JPH0694054B2 - Slide bearing manufacturing method - Google Patents

Slide bearing manufacturing method

Info

Publication number
JPH0694054B2
JPH0694054B2 JP58135687A JP13568783A JPH0694054B2 JP H0694054 B2 JPH0694054 B2 JP H0694054B2 JP 58135687 A JP58135687 A JP 58135687A JP 13568783 A JP13568783 A JP 13568783A JP H0694054 B2 JPH0694054 B2 JP H0694054B2
Authority
JP
Japan
Prior art keywords
metal cylinder
resin
cylinder
bearing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58135687A
Other languages
Japanese (ja)
Other versions
JPS6030825A (en
Inventor
恭三郎 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP58135687A priority Critical patent/JPH0694054B2/en
Publication of JPS6030825A publication Critical patent/JPS6030825A/en
Priority to US06/926,423 priority patent/US4774749A/en
Publication of JPH0694054B2 publication Critical patent/JPH0694054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/10Making other particular articles parts of bearings; sleeves; valve seats or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/005Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by expanding or crimping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • B29C2063/348Lining or sheathing of internal surfaces using tubular layers or sheathings combined with reducing the diameter of the substrate to be lined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、摺動体としての樹脂円筒を金属円筒と一体
化してなるすべり軸受の製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a sliding bearing in which a resin cylinder as a sliding body is integrated with a metal cylinder.

〔従来技術〕 従来、樹脂を使用したすべり軸受としては、例えば、樹
脂単体の軸受,巻ブッシュ型軸受,金属性ブッシュに樹
脂を嵌入接着した軸受などがある。
[Prior Art] Conventionally, as a sliding bearing using a resin, for example, there is a bearing of a resin alone, a wound bush type bearing, a bearing in which a resin is fitted and adhered to a metal bush.

まず、樹脂単体の軸受についてみれば、薄肉円筒状に形
成すると軸受強度が低下するので、現状としては、厚肉
円筒状のものが用いられているが、ハウジングに固定
後、温度変化によって内径の収縮が大となり、軸との間
の半径方向の隙間を50μm以下にすることができないの
で、回転精度が悪く、しかも初期摩耗が大きいという欠
点を有している。
First, regarding the bearing made of resin alone, since the bearing strength decreases when formed into a thin-walled cylindrical shape, the thick-walled cylindrical shape is currently used. Since the shrinkage is large and the radial gap between the shaft and the shaft cannot be 50 μm or less, there are disadvantages that the rotation accuracy is poor and the initial wear is large.

次に、巻ブッシュ型軸受は、予め樹脂層をコーティング
した金属板、例えば鋼板を該樹脂層を内側にして円形に
巻いて形成したものであるが、シートを曲げて作るた
め、真円度が50μm程度しか得られず、更に隙間も50μ
m以上を必要とするので、精度が悪いという難点があ
る。
Next, the wound bush type bearing is formed by winding a metal plate coated with a resin layer in advance, for example, a steel plate in a circular shape with the resin layer on the inside. Only about 50 μm can be obtained, and the gap is 50 μm.
Since m or more is required, there is a drawback that the accuracy is poor.

次に、金属性ブッシュに樹脂を嵌入接着した軸受につい
ては、まず、製造方法に欠点があり、工数を多く要す
る。例えば、特にPTFE(テフロン)は接着剤が利かない
ので、接着部分のみに化学処理を施し、軸受面に接着剤
が入らないように接着しなければならず、手間がかか
る。また、他の樹脂の場合も接着そのものが面倒で量産
性に欠けるという問題がある。
Next, as for the bearing in which the resin is fitted and adhered to the metallic bush, the manufacturing method has a defect and requires a lot of man-hours. For example, since PTFE (Teflon) is not suitable for adhesives, it is necessary to perform chemical treatment only on the bonded portion so as to prevent the adhesive from entering the bearing surface, which is troublesome. Further, in the case of using other resins, there is a problem that adhesion itself is troublesome and mass productivity is poor.

