
Vol.J74-BI 1991-1 pp48-57).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、本来、通信に不必要な半導体メモリやその
半導体メモリとの通信手段を屋外の広い範囲に設置され
た光線路の随所に設ける必要があり、経済性や信頼性の
点で問題があった。
However, in the above-mentioned method, it is necessary to provide a semiconductor memory, which is originally unnecessary for communication, and a communication means for communicating with the semiconductor memory, everywhere in the optical line installed in a wide range outdoors. Yes, there was a problem in terms of economy and reliability.

【0005】本発明は前記従来の問題点に鑑み、特別な
装置を屋外に設置することなく、光心線を遠隔より識別
し得る方法を提供することを目的とする。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide a method capable of remotely identifying the optical fiber line without installing a special device outdoors.

【0006】[0006]

【課題を解決するための手段】本発明では前記目的を達
成するため、少なくとも1本の光心線を含む光ケーブル
が複数存在するシステムにおいて、予め各光ケーブルに
含まれる少なくとも1本の光心線の歪みを測定して記憶
しておき、任意の光心線の歪みを測定した際、該測定結
果と前記記憶しておいた光ケーブル毎の光心線の歪みと
を比較することにより、前記任意の光心線が前記複数の
光ケーブルのいずれに収容されているかを識別するよう
になした光心線収容ケーブルの識別方法を提案する。
According to the present invention, in order to achieve the above object, in a system having a plurality of optical cables including at least one optical fiber, at least one optical fiber included in each optical cable in advance is provided. The strain is measured and stored, and when the strain of any optical fiber is measured, by comparing the measurement result with the stored strain of the optical fiber for each optical cable, A method of identifying an optical fiber containing cable is proposed, which identifies which of the plurality of optical cables the optical fiber is housed.

【0007】[0007]

【作用】現場に布設された光ケーブルには該布設に伴う
張力が残留しており(以下、布設残留張力と称す。)、
さらにこれによる歪みが発生している。この布設残留張
力は光ケーブルの構造・寸法、布設ルート、布設作業法
等によって異なるので、発生する歪みも各光ケーブルに
固有のものとなる。この各光ケーブル毎の歪みはその中
に含まれる光心線の歪みを測定する、例えばブリリアン
散乱光の波長シフト量を測定する(堀口 他「ブリルア
ン分光による光ファイバのひずみ分布測定」電子情報通
信学会論文誌 Vol.J73-B-I 1990-2 pp144-152 参照)こ
とにより、容易に求めることができる。そこで、複数の
光ケーブルが存在する場合、予め各光ケーブルに含まれ
る光心線の歪みを測定しておき、その後、任意に取り出
した光心線の歪みを測定した際、この測定結果と歪みが
最も近い光ケーブルに、該任意に取り出した光心線が収
容されていると識別できる。
[Operation] The tension caused by the laying remains on the optical cable laid on the site (hereinafter referred to as the laying residual tension).
Further, distortion is generated due to this. Since the residual tension of installation varies depending on the structure and dimensions of the optical cable, the installation route, the installation work method, etc., the strain that occurs is also unique to each optical cable. The strain of each optical cable is measured by measuring the strain of the optical fiber contained therein, for example, the amount of wavelength shift of Brillian scattered light is measured (Horiguchi et al. "Strain distribution measurement of optical fiber by Brillouin spectroscopy") IEICE See Vol.J73-BI 1990-2 pp144-152). Therefore, when there are multiple optical cables, the distortion of the optical fiber contained in each optical cable is measured in advance, and then, when the distortion of the optical fiber taken out arbitrarily is measured, this measurement result and the distortion are the most It can be identified that the optical fiber that is arbitrarily taken out is accommodated in the near optical cable.

【0008】[0008]

【実施例】通常、光心線は複数本まとめられて光ケーブ
ルに収容されている。光心線の識別には、光心線がどの
光ケーブルに属しているかの識別(以下、光ケーブル識
別と称す。)と、光心線が光ケーブル内のどの光心線に
対応しているかの識別(以下、心線識別と称す。)とが
あるが、本発明ではこのうちの光ケーブル識別の方法を
提供する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, a plurality of optical fibers are bundled and housed in an optical cable. To identify the optical fiber, the identification of which optical cable the optical fiber belongs to (hereinafter referred to as optical cable identification) and the identification of which optical fiber in the optical cable the optical fiber corresponds to ( Hereinafter, it will be referred to as "core wire identification"), but the present invention provides a method of identifying an optical cable.

