JPH05312213A - Dynamic pressure type bearing device and manufacture thereof - Google Patents

Dynamic pressure type bearing device and manufacture thereof

Info

Publication number
JPH05312213A
JPH05312213A JP11569292A JP11569292A JPH05312213A JP H05312213 A JPH05312213 A JP H05312213A JP 11569292 A JP11569292 A JP 11569292A JP 11569292 A JP11569292 A JP 11569292A JP H05312213 A JPH05312213 A JP H05312213A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing device
type bearing
pressure type
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11569292A
Other languages
Japanese (ja)
Inventor
Shinichi Mizuguchi
信一 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11569292A priority Critical patent/JPH05312213A/en
Priority to US08/057,388 priority patent/US5357163A/en
Publication of JPH05312213A publication Critical patent/JPH05312213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a forming method of a dynamic pressure generating groove formed on at least either of mutually opposing surfaces of a fixed part and a shaft body for constituting a dynamic pressure type bearing device, in relation to the dynamic pressure type bearing device utilized as a bearing for equipment aiming at low noise, low vibration or high speed rotation, and manufacturing method thereof. CONSTITUTION:In a dynamic pressure type bearing device wherein a rotation shaft 1 is opposed to a fixed surface with a predetermined interval and a dynamic pressure generating groove 2 is formed on at least either of mutually opposing surfaces of both the members, a part where the dynamic pressure generating groove is formed is constituted of a resin molding material 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低騒音、低振動或は
高速回転を目的とした機器の軸受けとして利用される動
圧型軸受け装置およびその製造方法に関するもので、特
に、動圧型軸受け装置を構成する固定部と軸体の互いに
対向する少なくとも一方の面を、動圧発生用グルーブの
形成された樹脂材とした点に特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure type bearing device used as a bearing of a device for low noise, low vibration or high speed rotation and a method for manufacturing the same, and more particularly to a dynamic pressure type bearing device. It is characterized in that at least one surface of the fixed portion and the shaft that face each other is made of a resin material in which a dynamic pressure generating groove is formed.

【0002】[0002]

【従来の技術】従来より、低騒音、低振動或は高速回転
を目的としてレーザープリンター用ポリゴンミラー駆動
モーター、VTRシリンダーモーター等の軸受けに動圧
型軸受け装置が採用されてきている。そして、これらの
動圧型軸受け装置を構成する外筒と軸体とはそれぞれ金
属により構成されており、その両者の互いに対向する面
に形成される動圧発生グルーブ(以下、動圧グルーブと
呼ぶ)は、エッチング工法、転造工法により成形されて
いた。
2. Description of the Related Art Conventionally, a dynamic pressure type bearing device has been adopted as a bearing for a polygon mirror drive motor for a laser printer, a VTR cylinder motor or the like for the purpose of low noise, low vibration or high speed rotation. The outer cylinder and the shaft body that constitute these dynamic pressure type bearing devices are respectively made of metal, and the dynamic pressure generating grooves (hereinafter, referred to as dynamic pressure grooves) formed on the surfaces of the two that face each other. Was formed by the etching method and the rolling method.

【0003】[0003]

【発明が解決しようとする課題】しかし、エッチング工
法は、洗浄→マスキング→エッチング→中和→洗浄の加
工工程が必要であり、また、転造工法であれば、洗浄→
転造→径寸法修正→洗浄といった工程が必要であり、共
に作業が煩雑な上、非常に厳しい寸法管理が必要であっ
た。
However, the etching method requires the processing steps of cleaning → masking → etching → neutralization → cleaning, and if it is a rolling method, cleaning →
The processes such as rolling → diametrical modification → cleaning are required, and both work is complicated and very strict dimensional control is required.

