JPH05308786A - Driving mechanism - Google Patents

Driving mechanism

Info

Publication number
JPH05308786A
JPH05308786A JP4110972A JP11097292A JPH05308786A JP H05308786 A JPH05308786 A JP H05308786A JP 4110972 A JP4110972 A JP 4110972A JP 11097292 A JP11097292 A JP 11097292A JP H05308786 A JPH05308786 A JP H05308786A
Authority
JP
Japan
Prior art keywords
cantilever
piece
moving body
driving
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4110972A
Other languages
Japanese (ja)
Inventor
Mitsuru Shingyouchi
充 新行内
Takeshi Takemoto
武 竹本
Tomoki Kato
知己 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4110972A priority Critical patent/JPH05308786A/en
Publication of JPH05308786A publication Critical patent/JPH05308786A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide a flat, small-size and highly efficient vibrating reed-type driving mechanism by thrusting up a driving piece installed at a free end of a cantilever against a moving body with vibration due to a resonance of the free end of the cantilever. CONSTITUTION:An ultrasonic motor from which a rotary movement is taken out is constituted of a stator 13 which is made by setting an end 12a of a flat slant piece 12, which will become a driving piece, on an upper surface of a free end 11a of each of the plurality of cantilevers 11 extending radially from a boss 10, a supporting section, and a rotor 14 which is pressure-welded to the end 12a of the slant piece 12 and which will become a moving body. When each piezoelectric element 15 is driven by a driving device at a primary motion, resonance frequency of the cantilever 11, the free end 11a of the cantilever 11 vibrates with a large displacement. In an outward the slant piece 12 installed at the free end 11a of the cantilever 11 is thrusted up against the rotor 14 and is bent in the inclined direction, rotating the rotor 14 in the bending direction. In an inward motion, on the other hand, the slant piece 12 is separated from the rotor 14. By repetition of this movement, a locus of the end 12a of the slant piece 12 is formed and this is the working of the ultrasonic motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PPC、ファクシミ
リ、プリンタなどのOA機器、カメラ、工作機械などの
分野で使用される駆動機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive mechanism used in the fields of OA equipment such as PPCs, facsimiles and printers, cameras, machine tools and the like.

【0002】[0002]

【従来の技術】近年、制御性、低回転での大トルクなど
の特徴で超音波モータが注目されてきている。
2. Description of the Related Art In recent years, ultrasonic motors have been attracting attention because of their characteristics such as controllability and large torque at low rotation.

【0003】超音波モータの作動原理は良く知られてい
るように、振動子が発生した超音波振動を摩擦力を介し
て一方向の運動に変換するものである。この運動変換は
通常楕円軌跡の振動による。
As is well known, the operating principle of an ultrasonic motor is to convert ultrasonic vibration generated by a vibrator into one-way motion via frictional force. This motion conversion is usually due to the vibration of an elliptical locus.

【0004】この楕円運動は一般に以下に示す方法によ
って実現されている。特開昭59−122385号公報
に示されたものは、振動体表面に発生させた縦波と横波
の合成された進行波により楕円運動を得ており、特開昭
61−121777号公報に示されたものは縦振動子と
ねじり振動子とにより楕円運動を得ている。また、一般
に「振動片型」と呼ばれるものは、図16に示すように
傾斜させて振動子1に取り付けた傾斜片2の先端2aを
移動体3に突き当てることを繰り返して楕円運動を得て
移動体3を移動させているが、この「振動片型」の超音
波モータは他の方法に比較して非常に効率の良いことが
知られている。
This elliptic motion is generally realized by the following method. The one disclosed in JP-A-59-122385 obtains an elliptic motion by a traveling wave that is a combination of a longitudinal wave and a transverse wave generated on the surface of a vibrating body, and is disclosed in JP-A-61-121777. The obtained one obtains an elliptic motion by a vertical oscillator and a torsion oscillator. In addition, what is generally called a "vibration piece type" obtains an elliptic motion by repeatedly abutting the tip 2a of the inclined piece 2 attached to the vibrator 1 with inclination as shown in FIG. Although the moving body 3 is moved, it is known that this "vibration piece type" ultrasonic motor is very efficient as compared with other methods.

【0005】そこで、「振動片型」の超音波モータを幾
つか示す。
Therefore, some "vibration piece type" ultrasonic motors are shown.