【0009】図1は本発明方法の一実施例を示すもの
で、図中、1は光ケーブル、2は光ケーブル1に含まれ
ている光心線、3,4は光合分波器、5は波長掃引型光
源、6は光パルス光源、7は受光器、8はデータ解析装
置、9はデータベース、10は反射板である。反射板1
0は波長掃引型光源5よりの光に対応するもので、光ケ
ーブル1が長手方向に複数接続されている時は、受光器
7側から見て最も遠隔の光ケーブル1の末端付近に設置
すれば良い。
FIG. 1 shows an embodiment of the method of the present invention. In the figure, 1 is an optical cable, 2 is an optical fiber included in the optical cable 1, 3 and 4 are optical multiplexer / demultiplexers, and 5 is a wavelength. A swept light source, 6 is an optical pulse light source, 7 is a light receiver, 8 is a data analysis device, 9 is a database, and 10 is a reflector. Reflector 1
0 corresponds to the light from the wavelength-swept light source 5, and when a plurality of optical cables 1 are connected in the longitudinal direction, they may be installed near the end of the optical cable 1 that is the most remote from the light receiver 7 side. ..

【0010】前記構成において、光心線2に発生してい
る歪みの測定は以下の手順で行われる。まず、波長掃引
型光源5及び光パルス光源6より発せられた光を光合分
波器3,4を介して光心線2に注入する。波長掃引型光
源5より発せられた光の波長と、光パルス光源6より発
せられた光の波長との差が、光心線2に発生している歪
みによって引き起されるブリリアン散乱光の波長シフト
量と一致した時、反射板10で反射された波長掃引型光
源5よりの光がブリリアン増幅される。この波長シフト
量は歪みの大きさに比例している。
In the above structure, the strain generated in the optical fiber 2 is measured by the following procedure. First, the light emitted from the wavelength-swept light source 5 and the light pulse light source 6 is injected into the optical core line 2 via the optical multiplexers / demultiplexers 3 and 4. The difference between the wavelength of the light emitted from the wavelength-swept light source 5 and the wavelength of the light emitted from the optical pulse light source 6 is the wavelength of the Brilliant scattered light caused by the distortion generated in the optical core line 2. When the amount of shift coincides with the shift amount, the light from the wavelength swept light source 5 reflected by the reflector 10 is brilliantly amplified. This wavelength shift amount is proportional to the magnitude of distortion.

【0011】前記反射板10により反射された波長掃引
型光源5よりの光の電力を受光器7によって、波長掃引
型光源5よりの光の波長及び光パルス光源6よりの光パ
ルス注入時からの遅延時間の関数として測定する。この
結果がデータ解析装置8に転送され、光心線2に発生し
ている歪みが該光心線2の長手方向の位置の関数として
算出される。該歪みは増幅された光の波長から、また、
長手方向の位置は遅延時間から容易に算出できる。
The power of the light from the wavelength-swept light source 5 reflected by the reflector 10 is supplied from the light receiver 7 to the wavelength of the light from the wavelength-swept light source 5 and the light pulse from the light pulse light source 6 from the time of injection. Measure as a function of delay time. This result is transferred to the data analysis device 8, and the distortion occurring in the optical core 2 is calculated as a function of the position of the optical core 2 in the longitudinal direction. The distortion is due to the wavelength of the amplified light, and
The position in the longitudinal direction can be easily calculated from the delay time.

【0012】このようにして測定した、同一の光ケーブ
ルに含まれる2本の光心線a,bの歪みの長手方向にお
ける分布の一例を図2に、また、別の2本の光ケーブル
A,Bにそれぞれ含まれる光心線の歪みの長手方向にお
ける分布の一例を図3に示す。この図2及び図3から明
らかなように、同一の光ケーブル内の光心線の歪み分布
は極めて類似しているが、別の光ケーブル内の光心線の
歪み分布は全く別のものとなる。
An example of the distribution in the longitudinal direction of the strains of the two optical cores a and b contained in the same optical cable measured in this way is shown in FIG. 2, and another two optical cables A and B are shown. FIG. 3 shows an example of the distribution in the longitudinal direction of the strain of the optical fiber contained in each of FIG. As is clear from FIGS. 2 and 3, the strain distributions of the optical fibers in the same optical cable are very similar, but the strain distributions of the optical fibers in other optical cables are completely different.