【0004】一方、軸受け材質は、上記加工法を取るた
め金属を使用しており、軸受けが回転を起動・停止する
ときは動圧不足にて金属接触しながら回転し、金属の摩
耗粉を発生させ、これが軸受けの焼き付き停止問題を引
き起こしていた。
On the other hand, as the bearing material, metal is used in order to adopt the above-mentioned processing method, and when the bearing starts and stops rotation, it rotates while contacting with the metal due to insufficient dynamic pressure, generating metal wear powder. This caused the bearing seizure stop problem.

【0005】本発明は、この煩雑な加工工程を簡素化
し、簡単な成形方法でもって安価に精度の良い動圧グル
ーブが形成可能な動圧型軸受け装置およびその製造方法
を提供するものである。
The present invention provides a dynamic pressure type bearing device capable of forming a dynamic pressure groove with high precision at low cost by a simple molding method by simplifying the complicated processing steps, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明の動圧型軸受け装
置は、回転軸を、固定面に対して所定の間隔をもって対
向せしめ、その両者の互いに対向する少なくとも一方の
面に動圧発生用グルーブを形成した動圧型軸受け装置に
おいて、前記動圧発生用グルーブが形成される部分を樹
脂成形材で構成したことを特徴とするものである。
In a dynamic pressure type bearing device of the present invention, a rotary shaft is made to face a fixed surface at a predetermined interval, and at least one of the two surfaces facing each other has a groove for generating a dynamic pressure. In the dynamic pressure type bearing device having the above-mentioned structure, the portion in which the dynamic pressure generating groove is formed is made of a resin molding material.

【0007】[0007]

【作用】上記構成によれば、動圧発生用グルーブが樹脂
材により形成されているため、従来のエッチング工法、
転造工法等による煩雑な加工工程に代え、簡単な樹脂成
形方法でもって安価で精度の良い動圧グルーブの製造が
出来、安価で高精度の動圧型軸受け装置が得られるもの
である。
According to the above structure, since the dynamic pressure generating groove is formed of the resin material, the conventional etching method,
The dynamic pressure groove can be manufactured at low cost and with high accuracy by a simple resin molding method instead of the complicated processing steps such as the rolling method, and an inexpensive and highly accurate dynamic pressure type bearing device can be obtained.

【0008】[0008]

【実施例】図1は、本発明の動圧型軸受け装置の一実施
例における軸体1の一部切欠斜視図であり、その表面に
形成されたラジアル動圧グルーブ2は、一般にヘリカル
ボーンと呼ばれるV型形状の溝を複数連ねた形状をして
いる。そしてこのV型の溝の角度θ、溝本数、溝幅l、
長さ、深さ等によって、動圧の値が変化する。それ以外
に、外筒と軸体の相対回転数及び隙間、又、隙間に充填
される流体の粘度によっても動圧は変動する。
1 is a partially cutaway perspective view of a shaft body 1 in an embodiment of a dynamic pressure type bearing device of the present invention. A radial dynamic pressure groove 2 formed on the surface of the shaft body 1 is generally called a helical bone. It has a shape in which a plurality of V-shaped grooves are connected. The angle θ of this V-shaped groove, the number of grooves, the groove width 1,
The value of dynamic pressure changes depending on the length, depth, etc. In addition, the dynamic pressure varies depending on the relative rotation speed and the clearance between the outer cylinder and the shaft, and the viscosity of the fluid filled in the clearance.

【0009】また、ヘリカルボーンは、軸受け構造によ
り1ヶ所或いは複数箇所設けられる場合もある。本実施
例では軸体表面の上下2箇所に設けられている。そして
溝角度θは約15゜から25゜、溝幅lは0.5から1
mm、溝深さは3から6ミクロンmに設定され、軸体外
径は6mmで設定されている。
Further, the helical bone may be provided at one place or a plurality of places depending on the bearing structure. In this embodiment, they are provided at two places above and below the surface of the shaft body. The groove angle θ is about 15 ° to 25 °, and the groove width l is 0.5 to 1
mm, the groove depth is set to 3 to 6 μm, and the shaft outer diameter is set to 6 mm.