【0006】図17に示されたものは典型的なもので、
図中ボルトにより締め付けられている振動子4,5、圧
電素子6,7はランジュバン型の振動子で、前記振動子
4の端面に複数の傾斜片8が取り付けられ、ロータ9が
その傾斜片8の先端8aに圧着されるように配設されて
いる。このような構成で、圧電素子6,7を駆動すると
振動子4,5の端面が面に垂直に振動し傾斜片8がロー
タ9を突っつきロータ9は駆動される。
The one shown in FIG. 17 is typical,
The vibrators 4 and 5 and the piezoelectric elements 6 and 7 tightened by bolts in the figure are Langevin type vibrators, and a plurality of inclined pieces 8 are attached to the end surface of the vibrator 4, and the rotor 9 includes the inclined pieces 8. It is arranged so as to be crimped to the tip 8a of the. With such a configuration, when the piezoelectric elements 6 and 7 are driven, the end faces of the vibrators 4 and 5 vibrate perpendicularly to the surface, the inclined piece 8 hits the rotor 9, and the rotor 9 is driven.

【0007】つぎに、特開昭60−62880号公報に
示されたものは「振動片型」の欠点である傾斜片と傾斜
片の突き当たる面の摩耗を減少させるための提案で、傾
斜片に替わって回転運動を含んだ面を突き当てている。
Next, the one disclosed in Japanese Patent Laid-Open No. 60-62880 is a proposal for reducing the wear of the slanting piece and the contact surface of the slanting piece, which is a drawback of the "vibrating piece type". Instead, the surface including the rotational movement is abutted.

【0008】つづいて、特開昭59−30912号公報
に示されたものは回転方向を変えることのできる提案
で、回転方向を違えた2組の扁平な超音波モータを同軸
上に設けている。
Next, the one disclosed in Japanese Patent Laid-Open No. 59-30912 is a proposal that can change the rotation direction, and two sets of flat ultrasonic motors having different rotation directions are coaxially provided. ..

【0009】[0009]

【発明が解決しようとする課題】ここで、「振動片型」
の超音波モータは傾斜片を大振幅を持って突き当てなけ
れば傾斜片のたわみによる楕円運動が発生しないため、
図17に示されたものはランジュバン型の振動子を使用
しているが、このランジュバン型の振動子は縦波の共振
を使うために原理的に振動方向に厚みが必要であり、扁
平小型化には無理がある。
[Problems to be Solved by the Invention] Here, "vibration piece type"
In the ultrasonic motor of, since the elliptical motion due to the bending of the inclined piece does not occur unless the inclined piece is abutted with a large amplitude,
The one shown in FIG. 17 uses a Langevin-type oscillator, but this Langevin-type oscillator requires a thickness in the vibration direction in principle because it uses the resonance of a longitudinal wave. Is impossible.

【0010】また、特開昭60−62880号公報に示
されたものも基本的にランジュバン型と同じであるため
振動方向に厚みが必要であり、扁平小型化には無理があ
る。
Further, the one disclosed in Japanese Patent Laid-Open No. 60-62880 is basically the same as the Langevin type, so that it is necessary to have a thickness in the vibrating direction, and it is impossible to reduce the flatness and size.

【0011】また、特開昭59−30912号公報に示
されたものは扁平であるが大振幅で傾斜片をロータに突
き当てる方法が記述されておらずコンパクトに実現させ
るにはさらに考慮が必要である。
The method disclosed in Japanese Patent Laid-Open No. 59-30912 is flat, but a method of abutting the inclined piece with a large amplitude on the rotor is not described, and further consideration is required to realize it compactly. Is.

【0012】また、これらの超音波モータでは、振動子
の往運動時には傾斜片とロータは摩擦接触しているが、
復運動時には離れているため断続的な駆動となり特に高
負荷時に駆動効率の低下や回転の偏差が有る。
Further, in these ultrasonic motors, the inclined piece and the rotor are in friction contact with each other when the oscillator moves forward,
Since they are separated during the return movement, they are driven intermittently, and there is a decrease in drive efficiency and a deviation in rotation, especially when the load is high.

【0013】そのため、本発明は、扁平小型で高効率な
「振動片型」の駆動機構を提供することを目的とする。
Therefore, an object of the present invention is to provide a flat, compact and highly efficient "oscillating bar type" drive mechanism.