【0013】従って、予め複数の光ケーブル毎にその中
に含まれる少なくとも1本の光心線の歪みを測定し、こ
れをデータベース9に記憶しておき、その後、その複数
の光ケーブルのいずれかに含まれる光心線がどの光ケー
ブルに属しているかを識別したい時は、その光心線の歪
みを測定し、その測定結果に最も近似した歪みを有する
光ケーブルに前記光心線が収容されていると識別するこ
とにより、前記光心線が収容されている光ケーブルを識
別できる。なお、この際、データベース9に歪みが記憶
される光心線と、識別しようとする光心線とは、前述し
た理由により同一であることを要しない。
Therefore, the strain of at least one optical fiber contained in each of the plurality of optical cables is measured in advance and stored in the database 9 and then included in any of the plurality of optical cables. When you want to identify which optical cable the optical fiber belonging to belongs to, measure the distortion of the optical fiber and identify that the optical fiber has the distortion closest to the measurement result. By doing so, the optical cable accommodating the optical fiber can be identified. At this time, it is not necessary that the optical fiber line whose distortion is stored in the database 9 and the optical fiber line to be identified be the same for the reason described above.

【0014】前記歪みの測定結果の近似の程度を判断す
る指標としては、例えば下記式(1)に示す2変量間のマ
ッチング係数Si を用い、Si の最も大きくなる光ケー
ブルに収容されていると識別すれば良い。 Si =∫hi(x)・g(x) ・dx /∫hi(x)・dx ∫g(x) ・dx ……(1) ここで、hi(x)は光ケーブルiの歪み分布、g(x) は識
別したい光心線の歪み分布、xは光ケーブルの長手方向
の位置であり、式(1) の積分は光ケーブルの全区間に亘
って実施する。
As an index for judging the degree of approximation of the distortion measurement result, for example, the matching coefficient Si between the two variables shown in the following equation (1) is used, and it is identified that the optical cable has the largest Si. Just do it. Si = ∫hi (x) ・ g (x) ・ dx / ∫hi (x) ・ dx ∫g (x) ・ dx (1) where hi (x) is the distortion distribution of the optical cable i and g ( x) is the strain distribution of the optical fiber to be identified, x is the position in the longitudinal direction of the optical cable, and the integration of equation (1) is performed over the entire section of the optical cable.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、光
心線の歪みを測定するのみで特別な装置を屋外に設置す
ることなく、任意の光心線がどの光ケーブルに収容され
ているかを精度良く識別でき、光ケーブルの設備管理の
効率化が達成できる。
As described above, according to the present invention, which optical cable accommodates an arbitrary optical core wire only by measuring the distortion of the optical core wire without installing a special device outdoors. Can be accurately identified, and the efficiency of optical fiber equipment management can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of a method of the present invention.

【図2】同一の光ケーブルに含まれる2本の光心線の歪
みの長手方向における分布の一例を示す図
FIG. 2 is a diagram showing an example of distribution in the longitudinal direction of distortion of two optical core wires included in the same optical cable.

【図3】別の2本の光ケーブルにそれぞれ含まれる光心
線の歪みの長手方向における分布の一例を示す図
FIG. 3 is a diagram showing an example of a distribution in the longitudinal direction of distortions of optical fiber cores respectively included in another two optical cables.

