JPH05311462A - Method for film formation by heat plasma - Google Patents

Method for film formation by heat plasma

Info

Publication number
JPH05311462A
JPH05311462A JP3071615A JP7161591A JPH05311462A JP H05311462 A JPH05311462 A JP H05311462A JP 3071615 A JP3071615 A JP 3071615A JP 7161591 A JP7161591 A JP 7161591A JP H05311462 A JPH05311462 A JP H05311462A
Authority
JP
Japan
Prior art keywords
plasma
chamber
film
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3071615A
Other languages
Japanese (ja)
Other versions
JP2975145B2 (en
Inventor
Toyonobu Yoshida
豊信 吉田
Kazuo Terajima
和夫 寺嶋
Hisashi Komaki
久 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3071615A priority Critical patent/JP2975145B2/en
Publication of JPH05311462A publication Critical patent/JPH05311462A/en
Application granted granted Critical
Publication of JP2975145B2 publication Critical patent/JP2975145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for film formation by heat plasma which forms multilayered films contg. a multielement system and continuously forms composite material films simultaneously contg. a vapor deposition phase and a molten and solidified phase with a single process. CONSTITUTION:The high-frequency induction heat plasma as hot as >=10000 deg.K is first generated in a torch 2 and a chamber 1. A controller 21 controls respective power supplying sources 8, 9, 10, a valve 12 in reactive gases 11, etc., and properly injects the powder materials and reactive gases meeting the purposes of film formation via a probe 6 at the center of an introducing end 5 into the plasma P. The liquid flying particles and vapor obtd. as a result of the passage of the above-mentioned materials, etc., through the inside of the plasma or the vapor, etc., accompanying reaction solidify on the surface of the substrate 20 on the substrate holder 19 in the chamber 1 in the case of the liquid phase and cause crystal growth in the case of the gaseous phase. The films are thus formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱プラズマを使用して
基板上に皮膜を形成するようにした熱プラズマ成膜方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal plasma film forming method for forming a film on a substrate by using thermal plasma.

【0002】[0002]

【従来の技術】熱プラズマを用いた成膜方法としては、
溶射法と熱プラズマCVD法(気相成膜法)が良く知ら
れている。溶射法は、熱プラズマ中に粒径が50μm〜
200μmの粒子を毎分2g〜数10gの速度で供給
し、熱プラズマにより各粉末の表面を溶融させ、その状
態で基板上に照射するようにしている。一方、熱プラズ
マCVD法は、例えば、炭化シリコン(SiC)を基板
上に成膜する場合、SiClのガスと、CHのガス
とを熱プラズマ中に導入する。この熱プラズマ中で両者
を反応させ、SiCとHClとを生成し、ガス状のHC
lは排出し、SiCを基板上に堆積するようにしてい
る。
2. Description of the Related Art As a film forming method using thermal plasma,
The thermal spraying method and the thermal plasma CVD method (vapor phase film forming method) are well known. The thermal spraying method has a particle size of 50 μm
Particles of 200 μm are supplied at a rate of 2 g to several tens of g per minute, the surface of each powder is melted by thermal plasma, and the substrate is irradiated in that state. On the other hand, in the thermal plasma CVD method, for example, when depositing silicon carbide (SiC) on a substrate, a gas of SiCl 4 and a gas of CH 4 are introduced into the thermal plasma. The two are reacted in this thermal plasma to generate SiC and HCl, and gaseous HC
l is discharged so that SiC is deposited on the substrate.

【0003】[0003]