【0014】[0014]

【課題を解決するための手段】請求項1記載の発明で
は、一端を支持部に固定されて移動体の移動方向に沿わ
せて配設された複数の片持ち梁と、先端を前記移動体に
圧接され後端を前記片持ち梁の自由端に支持され前記移
動体の移動方向に傾けられた駆動片と、前記片持ち梁に
取り付けられた超音波振動子と、この超音波振動子を駆
動する駆動手段とよりなる駆動機構とした。
According to a first aspect of the present invention, a plurality of cantilever beams having one end fixed to a supporting portion and arranged along the moving direction of the moving body, and a tip end of the moving body are provided. A driving piece tilted in the moving direction of the movable body, the rear end of which is supported by the free end of the cantilever, and an ultrasonic vibrator attached to the cantilever; The driving mechanism is composed of driving means for driving.

【0015】請求項2記載の発明では、各超音波振動の
位相を適宜にずらして駆動する複数の駆動手段とした。
According to the second aspect of the present invention, a plurality of driving means are provided for driving by shifting the phase of each ultrasonic vibration appropriately.

【0016】請求項3記載の発明では、複数の片持ち梁
に取り付けられた圧電素子を一体に形成し、この圧電素
子の前記片持ち梁との取付け部の分極方向を変えた。
According to the third aspect of the invention, the piezoelectric elements attached to the plurality of cantilever beams are integrally formed, and the polarization direction of the attachment portion of the piezoelectric elements with the cantilever beam is changed.

【0017】[0017]

【作用】請求項1記載の発明によれば、駆動手段により
片持ち梁の一次共振周波数で超音波振動子を駆動する
と、片持ち梁の自由端は共振により振動するので、この
自由端に取り付けられた駆動片も振動する。この駆動片
は移動体に傾けて押しつけられているので、振動の往運
動時に移動体に突き上げるように押しつけられ傾き方向
に屈曲し移動体を移動方向に送り出す。また復運動時に
は駆動片は移動体より離れるが、移動体は自身の慣性に
より移動方向に移動しつづける。この繰返しによって移
動体は駆動される。
According to the invention described in claim 1, when the ultrasonic transducer is driven by the drive means at the primary resonance frequency of the cantilever, the free end of the cantilever vibrates due to resonance, so that the cantilever is attached to this free end. The driven piece also vibrates. Since the drive piece is pressed against the moving body while tilting, the driving piece is pressed so as to push up the moving body during the forward movement of the vibration, bends in the tilt direction, and sends out the moving body in the moving direction. Further, during the backward movement, the drive piece separates from the moving body, but the moving body continues to move in the moving direction due to its own inertia. The moving body is driven by this repetition.

【0018】請求項2記載の発明によれば、複数の駆動
手段により各超音波振動子を位相をずらして駆動する
と、各片持ち梁はそれぞれ位相を違えて振動するので、
各駆動片が移動体を駆動するタイミングが分散し、駆動
片が復運動している無駆動時間が全体として短くなる。
よって、無駆動時の移動体の逆移動や移動速度の低下が
少なくなり、移動体は高効率で滑らかに移動される。
According to the second aspect of the present invention, when the ultrasonic transducers are driven with the phases shifted by the plurality of driving means, the cantilevers vibrate with the phases different from each other.
The timings at which the driving pieces drive the moving body are dispersed, and the non-driving time during which the driving pieces are returning is shortened as a whole.
Therefore, the reverse movement of the moving body and the decrease in the moving speed during non-driving are reduced, and the moving body moves smoothly with high efficiency.

【0019】請求項3記載の発明によれば、複数の片持
ち梁に取り付けられた圧電素子を一体で形成したので、
片持ち梁への取り付けが簡単で配線も1組で済む、ま
た、一体で形成された圧電素子の片持ち梁との取付け部
の分極方向を変えているため、一方の傾斜片が移動体か
ら離れているときは他方の傾斜片が移動体を突いてお
り、傾斜片が復運動している無駆動時間が全体として短
くなる。よって、移動体は、高効率で滑らかに移動され
る。
According to the invention described in claim 3, since the piezoelectric elements attached to the plurality of cantilevers are integrally formed,
Mounting on a cantilever is easy and wiring is only one set. Also, since the polarization direction of the mounting part of the integrally formed piezoelectric element with the cantilever is changed, one tilted piece can be moved from the moving body. When they are separated, the other inclined piece is pushing the moving body, and the non-driving time during which the inclined piece is moving back is shortened as a whole. Therefore, the moving body is smoothly moved with high efficiency.