この他の欠点は、薄肉円筒を作るのがむずかしいという
ことである。例えば、PTFEは、機械加工,圧縮成形、あ
るいは押出成形が困難である。これは、被加工物に剛性
がなく、製品精度がよく出ないからである。
Another drawback is that it is difficult to make a thin cylinder. For example, PTFE is difficult to machine, compression mold, or extrude. This is because the work piece has no rigidity and the product accuracy is not good.

〔発明の目的〕[Object of the Invention]

この発明は、上記の問題点に鑑みてなされたもので、金
属円筒の内周面に形成した凹凸面に樹脂円筒を密着噛合
させて一体化した、精度高く、かつ強度の大きい二層構
造のすべり軸受を得ることができる、同すべり軸受の製
造法を提供することを目的とする。
The present invention has been made in view of the above problems, and has a highly precise and strong two-layer structure in which a resin cylinder is integrally brought into close contact with an uneven surface formed on the inner peripheral surface of the metal cylinder. An object of the present invention is to provide a method for manufacturing the sliding bearing, which can obtain the sliding bearing.

〔実施例〕〔Example〕

以下、この発明の実施例を第1図〜第3図によって説明
する。この実施例は、第5図に示すすべり軸受9の製造
法である。
An embodiment of the present invention will be described below with reference to FIGS. This embodiment is a method of manufacturing the slide bearing 9 shown in FIG.

このすべり軸受9は、外層を構成する金属円筒2と、内
層を構成する樹脂円筒8とからなり、かつ金属円筒2の
内周面側に樹脂円筒8を高圧射出成形し、これを金属円
筒2の内周面に形成した凹凸面に密着噛合させて、両者
2,8を一体に結合したものである。
The slide bearing 9 is composed of a metal cylinder 2 forming an outer layer and a resin cylinder 8 forming an inner layer, and the resin cylinder 8 is high-pressure injection-molded on the inner peripheral surface side of the metal cylinder 2, and the metal cylinder 2 is formed. Closely mesh with the uneven surface formed on the inner peripheral surface of
It is a combination of 2,8.

この製造法は、射出成形できる種類の樹脂を対象として
のみ実施し得る方法で、その製造工程は次のとおりであ
る。
This manufacturing method is a method that can be carried out only for resins that can be injection-molded, and the manufacturing process is as follows.

(1)金属円筒作成工程 第1図に示すように、金属引抜きパイプ1から突切りに
より金属円筒2を得る。
(1) Metal Cylinder Making Step As shown in FIG. 1, a metal cylinder 2 is obtained by cutting off the metal drawing pipe 1.

(2)凹凸面形成工程 第2図に示すように、金属円筒2の内面にローレット3
による転造、ブローチ(機械加工)などにより凹凸の刻
み目4を形成する。
(2) Concavo-convex surface forming step As shown in FIG. 2, the knurl 3 is formed on the inner surface of the metal cylinder 2.
The uneven notch 4 is formed by rolling or broaching (machining).

(3)金属円筒設定工程 第3図に示すように、刻み目4を形成した金属円筒2
を、射出成型用金型5の枠型5aに、その内周面と金属円
筒2の外周面との間に樹脂の射出内圧を受けて金属円筒
2が弾性、若しくは塑性変形するに必要な間隙Sを設け
てインサート設定する。
(3) Metal Cylinder Setting Step As shown in FIG. 3, the metal cylinder 2 having the notch 4 is formed.
Is a space necessary for the metal cylinder 2 to be elastically or plastically deformed by receiving the injection inner pressure of the resin between the inner peripheral surface of the frame mold 5a of the injection molding mold 5 and the outer peripheral surface of the metal cylinder 2. S is set and insert setting is performed.