【発明が解決しようとする課題】上記溶射法による成膜
は、高速堆積が可能であり、経済性が優れているもの
の、原子レベルでの結晶成長ができない、粒界の無い緻
密な良質膜が形成できない欠点を有している。また、溶
射法では、連続的に膜の組成を変化させること、多元系
皮膜を形成すること、化学反応を生じさせることなどが
困難である。一方、上記熱プラズマCVD法は、原子レ
ベルの結晶成長膜の形成、粒界の無い緻密な良質膜の形
成ができ、更に、連続的に組成を変化させたり、多元系
皮膜を形成したり、化学反応を生じさせたれすることが
できる特徴を有している。しかしながら、1μmの成膜
に10〜20分もかかり、経済性に問題を有しており、
また、反応ガスが高価であること、また、生成される有
毒ガスの処理を行わねばならないなど、よりコストが高
くなる欠点を有している。また、CVD法は、溶射法の
原理と本質的に異なるので、例えば、SOFCの電極に
必要な、気孔性を持つ膜を得ることが難しい。
The above-mentioned film formation by the thermal spraying method is capable of high-speed deposition and is excellent in economic efficiency, but it is not possible to obtain a dense, high-quality film with no grain boundary, which does not allow crystal growth at the atomic level. It has the drawback that it cannot be formed. Further, in the thermal spraying method, it is difficult to continuously change the composition of the film, form a multi-component film, or cause a chemical reaction. On the other hand, the above-mentioned thermal plasma CVD method can form a crystal growth film at an atomic level, can form a dense high-quality film without grain boundaries, and can further change the composition continuously or form a multi-component film, It has the characteristic of being able to generate a chemical reaction. However, it takes 10 to 20 minutes to form a film having a thickness of 1 μm, which causes a problem in economic efficiency.
In addition, there are drawbacks that the cost is higher because the reaction gas is expensive and the toxic gas that is generated must be treated. Further, since the CVD method is fundamentally different from the principle of the thermal spraying method, it is difficult to obtain a film having porosity required for an SOFC electrode, for example.

【0004】本発明は、このような点に鑑みてなされた
もので、その目的は、上記した溶射法と熱プラズマCV
D法の特徴を生かして、多元系を含む多層皮膜の形成
や、蒸着相と溶融凝固相を同時に含む複合材料膜を単一
のプロセスで連続的に形成させることを特徴とした熱プ
ラズマ成膜方法を実現するにある。
The present invention has been made in view of the above points, and its purpose is to provide the above-mentioned thermal spraying method and thermal plasma CV.
Utilizing the characteristics of D method, thermal plasma film formation characterized by forming a multi-layer film containing a multi-component system and continuously forming a composite material film containing a vapor deposition phase and a melt solidification phase in a single process There is a way to realize.

【0005】[0005]

【課題を解決するための手段】本発明に基づく熱プラズ
マ成膜方法は、チャンバー内に高周波誘導熱プラズマを
発生させる熱プラズマ発生工程と、該チャンバー内のプ
ラズマ中に粉末物質を供給するための複数の粉末を供給
する工程と、該チャンバー内のプラズマ中に反応ガスを
供給するための反応ガスを供給する工程と、複数の粉末
供給手段からチャンバー内への粉末の供給と反応ガス供
給手段からチャンバー内への反応ガスの供給とを制御す
る制御工程とを備えており、粉末粒径や反応ガス濃度を
目的に応じて制御させることによって、該チャンバー内
に設けられる基板上に粉末物質の溶射膜の成膜と気相成
膜を同時あるいは個々に単一のプロセスで連続的に形成
させるようにしたことを特徴としている。
A thermal plasma film forming method according to the present invention comprises a thermal plasma generating step of generating a high frequency induction thermal plasma in a chamber, and a powder substance to be supplied into the plasma in the chamber. A step of supplying a plurality of powders, a step of supplying a reaction gas for supplying a reaction gas into the plasma in the chamber, a step of supplying the powders from the plurality of powder supply means into the chamber and a reaction gas supply means And a step of controlling the supply of the reaction gas into the chamber, and by spraying the powder substance onto the substrate provided in the chamber by controlling the powder particle size and the reaction gas concentration according to the purpose. The feature is that the film formation and the vapor phase film formation are performed simultaneously or individually in a single process.

【0006】[0006]