【0010】さらに軸体1は、金属よりなる中心軸体1
aの外周部を樹脂成形材層3で覆った形にしており、樹
脂成形材層3が密着固定されるよう、中心軸体1aの表
面にはローレット処理が施されている。
Further, the shaft body 1 is a central shaft body 1 made of metal.
The outer peripheral portion of a is covered with the resin molding material layer 3, and the surface of the central shaft body 1a is knurled so that the resin molding material layer 3 is closely fixed.

【0011】図2は、前記軸体1を成形する成形金型の
一部断面図である。この図2において、4はキャビティ
であり、前記中心軸体1aに対向した穴の内周部には動
圧グルーブを形成するためのヘリカルボーン形状をした
リブ6が形成されている。5はコアである。
FIG. 2 is a partial sectional view of a molding die for molding the shaft body 1. In FIG. 2, reference numeral 4 denotes a cavity, and a helical bone-shaped rib 6 for forming a dynamic pressure groove is formed on the inner peripheral portion of the hole facing the central shaft body 1a. 5 is a core.

【0012】この状態でゲート部7より樹脂が射出充填
される。本実施例は樹脂としてポリアセタール樹脂を使
用し、射出樹脂温が約200℃、金型温度は60〜80
℃の間で条件設定した。樹脂充填成形後、キャビティ4
とコア5が開き、中心軸体1aはその表面が樹脂に被覆
された状態でコア5側に残される。そして冷却された
後、突き出しピン8により矢印方向へ押し出され成形が
完了し、表面にラジアル動圧グルーブ2を形成された軸
体1が完成する。無論、ゲート処理については既存の方
法にて取り除かれる。
In this state, resin is injected and filled from the gate portion 7. In this embodiment, a polyacetal resin is used as the resin, the injection resin temperature is about 200 ° C., and the mold temperature is 60 to 80.
Conditions were set between ° C. Cavity 4 after resin filling and molding
The core 5 is opened, and the central shaft body 1a is left on the core 5 side in a state where the surface thereof is covered with resin. Then, after being cooled, it is extruded in the direction of the arrow by the ejection pin 8 to complete the molding, and the shaft body 1 having the radial dynamic pressure groove 2 formed on the surface is completed. Of course, the gate processing will be removed by the existing method.

【0013】ここで、軸体1がなぜ動圧グルーブ部分の
アンダーカットがあるのに、突き出しピン7により無理
なく離型させられるかというと、金型とポリアセタール
樹脂の熱膨張率の差及び成形前後の温度差により、その
両者間に収縮差が約20/1000発生することを利用
している。例えば、樹脂層3の部肉厚が0.5mmであ
るとすると、20/1000×0.5mm=0.01m
mだけ樹脂層3の外形寸法が収縮する。それに対し、ア
ンダーカットになっているグルーブ2の溝深さは0.0
03〜0.005mmしかないため、スムーズにかじる
事無く離型が出来るのである。
Here, the reason why the shaft 1 is reasonably released from the mold by the protrusion pin 7 when there is an undercut in the dynamic pressure groove part is the difference in the coefficient of thermal expansion between the mold and the polyacetal resin and the molding. It is utilized that a difference in shrinkage of about 20/1000 occurs between the two due to the temperature difference between the front and rear. For example, if the thickness of the resin layer 3 is 0.5 mm, then 20/1000 × 0.5 mm = 0.01 m
The outer dimension of the resin layer 3 shrinks by m. On the other hand, the groove depth of the undercut groove 2 is 0.0
Since it is only 03 to 0.005 mm, it is possible to release from the mold without smooth biting.

【0014】従って、グルーブの溝深さ寸法<収縮差×
樹脂成形肉厚の条件で有れば、どんな樹脂を使っても射
出成形が出来る。樹脂としては、上記条件を満たす材質
で、かつ金型転写性がよく、耐摩耗性に優れた材質を選
定すれば、軸受け性能は一層改善される。
Therefore, the groove depth of the groove <shrinkage difference x
Injection molding can be performed using any resin as long as the resin molding thickness is satisfied. As the resin, if a material satisfying the above conditions, good mold transferability, and excellent wear resistance is selected, the bearing performance is further improved.