【符号の説明】[Explanation of symbols]

1…光ケーブル、2…光心線、3,4…光合分波器、5
…波長掃引型光源、6…光パルス光源、7…受光器、8
…データ解析装置、9…データベース、10…反射板。
1 ... Optical cable, 2 ... Optical fiber core, 3, 4 ... Optical multiplexer / demultiplexer, 5
... Wavelength-swept light source, 6 ... Optical pulse light source, 7 ... Photoreceiver, 8
... data analyzer, 9 ... database, 10 ... reflector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1本の光心線を含む光ケーブ
ルが複数存在するシステムにおいて、 予め各光ケーブルに含まれる少なくとも1本の光心線の
歪みを測定して記憶しておき、 任意の光心線の歪みを測定した際、該測定結果と前記記
憶しておいた光ケーブル毎の光心線の歪みとを比較する
ことにより、前記任意の光心線が前記複数の光ケーブル
のいずれに収容されているかを識別するようになしたこ
とを特徴とする光心線収容ケーブルの識別方法。
1. In a system having a plurality of optical cables including at least one optical fiber, distortion of at least one optical fiber contained in each optical cable is measured and stored in advance, and an arbitrary optical fiber is stored. When measuring the strain of the line, by comparing the measurement result with the stored strain of the optical fiber for each optical cable, the arbitrary optical fiber is accommodated in any of the plurality of optical cables. A method for identifying a cable containing an optical fiber, which is characterized in that the presence or absence of the optical fiber is identified.
JP4113713A 1992-05-06 1992-05-06 Optical fiber containing cable identifying method Pending JPH05313022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4113713A JPH05313022A (en) 1992-05-06 1992-05-06 Optical fiber containing cable identifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4113713A JPH05313022A (en) 1992-05-06 1992-05-06 Optical fiber containing cable identifying method

Publications (1)

Publication Number Publication Date
JPH05313022A true JPH05313022A (en) 1993-11-26

Family

ID=14619270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4113713A Pending JPH05313022A (en) 1992-05-06 1992-05-06 Optical fiber containing cable identifying method

Country Status (1)

Country Link
JP (1) JPH05313022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
JP2007232618A (en) * 2006-03-02 2007-09-13 Yokogawa Electric Corp Instrument for measuring optical fiber distortion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
JP2007232618A (en) * 2006-03-02 2007-09-13 Yokogawa Electric Corp Instrument for measuring optical fiber distortion

Similar Documents

Publication Publication Date Title
US8094988B2 (en) Apparatus and methods for verifying an acceptable splice termination
US8711341B2 (en) Using sets of OTDR receive fibers with different lengths of marker events to verify optical fiber connectivity
Tateda et al. First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy
Corsi Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers
US9562827B2 (en) Measuring method of longitudinal distribution of bending loss of optical fiber, measuring method of longitudinal distribution of actual bending loss value of optical fiber, test method of optical line, manufacturing method of optical fiber cable, manufacturing method of optical fiber cord, and manufacturing method of optical fiber
Bogachkov et al. Detection of sections with slightly changed optical characteristics in fiber optical communication lines
JP2004512492A (en) Cable monitoring system
JPH05313022A (en) Optical fiber containing cable identifying method
CN108760237B (en) Optical fiber line loss and optical fiber end face loss detection device
JP6283602B2 (en) Optical fiber bending shape measuring apparatus and bending shape measuring method thereof
JP2001083040A (en) Optical fiber cable testing method
Abe et al. Photo-elastic correction factor for fiber strain measurements in a cable under tensile load
JP3078106B2 (en) Optical line identification method
JPH04366802A (en) Optical transmission line and optical propagation time measuring method
CN107941753A (en) Device and the application of solution refractive index are surveyed in a kind of polished end faces reflection using TFBG tail optical fibers
Stern et al. The Characterization of Monomode Fibre Links Installed in Operational Duct
US20230288289A1 (en) Several mode fiber test method and several mode fiber test device
JP2723661B2 (en) Optical fiber break prediction method
Buzzelli et al. Optical fibre field experiments in Italy: COS1, COS2 and COS3/FOSTER
JPH05256730A (en) Method for identifying line containing optical fiber
JPH0227231A (en) Measurement of length-wise distortion for optical fiber
WO2019172056A1 (en) Optical communication wiring core-line contrast method and core-line contrast system
中村篤志 A Study on Optical Fiber Testing Technique Based on Backscattered Power of Higher-Order Mode
Benson et al. A european investigation of cut-off wavelength measurement, European Project Group.
Maekawa et al. Analysis of and experiments with crosstalk between adjacent graded-index optical fibers