【作用】チャンバー内に設けられた基板上に、粉末物質
の溶射膜の成膜と反応ガスの使用に基づく気相成膜を同
時あるいは個々に行い得るようにした。
Function: The sprayed film of the powder substance and the vapor phase film formation based on the use of the reaction gas can be simultaneously or individually performed on the substrate provided in the chamber.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明方法を実施するための構成例
を示しており、1はチャンバーであり、チャンバー1に
はプラズマトーチ2が設けられている。プラズマトーチ
2は、高周波電源3に接続されたワークコイル4,粉末
材料や反応ガス,プラズマガスなどをトーチ2内に導入
するための導入端5より成っている。詳しくは図示して
いないが、このトーチ部分の側壁や導入端5は、水冷さ
れている。導入端5のプローブ6には、管7を介して3
種の粉末供給部8,9,10が接続され、また、反応ガ
ス源11が弁12を介して接続されている。この粉末供
給部や反応ガス源の数は、この実施例に限定されず形成
する膜の種類によって任意に変えることができる。ま
た、導入端のプローブ13には、プラズマガス源14が
弁15を介して接続されている。チャンバー1には、水
冷の排気管16が接続され、排気管16はフィルター1
7と弁18を介して図示していない真空ポンプに接続さ
れている。チャンバー1内には、回転可能な基板ホルダ
ー19が配置され、その上には基板20が載せられてい
る。21はコンピュータの如き制御装置であり、各粉末
供給部8,9,10、高周波電源3、各弁12,15,
18を制御する。このような構成の装置の動作は次の通
りである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a structural example for carrying out the method of the present invention. Reference numeral 1 denotes a chamber, and the chamber 1 is provided with a plasma torch 2. The plasma torch 2 is composed of a work coil 4 connected to a high frequency power source 3, and an introduction end 5 for introducing powder material, reaction gas, plasma gas and the like into the torch 2. Although not shown in detail, the side wall of the torch portion and the introduction end 5 are water-cooled. The probe 6 at the introduction end 5 is connected to the probe 3 through the pipe 7.
Seed powder supply units 8, 9 and 10 are connected, and a reaction gas source 11 is connected via a valve 12. The number of powder supply units and reaction gas sources is not limited to this embodiment, and can be arbitrarily changed depending on the type of film to be formed. A plasma gas source 14 is connected to the probe 13 at the introduction end via a valve 15. A water-cooled exhaust pipe 16 is connected to the chamber 1, and the exhaust pipe 16 is a filter 1
7 and a valve 18 are connected to a vacuum pump (not shown). A rotatable substrate holder 19 is arranged in the chamber 1, and a substrate 20 is placed thereon. Reference numeral 21 is a control device such as a computer, each powder supply unit 8, 9, 10, high-frequency power source 3, each valve 12, 15,
Control 18 The operation of the device having such a configuration is as follows.