(4)高圧射出成形工程 第4図に示すように、例えば、1,000kg/cm2以上の金型
内圧をかけて高圧インサート成形を行う。このとき、金
属円筒2は、これと円柱状芯型5bと枠型5aとで形成され
るキャビティ6に圧入された溶融状態の樹脂7の圧力に
より枠型5aの内面に圧接するまで押し広げられる。そし
て、キャビティ6に圧入された樹脂7は、内部応力を発
生した状態となり、そのままの状態で固まり樹脂円筒8
となる。
(4) High-pressure injection molding process As shown in FIG. 4, for example, high-pressure insert molding is performed by applying a mold internal pressure of 1,000 kg / cm 2 or more. At this time, the metal cylinder 2 is pushed and expanded by the pressure of the molten resin 7 pressed into the cavity 6 formed by this, the cylindrical core mold 5b and the frame mold 5a until it comes into pressure contact with the inner surface of the frame mold 5a. . Then, the resin 7 press-fitted into the cavity 6 is in a state where internal stress is generated, and the resin 7 is solidified in the state as it is.
Becomes

金属円筒2が樹脂円筒8の収縮量よりも多く弾性回復す
れば、金属円筒2の凹凸の刻み目4と樹脂円筒8との外
周面との間に隙間は発生せず、また、回復量が更に大き
い場合には、樹脂円筒8は金属円筒2によって締め付け
られた状態となる。しかも、高圧で射出成形されている
ため樹脂円筒8の収縮は可及的に小さくなるので、締め
付けの度合は更に大きくなる。
If the metal cylinder 2 elastically recovers more than the contraction amount of the resin cylinder 8, no gap is generated between the concave and convex notches 4 of the metal cylinder 2 and the outer peripheral surface of the resin cylinder 8, and the recovery amount is further increased. When it is large, the resin cylinder 8 is in a state of being clamped by the metal cylinder 2. Moreover, since the resin cylinder 8 is injection-molded at a high pressure, the shrinkage of the resin cylinder 8 is as small as possible, so that the degree of tightening is further increased.

このようにして、金属円筒2と樹脂円筒8は、完全に一
体化した仕上品(すべり軸受)9となる。
In this way, the metal cylinder 2 and the resin cylinder 8 become a completely integrated finished product (slide bearing) 9.

(5)製品仕上げ工程 必要精度によっては、仕上品9の外径,内径,端面を機
械加工して製品とする。
(5) Product finishing process Depending on the required accuracy, the outer diameter, inner diameter, and end surface of the finished product 9 are machined into a product.

得られた仕上品9は、金属円筒2と樹脂円筒8が金属円
筒2に予圧をかけた状態で一体化されているため、樹脂
円筒8の分子密度が高くなり、その耐摩耗性が向上する
のみならず、低温使用時においても、金属円筒2と樹脂
円筒8との間に隙間は生じない。
In the obtained finished product 9, the metal cylinder 2 and the resin cylinder 8 are integrated in a state where the metal cylinder 2 is preloaded, so that the resin cylinder 8 has a high molecular density and its abrasion resistance is improved. In addition, no gap is formed between the metal cylinder 2 and the resin cylinder 8 even when used at low temperature.

上記製造方法によれば、通常成形程度の型内圧の成形
(約1,000kg/cm2)でもガタなしの密着成形ができた。
これは、アルミ円筒の外径とキャビティ内径との間に適
当な隙間を設け、内圧でアルミ円筒を拡張してその弾性
力でガタをなくすることができたためと思われる。
According to the above-mentioned manufacturing method, contact molding without rattling could be achieved even with molding at a mold pressure of about normal molding (about 1,000 kg / cm 2 ).
This is probably because an appropriate gap was provided between the outer diameter of the aluminum cylinder and the inner diameter of the cavity, the aluminum cylinder was expanded by the internal pressure, and the elastic force eliminated the backlash.

さらに、アルミ円筒が弾性変形を越えて塑性変形するま
で隙間を広げたところ、非常に優れた効果が得られた。
すなわち、成形後のアルミ円筒の外径の真円度,円筒
度,寸法精度が著しく向上した。
Furthermore, when the gap was widened until the aluminum cylinder exceeded the elastic deformation and plastically deformed, a very excellent effect was obtained.
In other words, the roundness, cylindricity, and dimensional accuracy of the outer diameter of the aluminum cylinder after molding were significantly improved.