【0015】図3および図4は、外筒13の内周部にラ
ジアル動圧発生用グルーブを形成する製造方法を示すも
のである。外筒13の内周部に図1に記載したと同様の
動圧グルーブを形成するために、図3のような断面の成
形金型を利用する。
FIG. 3 and FIG. 4 show a manufacturing method for forming a radial dynamic pressure generating groove on the inner peripheral portion of the outer cylinder 13. In order to form a dynamic pressure groove similar to that shown in FIG. 1 on the inner peripheral portion of the outer cylinder 13, a molding die having a cross section as shown in FIG. 3 is used.

【0016】9はコア、10は外周に所定のヘリカルボ
ーン形状のリブ10aが形成されたキャビティであり、
11は突き出しピンである。図3の様に金型が閉じた状
態でゲート12より空隙部13に樹脂が射出充填され
る。そしてキャビティ10とコア9が開くと図4に示す
ように製品部(樹脂成形部)13は、キャビティ10に
ついた状態でその外周部は金型の拘束から解き放たれ
る。この状態で製品(外筒13)の外周部をヒーターで
加熱し、製品13を膨張させ突き出しピン11を矢印の
方向に押し出す事により、成形が完了する。
Reference numeral 9 is a core, and 10 is a cavity in which a predetermined helical bone-shaped rib 10a is formed on the outer periphery,
Reference numeral 11 is a protruding pin. With the mold closed as shown in FIG. 3, the resin is injected and filled from the gate 12 into the space 13. When the cavity 10 and the core 9 are opened, as shown in FIG. 4, the outer peripheral portion of the product portion (resin molding portion) 13 attached to the cavity 10 is released from the constraint of the mold. In this state, the outer peripheral portion of the product (outer cylinder 13) is heated by a heater to expand the product 13 and push out the ejection pin 11 in the direction of the arrow to complete the molding.

【0017】図5は、図6に示すようなアキシャル動圧
型軸受け21にアキシャル動圧用グルーブ22を射出成
形で実施する成形金型の断面図である。14はキャビテ
ィであり、図6に示すアキシャル動圧用グルーブ22を
形成するためのリブ22aが形成されている。15はコ
ア、16は突き出しピン、17はアキシャル動圧型軸受
けの中心となる金属プレート、18は成形樹脂充填部、
19は前記金属プレート17を吸着保持するためのエア
吸引孔である。前記金属プレート17が磁性体の場合
は、エア吸引孔19の代わりに同位置に吸着用マグネッ
トを配置する場合もある。或いは、成形機が縦型の場合
は自重により保持される為、不要の場合もある。又、金
属プレート17を使用しない場合は、同スペースにも樹
脂が充填され、エア吸引孔19は不要となる。成形手順
としては、キャビティ15とコア14が開いた状態で金
属プレート17をセットし、エア吸引により保持させ
る。
FIG. 5 is a cross-sectional view of a molding die in which an axial dynamic pressure bearing 22 as shown in FIG. 6 is provided with an axial dynamic pressure groove 22 by injection molding. Reference numeral 14 denotes a cavity, in which a rib 22a for forming the axial dynamic pressure groove 22 shown in FIG. 6 is formed. Reference numeral 15 is a core, 16 is a protruding pin, 17 is a metal plate which is the center of the axial dynamic pressure type bearing, 18 is a molding resin filling portion,
Reference numeral 19 is an air suction hole for sucking and holding the metal plate 17. When the metal plate 17 is a magnetic material, an attraction magnet may be placed at the same position instead of the air suction hole 19. Alternatively, if the molding machine is a vertical type, it may be unnecessary because it is held by its own weight. Further, when the metal plate 17 is not used, the space is also filled with the resin, and the air suction hole 19 becomes unnecessary. As a molding procedure, the metal plate 17 is set in a state where the cavity 15 and the core 14 are opened and held by air suction.