【0008】まず、制御装置21の制御によって弁18
を開け、真空ポンプによりチャンバー1内を排気し、チ
ャンバー1内が所定の圧力(1torr以下)になったとき
に弁15を開けプラズマガス源14からアルゴンガスを
プラズマトーチ2内に導入する。そして、高周波電源3
からワークコイル4に1MHz 以上の高周波プレート電
力に対応した高周波電流を流すと共にプラズマを着火
し、トーチ内に低圧グロープラズマ(低圧非平衡プラズ
マ)を形成する。次にチャンバー1およびトーチ2内の
圧力を徐々に上げ、大気圧または数百torr前後の圧力と
した後、プラズマガス源14からのアルゴンガスを所定
のプラズマガスに置換させる。同時に、所定の高周波プ
レート電力まで出力を上げ、1万度K以上にも達する熱
プラズマ(局所的熱平衡プラズマ)Pをトーチ2および
チャンバー1内に発生させる。次に、制御装置21は、
各粉末供給源8,9,10、反応ガス11の弁12など
を制御し、成膜目的に応じた粉末材料や反応ガスを導入
端5の中心のプローブ6を介して適宜プラズマP中に注
入する。この材料などがプラズマ中を通過した結果得ら
れた液状の飛行粒子や蒸気,または化学反応をともなっ
た蒸気などは、チャンバー1内の基板ホルダー19上の
基板20表面で液相であれば急冷凝固し、気相であれば
結晶成長が生じて膜が形成される。次に、このような成
膜装置を用いた具体的な成膜の実施例を詳述する。 (成膜の実施例1…高温固体電解質型燃料電池(SOF
C)への応用)SOFCは、負極(NiO)、電解質
(YSZ:Y安定化ZrO )、正極(La
CoO)の多層構造膜からなり、電極がOガス
やH ガスを吸い込ませるために多孔質で、逆に電解質
は、Hガスなどがリークしないように緻密であるこ
とを必要とする高機能材料である。このような異なる性
質を有する膜を重ねた多層構造膜を上記装置を用いて作
成した。まず、各粉末供給部8,9には、予め溶射を目
的とした100μm程度の平均粒径を有するNiO粉末
と、50μm程度の平均粒径のLaCoO粉末を入
れておき、また、反応ガス源11からの反応ガスには、
YSZ、基板20には多孔質のZrO 基板を用いた。
成膜プロセスの最初に、チャンバー1およびトーチ2内
を大体1torr以下に排気し、その後、プラズマガス源1
4からプラズマ発生用のガス導入管を通じてアルゴンガ
スをトーチ2内に供給した。同時に、10KW程度の高
周波プレート電力に対応した4MHz程度の高周波電流
をワークコイル4に流し、低圧グロープラズマ(低圧非
平衡プラズマ)を発生させた。次に、チャンバー1およ
びトーチ2内の圧力を徐々に下げ、200torr前後の一
定圧力とし、プラズマガス源14からのアルゴンガスを
酸素ガスに置換させると同時に、50KW程度に高周波
プレート電力を上げ、軸方向に長くかつ先端部に行くに
従って広がる形状の熱プラズマ(局所的熱平衡プラズ
マ)をトーチ2およびチャンバー1内に発生させる。そ
して、形成されたプラズマフレームを基板に当て基板温
度を400℃程度に加熱させた後、制御装置24によっ
て粉末供給部8を制御し、NiO粉末をプローブ6から
導入端5を介してプラズマP中に注入した。そしてこの
NiO粉末の表面を液状として基板20に3分間溶射
し、その直後、制御装置24の制御によってNiO粉末
の供給を停止させ、基板温度を約600℃程度に上昇さ
せ、弁12を制御して反応ガス源11からイットリアや
ジルコニアを含むハライド系のガスをトーチ2内に導入
し、YSZを基板上に約20分間成膜した。次に、La
CoO粉末をトーチ2内のプラズマ中に注入し、そ
して、表面を液状として基板20に3分間溶射した。以
上のプロセスにより、図2に示すように、ZrO
板30の表面にNiO膜(多孔質)31、YSZ膜(緻
密膜)32、LaCoO膜(多孔質)33が形成さ
れ、良好な多層構造膜が得られた。この成膜は、NiO
膜31を負極、LaCoO膜33を正極とする燃料
電池を形成する。なお、この実施例で、YSZ膜の原料
として、蒸発可能な微粒子を用いても良い。 (成膜の実施例2…金属基板を用いた超伝導薄膜の作成
への応用)図1の各粉末供給部8,9,10などには、
予め蒸発させる目的として数μm以下の平均粒径を有す
るY、BaCO、CuO粉末とYSZ粉
末とを入れておき、基板にはステンレス(SUS)を用
いた。前記した燃料電池の作製時と同様に、200torr
の酸素熱プラズマを発生させた後、プラズマフレームを
基板に当て、基板温度を600℃に加熱させた。プラズ
マが安定した後、YSZ微粒子を1分間当り50mg程度
の供給量で10分間プラズマ中に注入し、それによって
基板20上にYSZを成膜させた。その直後、基板温度
を650℃程度に上昇させ、Y:Ba:Cu=1:2:
3あるいは、成膜した膜がそのような組成となるように
各々の粉末供給量を変化させて10分間成膜させた。作
成した膜は、図3に示すように、ステンレス基板34を
用いてもYSZ膜35をバッファ材としたため、as-gro
wn状態で良質な超伝導薄膜36が得られた。また、形成
されたYSZ膜35は、膜厚が数μm程度の良質蒸着膜
であるが、あまり膜質が問題とならない場合には、粉末
粒径を50μm(高周波プレート出力50KW時)にす
るだけで経済性の高い溶射皮膜を形成することができ
る。更に、上記成膜の変形として、組成制御された超伝
導粉末とYSZ粉末、あるいは一方を反応ガスとしても
良い。 (成膜の実施例3…TiAl−SiC複合材料膜の
作製への応用)図1の粉末供給部に、予め溶射を目的と
した60μm程度の平均粒径を有するTiAl粉末
を入れておき、その他、反応ガスとしてSiCl
CH のガスを用意した。第1の具体例の燃料電池の作
製と同様の方法で、プラズマガス導入管から1分間当り
50lのアルゴンガス(Ar)と、1分間当り10lの
水素ガス(H)をトーチ2に供給し、チャンバー1
内の圧力を200torrとし、高周波出力50KWのアル
ゴンと水素の熱プラズマを発生させた。その後、Ti
Al粉末とSiClおよびCH4 をトーチ上部
に設けられた導入端から同時に注入させ、熱プラズマを
通過させた後、トーチ直下に位置したモリブデン基板に
成膜させた。その結果、図4に示すように、モリブデン
基板37の表面に、一層の膜中にTiAlの溶融凝
固38とSiCの蒸着相39を同時に含む複合材料を作
製することができた。
First, the valve 18 is controlled by the control device 21.
Open the chamber 1 and evacuate the chamber 1 with a vacuum pump.
When the pressure inside the chamber 1 reaches the specified pressure (1 torr or less)
Open the valve 15 to the source of argon gas from the plasma gas source 14.
It is introduced into the plasma torch 2. And the high frequency power source 3
From the work coil 4 to the high frequency plate voltage of 1MHz or more
High-frequency current corresponding to force is applied and plasma is ignited
The low pressure glow plasma (low pressure non-equilibrium plasma) inside the torch.
Form). Next, in chamber 1 and torch 2
Gradually raise the pressure to a pressure around atmospheric pressure or several hundred torr