また、成形前、数10μmのだ円で、外径にバラツキのあ
ったアルミ円筒の外径が、成形後は真円度が4μm,外径
が8μmのバラツキ,円筒度が4μmの範囲に入った。
これは、樹脂の内圧によりアルミ円筒を金型に倣わせて
矯正することができたからであり、アルミ円筒の精度向
上には、塑性域まで変形されることが大きく寄与してい
るものと思われる。
In addition, before molding, the outer diameter of an aluminum cylinder with an ellipse of several tens of μm and the outer diameter varied, but after molding, the roundness was 4 μm, the outer diameter was 8 μm, and the cylindricity was in the range of 4 μm. It was
This is because it was possible to correct the aluminum cylinder by following the mold by the internal pressure of the resin, and it seems that the deformation to the plastic region greatly contributes to the accuracy improvement of the aluminum cylinder. .

一方、樹脂側の内径精度も著しく向上する。通常成形で
は、真円度,内径寸法精度とも10μm内外が限度である
が、この実施例のような成形では、樹脂の固化過程にお
いて、ゲートが固化して成形機により加えられる保圧が
金型内部に及ばなくなっても、アルミ円筒の弾性収縮に
基づく圧力が数100kg/cm2の大きさで金型内部の樹脂に
かかるので、寸法精度のよいもの、すなわち、内径バラ
ツキ8μm、真円度5μmという精度のものを量産的に
得ることができる。
On the other hand, the precision of the inner diameter on the resin side is also significantly improved. In normal molding, both the roundness and the inner diameter dimensional accuracy are limited to within 10 μm, but in the molding as in this embodiment, in the resin solidification process, the gate is solidified and the holding pressure applied by the molding machine is Even if it does not reach the inside, the pressure due to elastic contraction of the aluminum cylinder is applied to the resin inside the mold with a size of several hundred kg / cm 2 , so it has good dimensional accuracy, that is, inner diameter variation 8 μm, roundness 5 μm It is possible to mass-produce products with such an accuracy.

このように、実施例のインサートモールドによれば、最
終機械仕上げを要せず、極めて高精度のすべり軸受を得
ることができる。また、樹脂円筒の内径と金属円筒の外
径との同軸度も数μm内外の精度が得られる。
As described above, according to the insert mold of the embodiment, it is possible to obtain a slide bearing with extremely high accuracy without requiring final mechanical finishing. In addition, the coaxiality between the inner diameter of the resin cylinder and the outer diameter of the metal cylinder can be accurate to within a few μm.

表1は、実施例のすべり軸受の寸法精度を通常の樹脂円
筒のそれと比較したものである。
Table 1 compares the dimensional accuracy of the sliding bearing of the embodiment with that of a normal resin cylinder.

なお、上記実施例においては、すべり軸受の内面は平滑
面であるが、動圧溝を成形時に同時に形成することもで
きる。スパイラルグループで動圧溝を形成した例では、
グリース潤滑により摩耗を極端に小さくすることができ
る。
In the above embodiment, the inner surface of the slide bearing is a smooth surface, but the dynamic pressure groove can be formed at the same time when molding. In the example where the dynamic pressure groove is formed by the spiral group,
Wear can be extremely reduced by grease lubrication.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように、この発明によれば、金属円筒
の凹凸面側に樹脂円筒を高圧射出成形して密着一体化さ
せるようにしたので、次の効果を得ることができる。
As described above, according to the present invention, the resin cylinder is high-pressure injection-molded on the concave-convex surface side of the metal cylinder so as to be closely adhered to each other, so that the following effects can be obtained.

(1)金属円筒と樹脂円筒との密着力が向上する。すな
わち、両円筒は接着剤を用いることなく金属円筒の内部
応力により凹凸面において噛合しており、ガタは生じな
い。このため、この部分の摩耗や破損がなく、すべり軸
受の寿命が、後述の耐摩耗性の高いことと相俟って、著
しく長くなる。
(1) The adhesion between the metal cylinder and the resin cylinder is improved. That is, the two cylinders mesh with each other on the uneven surface due to the internal stress of the metal cylinder without using an adhesive agent, and there is no backlash. Therefore, there is no wear or damage to this portion, and the life of the plain bearing is significantly lengthened in combination with the high wear resistance described later.