【0018】次に金型が閉じて、図5の状態で樹脂がゲ
ート20より、射出充填され、再び金型が開き、エア吸
引が止まると同時に突き出しピン16により、製品が離
型し、成形を完了する。このようにして作成された軸受
け21を所定の回転軸の先端に固定する。
Next, the mold is closed, resin is injected and filled from the gate 20 in the state of FIG. 5, the mold is opened again, air suction is stopped, and at the same time the product is released by the ejector pin 16 and molded. To complete. The bearing 21 thus created is fixed to the tip of a predetermined rotating shaft.

【0019】図7は、金型に前述の動圧グルーブ形成用
のリブ6,22aを形成するための新規な方法を示すも
のであり、表面に動圧グルーブを形成すべきコアあるい
はキャビティ23を既存の機械加工によりグルーブのな
い状態(溝奥寸法)に仕上げる。この場合、グルーブが
ないので寸法精度、真円度、面粗度等は容易に得られ
る。
FIG. 7 shows a novel method for forming the above-mentioned ribs 6 and 22a for forming a dynamic pressure groove on a die, and a core or cavity 23 on which a dynamic pressure groove is to be formed is formed. The existing machining process finishes without grooves (groove depth). In this case, since there is no groove, dimensional accuracy, roundness, surface roughness, etc. can be easily obtained.

【0020】そして、溝奥部分24について、フォトレ
ジストあるいはスクリーン印刷等の手法でマスキングを
行う。そして、それを蒸着釜に入れ、高強度構造材を蒸
着する。この蒸着法は、化学蒸着、電子ビーム蒸着など
材料によって選択する。蒸着法によれば、簡単な条件設
定により、サブミクロンオーダでリブを形成でき、しか
も、その表面の粗さは被着物の面粗さを維持できるた
め、非常に精度の良いグルーブを形成できる。その後、
マスキング材を基地の方法で取り除けば良い。この方法
は、射出成形金型のみならず、加圧成型金型にも応用で
きるものである。
Then, the inner part 24 of the groove is masked by a technique such as photoresist or screen printing. Then, it is placed in a vapor deposition kettle to vapor deposit the high-strength structural material. This vapor deposition method is selected according to materials such as chemical vapor deposition and electron beam vapor deposition. According to the vapor deposition method, ribs can be formed on the order of submicrons by a simple condition setting, and the surface roughness can maintain the surface roughness of the adherend, so that the groove can be formed with extremely high accuracy. afterwards,
The masking material should be removed by the base method. This method can be applied not only to injection molding dies but also to pressure molding dies.

【0021】[0021]

【発明の効果】以上のように本発明の動圧型軸受け装置
は、動圧グルーブの作成される部分を樹脂材で構成され
ているため、従来のエッチング工法、転造工法等による
煩雑な加工工程を経る事なく、簡単にしかも高精度の動
圧グルーブを成形製造することができる。また、軸受け
部に樹脂成形材料を使用する事で、従来のような金属摩
耗粉による焼き付き停止問題を解消する事が出来る。
As described above, in the dynamic pressure type bearing device of the present invention, since the portion where the dynamic pressure groove is formed is made of the resin material, the complicated etching process by the conventional etching method, rolling method, etc. It is possible to easily form and manufacture a dynamic pressure groove with high accuracy without going through the process. Further, by using a resin molding material for the bearing portion, it is possible to solve the conventional problem of seizure stop due to metal abrasion powder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動圧型軸受け装置の一実施例の軸体の
一部切欠正面図
FIG. 1 is a partially cutaway front view of a shaft body of an embodiment of a dynamic pressure type bearing device of the present invention.

【図2】本発明の動圧型軸受け装置の製造方法の一実施
例に使用される樹脂成形金型の部分断面図
FIG. 2 is a partial cross-sectional view of a resin molding die used in an embodiment of a method for manufacturing a dynamic pressure type bearing device of the present invention.