After that, the argon gas from the plasma gas source 14 is predetermined.
Of the plasma gas. At the same time,
Heat that raises the output to rate power and reaches 10,000 degrees K or more
A plasma (local thermal equilibrium plasma) P is supplied to the torch 2 and
It is generated in the chamber 1. Next, the control device 21
Each powder supply source 8, 9, 10, the valve 12 for the reaction gas 11, etc.
Control, and introduce powder material and reaction gas according to the purpose of film formation.
Pouring into the plasma P appropriately via the probe 6 at the center of the end 5
To enter. The result of passing this material through the plasma
Entrained liquid flying particles, vapors, or chemical reactions
Vapor, etc. on the substrate holder 19 in the chamber 1.
If it is in the liquid phase on the surface of the substrate 20, it is rapidly solidified, and if it is in the gas phase
Crystal growth occurs and a film is formed. Then,
A specific example of film formation using a film device will be described in detail. (Example 1 of film formation ... High temperature solid oxide fuel cell (SOF
Application to C)) SOFC is a negative electrode (NiO), electrolyte
(YSZ: YTwoOThreeStabilized ZrOTwo ), The positive electrode (La
CoOThree), The electrode is OTwogas
And HTwo Porous to absorb gas, and conversely electrolyte
Is HTwoBe careful not to leak gas etc.
It is a high-performance material that requires and. Such different sex
Using the above equipment, a multi-layer structure film in which quality films are stacked is produced.
I made it. First, each of the powder supply units 8 and 9 should be sprayed beforehand.
NiO powder having an average particle size of about 100 μm
And LaCoO having an average particle size of about 50 μmThreePut powder
In addition, in the reaction gas from the reaction gas source 11,
YSZ, the substrate 20 is porous ZrOTwo A substrate was used.
At the beginning of the deposition process, inside chamber 1 and torch 2.
Is exhausted to approximately 1 torr or less, and then plasma gas source 1
4 through the gas inlet tube for plasma generation
The soot was fed into the torch 2. At the same time, as high as 10 kW
High frequency current of about 4MHz corresponding to the frequency plate power
Flow into the work coil 4, and low-pressure glow plasma (low-pressure non-
(Equilibrium plasma) was generated. Next, chamber 1 and
The pressure inside the torch 2 is gradually reduced to about 200 torr
Argon gas from the plasma gas source 14 is set to a constant pressure.
At the same time as replacing with oxygen gas, high frequency up to about 50 kW
For increasing plate power, axially long and going to the tip
Therefore, the spreading thermal plasma (local thermal equilibrium plasma
Are generated in the torch 2 and the chamber 1. So
Then, apply the formed plasma frame to the substrate and
After heating to 400 ℃, the controller 24
And controls the powder supply unit 8 to remove the NiO powder from the probe 6.
It was injected into the plasma P via the introduction end 5. And this
Spraying the surface of the NiO powder into the liquid for 3 minutes on the substrate 20
Immediately after that, the NiO powder was controlled by the control device 24.
Supply is stopped and the substrate temperature is raised to about 600 ° C.
The valve 12 to control the reaction gas source 11 to yttria or
Introduce a halide gas containing zirconia into the torch 2.
Then, YSZ was deposited on the substrate for about 20 minutes. Next, La