(2)樹脂円筒の肉厚を薄く形成することができる。外
層に金属円筒があり、これと樹脂円筒を密着一体化させ
ているため、樹脂を薄くしても軸受強度は低下すること
がないからである。このため、軸受の内径の寸法精度を
高くすることができ、軸受と軸との隙間を半径で10μm
以内に詰めることも可能となる。従来の樹脂単体の軸受
では、一般に50μm程度よりも小さくできなかったのに
比べて、極めて高い寸法精度を確保できる。従って、隙
間の小さいことから初期摩耗が少なく摩耗特性が向上す
る。また、熱膨張による寸法変化も小さいので、内径変
化が少なく、軸の食い付きを防止できる。
(2) The resin cylinder can be made thin. This is because there is a metal cylinder in the outer layer and the resin cylinder and the resin cylinder are in close contact with each other so that the bearing strength does not decrease even if the resin is thin. Therefore, the dimensional accuracy of the inner diameter of the bearing can be increased, and the gap between the bearing and the shaft is 10 μm in radius.
It is possible to pack within. It is possible to secure extremely high dimensional accuracy as compared with the conventional resin-only bearing, which generally cannot be made smaller than about 50 μm. Therefore, since the gap is small, the initial wear is small and the wear characteristics are improved. In addition, since the dimensional change due to thermal expansion is small, the change in the inner diameter is small and the biting of the shaft can be prevented.

(3)外層に熱伝導のよいアルミや真鍮を用いることに
より、摺動部分からの熱放散と耐摩耗性に優れたすべり
軸受を得ることができる。
(3) By using aluminum or brass having good heat conductivity for the outer layer, it is possible to obtain a slide bearing having excellent heat dissipation from the sliding portion and wear resistance.

(4)従来の樹脂軸受や巻ブッシュ型のものはガタを生
じ、含油焼結合金軸受や玉軸受の代りに使用できなかっ
たが、この発明によって得られる軸受は、高精度でガタ
ツキを生じないことから使用することができる。特に軸
との隙間に精度を要求されるプラスチックの動圧溝付き
軸受に好適である。
(4) Conventional resin bearings and wound bush type bearings play back and cannot be used in place of oil-impregnated sintered alloy bearings or ball bearings, but the bearings obtained according to the present invention do not cause rattling with high precision. It can be used from that. In particular, it is suitable for a bearing with a dynamic pressure groove made of plastic, which requires precision in the clearance with the shaft.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例において使用する金属円筒の斜視図、第
2図は第1図の金属円筒に凹凸面を形成する工程を示す
斜視図、第3図は実施例における金属円筒を金型に設定
した状態を示す縦断面図、第4図は第3図の金属円筒を
設定した金型に樹脂を圧入した状態を示す縦断面図、第
5図は実施例の製造法によって得られたすべり軸受の縦
断面図である。 2……金属円筒 4……凹凸の刻み目 5……金型 5a……枠型 5b……芯型 7……樹脂 8……樹脂円筒 9……仕上品(すべり軸受) S……隙間
FIG. 1 is a perspective view of a metal cylinder used in the embodiment, FIG. 2 is a perspective view showing a step of forming an uneven surface on the metal cylinder of FIG. 1, and FIG. 3 is a mold of the metal cylinder in the embodiment. FIG. 4 is a vertical cross-sectional view showing a set state, FIG. 4 is a vertical cross-sectional view showing a state in which a resin is press-fitted into a mold having a metal cylinder shown in FIG. 3, and FIG. 5 is a slip obtained by the manufacturing method of the embodiment. It is a longitudinal cross-sectional view of a bearing. 2 …… Metal cylinder 4 …… Concave / concave notch 5 …… Mold 5a …… Frame 5b …… Core type 7 …… Resin 8 …… Resin cylinder 9 …… Finished product (sliding bearing) S …… Gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属円筒を得る金属円筒作成工程と、該金
属円筒の内面に凹凸面を形成する凹凸面形成工程と、凹
凸面を形成した金属円筒を射出成型用金型の枠型にその
内周面と該金属円筒の外周面との間に筒状の隙間を設け
てインサートして設定する金属円筒設定工程と、高圧イ
ンサート成形により金属円筒と円柱状芯型との間に樹脂
を圧入して同金属円筒を拡張し、内部応力を発生させた
状態で、金属円筒と樹脂円筒とを密着結合させる高圧射
出成形工程とよりなるすべり軸受の製造法。
1. A process for producing a metal cylinder, a process for forming a concavo-convex surface on an inner surface of the metal cylinder, and a process for forming a concavo-convex surface on the inner surface of the metal cylinder. A metal cylinder setting step in which a cylindrical gap is provided between the inner peripheral surface and the outer peripheral surface of the metal cylinder to set it, and a resin is press-fitted between the metal cylinder and the cylindrical core mold by high pressure insert molding. Then, the same metal cylinder is expanded, and a sliding bearing is manufactured by a high pressure injection molding process in which a metal cylinder and a resin cylinder are closely bonded to each other while internal stress is generated.
JP58135687A 1983-07-27 1983-07-27 Slide bearing manufacturing method Expired - Lifetime JPH0694054B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58135687A JPH0694054B2 (en) 1983-07-27 1983-07-27 Slide bearing manufacturing method
US06/926,423 US4774749A (en) 1983-07-27 1986-11-03 Plain bearings and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135687A JPH0694054B2 (en) 1983-07-27 1983-07-27 Slide bearing manufacturing method