【図3】本発明の動圧型軸受け装置の製造方法の他の実
施例に使用される樹脂成形金型の部分断面図
FIG. 3 is a partial sectional view of a resin molding die used in another embodiment of the method for manufacturing the dynamic pressure type bearing device of the present invention.

【図4】同製造方法の製造工程における樹脂成形金型の
部分断面図
FIG. 4 is a partial cross-sectional view of a resin molding die in the manufacturing process of the manufacturing method.

【図5】本発明の動圧型軸受け装置の製造方法のさらに
他の実施例に使用される樹脂成形金型の部分断面図
FIG. 5 is a partial sectional view of a resin molding die used in still another embodiment of the method for manufacturing the dynamic pressure type bearing device of the present invention.

【図6】アキシャル動圧発生用スパイラルグルーブの一
例を示す平面図
FIG. 6 is a plan view showing an example of a spiral groove for generating an axial dynamic pressure.

【図7】樹脂成型金型の製造方法を示す側面図FIG. 7 is a side view showing a method for manufacturing a resin molding die.

【符号の説明】[Explanation of symbols]

1 軸体 2,22 動圧グルーブ 3 樹脂成形材層 4,10 キャビティ 5,9 コア 6,10a,22a リブ 13 外筒 1 Shaft 2,22 Dynamic Pressure Groove 3 Resin Molding Material Layer 4,10 Cavity 5,9 Core 6,10a, 22a Rib 13 Outer Cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回転軸を、固定面に対して所定の間隔をも
って対向せしめ、その両者の互いに対向する少なくとも
一方の面に動圧発生用グルーブを形成した動圧型軸受け
装置において、前記動圧発生用グルーブが形成される部
分を樹脂成形材で構成したことを特徴とする動圧型軸受
け装置。
1. A dynamic pressure type bearing device in which a rotary shaft is opposed to a fixed surface at a predetermined interval, and a groove for dynamic pressure generation is formed on at least one surface of the two, which are opposed to each other. A dynamic pressure type bearing device characterized in that a portion where a groove for use is formed is made of a resin molding material.
【請求項2】回転軸を、固定面に対して所定の間隔をも
って対向せしめ、その両者の互いに対向する少なくとも
一方の面に動圧発生用グルーブを形成した動圧型軸受け
装置の製造方法において、表面に形成すべき所定の動圧
発生用グルーブに対応するリブが形成された金型内に、
その金型の熱膨張率より大なる熱膨張率を有する樹脂成
形材を充填し、前記熱膨張率の差異を利用して、前記金
型より離反せしめて表面に前記の所定の動圧発生用グル
ーブが形成された回転軸あるいは固定面を得ることを特
徴とする動圧型軸受け装置の製造方法。
2. A method of manufacturing a dynamic pressure type bearing device, wherein a rotary shaft is opposed to a fixed surface at a predetermined interval, and a dynamic pressure generating groove is formed on at least one of the surfaces opposed to each other. In the mold in which the rib corresponding to the predetermined dynamic pressure generating groove to be formed is formed,
A resin molding material having a coefficient of thermal expansion larger than that of the mold is filled, and by utilizing the difference in the coefficient of thermal expansion, the mold is separated from the mold to generate the predetermined dynamic pressure on the surface. A method of manufacturing a dynamic pressure type bearing device, characterized in that a rotary shaft or a fixed surface on which a groove is formed is obtained.
【請求項3】回転軸を固定面に対して所定の間隔をもっ
て対向せしめ、その両者の互いに対向する少なくとも一
方の面に動圧発生用グルーブを形成した動圧型軸受け装
置の製造方法において、表面に形成すべき所定の動圧発
生用グルーブに対応するリブが蒸着により形成された金
型により樹脂成形材を成型して、表面に前記の所定の動
圧発生用グルーブが形成された回転軸あるいは固定面を
得ることを特徴とする動圧型軸受け装置の製造方法。
3. A method of manufacturing a dynamic pressure type bearing device, wherein a rotary shaft is opposed to a fixed surface at a predetermined distance, and a dynamic pressure generating groove is formed on at least one surface of the both facing each other. A resin molding material is molded by a mold in which ribs corresponding to the predetermined dynamic pressure generating groove to be formed are formed by vapor deposition, and the rotary shaft or the fixed shaft on which the predetermined dynamic pressure generating groove is formed on the surface is fixed. A method of manufacturing a dynamic pressure type bearing device, characterized in that a surface is obtained.
JP11569292A 1992-05-08 1992-05-08 Dynamic pressure type bearing device and manufacture thereof Pending JPH05312213A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11569292A JPH05312213A (en) 1992-05-08 1992-05-08 Dynamic pressure type bearing device and manufacture thereof
US08/057,388 US5357163A (en) 1992-05-08 1993-05-06 Motor with dynamic-pressure type bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569292A JPH05312213A (en) 1992-05-08 1992-05-08 Dynamic pressure type bearing device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05312213A true JPH05312213A (en) 1993-11-22