CoOThreeInject the powder into the plasma in the torch 2 and
Then, the surface was liquefied and sprayed on the substrate 20 for 3 minutes. Since
As a result of the above process, as shown in FIG.TwoBasis
On the surface of the plate 30, a NiO film (porous) 31 and a YSZ film (fine
(Dense film) 32, LaCoOThreeA membrane (porous) 33 is formed
As a result, a good multilayer structure film was obtained. This film is formed by NiO
The film 31 is a negative electrode, LaCoOThreeFuel with membrane 33 as positive electrode
Form a battery. In this example, the raw material for the YSZ film was used.
Alternatively, fine particles that can be evaporated may be used. (Example 2 of film formation ... Preparation of superconducting thin film using metal substrate)
Application to each powder supply unit 8, 9, 10, etc. of FIG.
Has an average particle size of several μm or less for the purpose of pre-evaporating
YTwoOThree, BaCOThree, CuO powder and YSZ powder
Put the end and stainless steel (SUS) for the substrate
I was there. Similar to the above-mentioned fuel cell fabrication, 200 torr
After generating the oxygen heat plasma of
The substrate was placed on the substrate and heated to 600 ° C. Plas
After the mass stabilizes, about 50 mg of YSZ fine particles per minute
For 10 minutes into the plasma, thereby
A YSZ film was formed on the substrate 20. Immediately after that, the substrate temperature
Is increased to about 650 ° C., and Y: Ba: Cu = 1: 2:
3 or so that the formed film has such a composition
Film formation was performed for 10 minutes while changing the supply amount of each powder. Product
As shown in FIG. 3, the formed film has a stainless steel substrate 34.
Even when used, the YSZ film 35 was used as a buffer material,
A good quality superconducting thin film 36 was obtained in the wn state. Also formed
The YSZ film 35 thus formed is a good quality evaporated film having a film thickness of about several μm.
However, if film quality is not a problem, powder
Set the particle size to 50 μm (when high-frequency plate output is 50 kW)
It is possible to form a highly economical sprayed coating by simply
It Furthermore, as a modification of the above-mentioned film formation, composition controlled superconductivity is used.
Even if the conducting powder and YSZ powder or one of them is used as the reaction gas
good. (Example 3 of film formation ... TiThreeOf Al-SiC composite material film
Application to fabrication) For the purpose of thermal spraying in advance on the powder supply part of FIG.
Ti having an average particle size of about 60 μmThreeAl powder
Is added, and SiCl is used as a reaction gas.FourWhen
CHFour Prepared the gas. Production of the fuel cell of the first specific example
1 minute from the plasma gas inlet tube in the same manner as
50 liters of argon gas (Ar) and 10 liters per minute
Hydrogen gas (HTwo) Is supplied to the torch 2 and the chamber 1
The internal pressure is 200 torr and the high frequency output is 50 kW.
A thermal plasma of gon and hydrogen was generated. Then Ti
ThreeAl powder and SiClFourAnd CH4 on top of torch
The thermal plasma is injected simultaneously from the introduction end provided in
After passing through the molybdenum substrate located directly under the torch
A film was formed. As a result, as shown in FIG.
On the surface of the substrate 37, in a single layer of TiThreeMelting of Al
A composite material containing solid 38 and vapor-deposited phase 39 of SiC is produced at the same time.
Was able to be manufactured.