Publications (2)

Publication Number Publication Date
JPS6030825A JPS6030825A (en) 1985-02-16
JPH0694054B2 true JPH0694054B2 (en) 1994-11-24

Family

ID=15157563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135687A Expired - Lifetime JPH0694054B2 (en) 1983-07-27 1983-07-27 Slide bearing manufacturing method

Country Status (1)

Country Link
JP (1) JPH0694054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799174B2 (en) * 1990-11-20 1995-10-25 ニチアス株式会社 Sliding bearing manufacturing method
JP2017144585A (en) * 2016-02-15 2017-08-24 大日本印刷株式会社 Method for producing composite preform and method for producing composite container
CN107718425B (en) * 2017-09-27 2019-09-13 Oppo广东移动通信有限公司 Method, metal insert injection moulded products and the electronic equipment of metal insert injection molding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729992Y2 (en) * 1975-08-22 1982-06-30
JPS534134A (en) * 1976-06-30 1978-01-14 Futaba Denshi Kogyo Kk Outsert plastic bearing and method of producing same
JPS53132463A (en) * 1977-04-26 1978-11-18 Taiho Kogyo Co Ltd Manufacturing method of plain bfaring
JPS5419040A (en) * 1977-07-12 1979-02-13 Taiho Kogyo Co Ltd Method for manufacturing slide bearing

Also Published As

Publication number Publication date
JPS6030825A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
US4774749A (en) Plain bearings and process for manufacturing same
US8926183B2 (en) Fluid dynamic bearing device
US6579012B2 (en) Bearing ring
JP2003056552A (en) Resin-made bearing part and method for manufacturing the same
US4875263A (en) Method of manufacturing a dynamic pressure type slide bearing
JPH0694054B2 (en) Slide bearing manufacturing method
JP2001509865A (en) Bearing manufacturing method, bearing device and dry bearing material
US4219916A (en) Bearing cartridge mounting method
US7103974B2 (en) Process for mounting bearing rings
JP2754769B2 (en) Manufacturing method of bearing with dynamic pressure groove
JPH0121203B2 (en)
JPS6116851B2 (en)
JP2815521B2 (en) Ring forming method and ring forming apparatus
JPH0555288B2 (en)
JP2005155655A (en) Sliding bearing manufacturing method
JPS6111700B2 (en)
JP3578297B2 (en) Manufacturing method of bearings with internal groove
US3004322A (en) Processes for manufacturing needle and like bearing races
JP2870000B2 (en) Dynamic pressure bearing and manufacturing method thereof
JPS63203916A (en) Dynamic pressure type plain bearing and manuracture thereof
JP7346318B2 (en) Insert sintered parts and their manufacturing method
JP3307182B2 (en) Sintered bearing and manufacturing method thereof
JP4049351B2 (en) Manufacturing method of bearing
JPH0213169B2 (en)
JPH09317770A (en) Oilles bearing with dynamic pressure generating mechanism and manufacture and using method for oleo-bearing