Family

ID=14668884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569292A Pending JPH05312213A (en) 1992-05-08 1992-05-08 Dynamic pressure type bearing device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05312213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007481A1 (en) * 2005-07-14 2007-01-18 Ntn Corporation Dynamic pressure bearing device
WO2007108361A1 (en) * 2006-03-20 2007-09-27 Ntn Corporation Fluid bearing device
JP2007255593A (en) * 2006-03-23 2007-10-04 Ntn Corp Liquid bearing device
US7309229B2 (en) 2004-11-26 2007-12-18 Fujitsu Limited Mold die

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309229B2 (en) 2004-11-26 2007-12-18 Fujitsu Limited Mold die
WO2007007481A1 (en) * 2005-07-14 2007-01-18 Ntn Corporation Dynamic pressure bearing device
WO2007108361A1 (en) * 2006-03-20 2007-09-27 Ntn Corporation Fluid bearing device
US8403565B2 (en) 2006-03-20 2013-03-26 Ntn Corporation Fluid dynamic bearing device
JP2007255593A (en) * 2006-03-23 2007-10-04 Ntn Corp Liquid bearing device

Similar Documents

Publication Publication Date Title
US7513689B2 (en) Hydrodynamic bearing device
JP3864065B2 (en) Manufacturing method of resin bearing parts
JPH0660561B2 (en) Screw-type rotary machine with at least one rotor made of plastic material
JPH05312213A (en) Dynamic pressure type bearing device and manufacture thereof
KR950008332B1 (en) Ceramic bearing
US3499201A (en) Method of making a spherical bearing assembly
JPS62144908A (en) Manufacturing method for fresnel lens molding tool
US6003227A (en) Process for manufacturing a piston ring
US20070144010A1 (en) Method of manufacturing dynamic pressure bearing member
KR0123923B1 (en) Rotary head cylinder and the manufacturing method
JPH1162948A (en) Dynamic pressure air bearing
JP2815521B2 (en) Ring forming method and ring forming apparatus
JP2637471B2 (en) Method of manufacturing rotor
JPH02134219A (en) Molding die of substrate for data recording medium
JP2000110837A (en) Manufacture of dynamic pressure bearing device
JPH038932B2 (en)
JPS63203916A (en) Dynamic pressure type plain bearing and manuracture thereof
JPH0631818A (en) Manufacture of synthetic resin fitting part
JPH0540987Y2 (en)
JP4406825B2 (en) Optical element molding mold manufacturing method and mold
JPH0694054B2 (en) Slide bearing manufacturing method
JPS5836581B2 (en) Manufacturing method of magnetic rotor
JPH0676533A (en) Tape cartridge and manufacture of tape guide roller used therefor
JPH03268915A (en) Manufacture of bearing for light electrical appliance
JPH0717456Y2 (en) Injection mold