【0009】以上本発明の実施例を説明したが、本発明
はこの実施例に限定されない。例えば、成膜材料をプラ
ズマの上部から注入したが、プラズマに注入する方法と
して、高周波誘導コイル(ワークコイル)間あるいはプ
ラズマフレーム下部から注入しても良く、多層皮膜の目
的に応じて、各箇所から個別あるいは同時に注入しても
良い。また、プラズマ発生装置としては、高周波プラズ
マのみならず、直流プラズマを併合したハイブリッドプ
ラズマ装置を用いても良い。更に、本発明に基づく装置
は、上記した3つの例の成膜に限定されず、種々の多元
系を含む多層構造膜形成に用いることができる。
Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, the film forming material is injected from the upper part of the plasma, but as a method of injecting it into the plasma, it may be injected between the high frequency induction coils (work coils) or from the lower part of the plasma frame. It may be injected individually or simultaneously. As the plasma generator, not only high-frequency plasma but also hybrid plasma device in which direct current plasma is combined may be used. Further, the apparatus according to the present invention is not limited to the film formation of the above three examples, and can be used for forming a multi-layer structure film including various multi-component systems.

【0010】[0010]

【発明の効果】以上説明したように、本発明に基づく熱
プラズマ成膜方法は、チャンバー内に熱プラズマを発生
させるための熱プラズマ発生工程と、該チャンバー内の
プラズマ中に粉末物質を供給するための複数の粉末を供
給する工程と、該チャンバー内のプラズマ中に反応ガス
を供給するための反応ガスを供給する工程と、複数の粉
末供給手段からチャンバー内への粉末の供給と反応ガス
供給手段からチャンバー内への反応ガスの供給とを制御
する制御工程とを備え、該チャンバー内に設けられる基
板上に粉末物質の溶射膜の成膜と気相成膜を同時あるい
は個々に行い得るように構成したので、任意に、多元系
を含む多層皮膜の形成や、蒸着相と溶融凝固相を同時に
含む複合材料膜を単一のプロセスで連続的に形成させる
ことができるため、溶射装置からCVD装置へ膜を移動
する必要が無く、皮膜層間にほこりや不純物が入り込む
ことが無く高純度の複合材料膜等を得ることができる。
As described above, in the thermal plasma film forming method according to the present invention, a thermal plasma generating step for generating thermal plasma in the chamber and a powder substance is supplied into the plasma in the chamber. A plurality of powders for supplying the powder, a step of supplying a reactive gas for supplying a reactive gas into the plasma in the chamber, and a plurality of powder supplying means for supplying the powder into the chamber and supplying the reactive gas. A control step for controlling the supply of the reaction gas from the means into the chamber, so that the sprayed film of the powder substance and the vapor phase film can be formed simultaneously or individually on the substrate provided in the chamber. Since it is configured as described above, it is possible to form a multi-layered film containing a multi-component system and to continuously form a composite material film containing a vapor deposition phase and a melt solidification phase simultaneously in a single process. Spraying apparatus it is not necessary to move the film to the CVD apparatus from can be dust and impurities entering the film layers without obtaining high purity composite film.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法を実施するための成膜装置の構成
例を示す図である。
FIG. 1 is a diagram showing a configuration example of a film forming apparatus for carrying out the method of the present invention.

【図2】 本発明に基づく装置を用いて作製された高温
固体電解質型燃料電池を示す図である。
FIG. 2 is a diagram showing a high temperature solid oxide fuel cell manufactured using the device according to the present invention.

【図3】 本発明に基づく装置を用いて作製された超伝
導薄膜を示す図である。
FIG. 3 shows a superconducting thin film produced using the device according to the invention.

【図4】 本発明に基づく装置を用いて作製された複合
材料膜を示す図である。
FIG. 4 shows a composite material film made using the device according to the invention.

【符号の説明】[Explanation of symbols]

1…チャンバー 2…プラズマトーチ 3…高周波電源 4…ワークコイル 5…導入端 6,13…プローブ 7…管 8,9,10…粉末供
給部 11…反応ガス源 12,15,18…弁 14…プラズマガス源 16…排気管 17…フィルター 19…基板ホルダー 20…基板 21…制御装置
DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Plasma torch 3 ... High frequency power supply 4 ... Work coil 5 ... Introduction end 6,13 ... Probe 7 ... Tubes 8, 9, 10 ... Powder supply part 11 ... Reactive gas source 12, 15, 18 ... Valve 14 ... Plasma gas source 16 ... Exhaust pipe 17 ... Filter 19 ... Substrate holder 20 ... Substrate 21 ... Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チャンバー内に高周波誘導熱プラズマを
発生させる熱プラズマ発生工程と、該チャンバー内のプ
ラズマ中に粉末物質を供給するための複数の粉末を供給
する工程と、該チャンバー内のプラズマ中に反応ガスを
供給するための反応ガスを供給する工程と、複数の粉末
供給手段からチャンバー内への粉末の供給と反応ガス供
給手段からチャンバー内への反応ガスの供給とを制御す
る制御工程とを備えており、粉末粒径や反応ガス濃度を
目的に応じて制御させることによって、該チャンバー内
に設けられる基板上に粉末物質の溶射膜の成膜と気相成
膜を同時あるいは個々に単一のプロセスで連続的に形成
させるようにしたことを特徴とする熱プラズマ成膜方
法。
1. A thermal plasma generating step of generating a high frequency induction thermal plasma in a chamber, a step of supplying a plurality of powders for supplying a powder substance to the plasma in the chamber, and a plasma in the chamber. A step of supplying a reaction gas for supplying a reaction gas to the chamber, and a control step of controlling the supply of the powder from the plurality of powder supply means into the chamber and the supply of the reaction gas from the reaction gas supply means into the chamber. By controlling the powder particle size and the reaction gas concentration according to the purpose, it is possible to simultaneously or individually form a sprayed film of a powder substance and a vapor phase film on a substrate provided in the chamber. A thermal plasma film forming method, characterized in that the film is formed continuously by one process.
JP3071615A 1991-04-04 1991-04-04 Thermal plasma deposition method Expired - Fee Related JP2975145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071615A JP2975145B2 (en) 1991-04-04 1991-04-04 Thermal plasma deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071615A JP2975145B2 (en) 1991-04-04 1991-04-04 Thermal plasma deposition method

Publications (2)

Publication Number Publication Date
JPH05311462A true JPH05311462A (en) 1993-11-22
JP2975145B2 JP2975145B2 (en) 1999-11-10

Family

ID=13465731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071615A Expired - Fee Related JP2975145B2 (en) 1991-04-04 1991-04-04 Thermal plasma deposition method

Country Status (1)

Country Link
JP (1) JP2975145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132812A (en) * 1997-04-22 2000-10-17 Schwarzkopf Technologies Corp. Process for making an anode for X-ray tubes
KR101301967B1 (en) * 2011-05-20 2013-08-30 한국에너지기술연구원 Plasma Nano-powder Synthesizing and Coating Device and Method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132812A (en) * 1997-04-22 2000-10-17 Schwarzkopf Technologies Corp. Process for making an anode for X-ray tubes
KR101301967B1 (en) * 2011-05-20 2013-08-30 한국에너지기술연구원 Plasma Nano-powder Synthesizing and Coating Device and Method of the same

Also Published As

Publication number Publication date
JP2975145B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
RU2602210C2 (en) Method of plasma sputtering for production of ion-conducting membrane
JP2975145B2 (en) Thermal plasma deposition method
JPH03287754A (en) Formation of oxide film by means of combined plasma
Wang et al. Plasma deposition of La0. 8Sr0. 2MnO3 thin films on yttria-stabilized zirconia from aerosol precursor
JPH0565633A (en) Process for producing thin film and apparatus therefor
Song et al. Preparation of Gd2O3 doped CeO2 thin films by oxy-acetylene combustion assisted aerosol-chemical vapor deposition technique on various substrates and zone model for microstructure
JP5378631B2 (en) Vapor growth crystal thin film manufacturing method
JPH0285370A (en) Manufacture of thin oxide film
JPH06206796A (en) Generator of raw material gas for cvd
JPH04107266A (en) Method and device for plasma-flash vapor deposition
JPH06224140A (en) Manufacture of silicon laminate
JP4549553B2 (en) Deposition system using thermal plasma
JPH02118075A (en) Production of oxide superconductor
JPS63151355A (en) Apparatus for preparing compound membrane
JPH0461336A (en) Film formation method and film formation device
JPH06208961A (en) Manufacture of silicon lamination body
JPH11261089A (en) Manufacture of solar battery
JPH03153597A (en) Device for vaporizing cvd raw material for production of oxide superconductor
JPH03287768A (en) Vaporizer for cvd material to produce oxide superconductor
JPH02270965A (en) Device and method for continuously supplying raw material for apparatus for producing oxide superconductor
JPH06208960A (en) Manufacture of silicon lamination body
JPS6376873A (en) Method for sticking thin film to base material
JPS61199068A (en) Method and apparatus for coating cylindrical conductor member with ceramic
JPH06196426A (en) Manufacture of silicon laminate
JPH06196425A (en) Manufacture of silicon laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824

LAPS Cancellation because of no payment of annual fees