【0020】[0020]

【実施例】本発明の第一の実施例を図1ないし図6に基
づいて説明する。本実施例は回転運動を取り出す超音波
モータで、図1ないし図4に示すように支持部となるボ
ス10から放射状に伸びた複数の片持ち梁11の自由端
11aの上面に駆動片となる板状の傾斜片12を設けて
形成されたステータ13と、前記傾斜片12の先端12
aに圧接させた移動体となるロータ14とよりなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. This embodiment is an ultrasonic motor that takes out rotary motion. As shown in FIGS. 1 to 4, a driving piece is formed on the upper surface of the free ends 11a of a plurality of cantilevers 11 that extend radially from a boss 10 that serves as a support. A stator 13 formed by providing a plate-shaped inclined piece 12, and a tip 12 of the inclined piece 12
The rotor 14 is a moving body that is pressed against a.

【0021】このロータ14は下面外周に前記傾斜片1
2の先端12aと接触される摩擦部14aを有してお
り、また、中心に設けられた軸14bを前記ボス10に
通して回転自在にされている。また、前記ステータ13
はSK材より削り出され一体で形成されており、その際
前記傾斜片12は先端12aを前記ロータ14の回転方
向に進めて傾けられている。さらに、前記片持ち梁11
の前記ボス10付近の下面には超音波振動子としての圧
電素子15が貼付られている。
This rotor 14 has the inclined piece 1 on the outer periphery of the lower surface.
It has a friction portion 14a that comes into contact with the tip end 12a of the second shaft 12 and is rotatable by passing a shaft 14b provided at the center through the boss 10. In addition, the stator 13
Are formed integrally with each other by being cut out from the SK material, and in this case, the inclined piece 12 is inclined by advancing the tip 12a in the rotation direction of the rotor 14. Furthermore, the cantilever 11
A piezoelectric element 15 as an ultrasonic transducer is attached to the lower surface near the boss 10.

【0022】また、前記ステータ13と前記ロータ14
は図示しないケースに納められ図示しないバネ部材によ
って互いの圧接状態を保つようにされている。
Further, the stator 13 and the rotor 14
Are housed in a case (not shown) and kept in pressure contact with each other by a spring member (not shown).

【0023】このような構成において、図示しない駆動
手段により各圧電素子15を片持ち梁11の一次共振周
波数で駆動すると図5,6に示すように片持ち梁11の
自由端11aは大きな変位で振動する。図5に示した往
振動の際には片持ち梁11の自由端11aに取り付けら
れた傾斜片12はロータ14に突き上げるように押しつ
けられ図5(b)に示されたように傾斜片12の傾き方
向に屈曲しロータ14を屈曲方向に回転させる。また、
図6に示した複振動の際には傾斜片12はロータ14か
ら離れる。この繰返しによって得られる傾斜片12の先
端12aの軌跡は楕円となっており、即ち、「振動片
型」の超音波モータの作用になっている。このように本
実施例では効率の高い「振動片型」の超音波モータを扁
平小型にできる。
In such a structure, when each piezoelectric element 15 is driven by the primary resonance frequency of the cantilever 11 by the driving means (not shown), the free end 11a of the cantilever 11 is displaced greatly as shown in FIGS. Vibrate. At the time of the forward vibration shown in FIG. 5, the inclined piece 12 attached to the free end 11a of the cantilever 11 is pressed so as to push up the rotor 14, and the inclined piece 12 of the inclined piece 12 is pushed as shown in FIG. 5B. The rotor 14 is bent in the tilt direction to rotate the rotor 14 in the bending direction. Also,
During the double vibration shown in FIG. 6, the inclined piece 12 separates from the rotor 14. The locus of the tip 12a of the inclined piece 12 obtained by repeating this is an ellipse, that is, the action of an "oscillating piece type" ultrasonic motor. As described above, in this embodiment, the highly efficient “vibration piece type” ultrasonic motor can be made flat and small.

【0024】また、本実施例において、複数の駆動手段
により各圧電素子15を位相をずらして駆動すると、各
傾斜片12がロータ14を駆動するタイミングが分散
し、傾斜片12が復運動している無駆動時間が全体とし
て短くなり、無駆動時のロータ14の逆転や回転速度の
減少が少なくなり、高効率で滑らかな回転の超音波モー
タとなる。このとき、図7(a),(b)に示す12−
a,12−bの組を同じ位相で駆動して、常に同じ個数
の傾斜片12で駆動し、かつ、駆動している傾斜片12
が円周上に均等に分布するようにすると駆動力がバラン
ス良くロータ14に掛かりさらに安定した回転の超音波
モータとなる。
Further, in the present embodiment, when the piezoelectric elements 15 are driven by a plurality of driving means with the phases shifted, the timings at which the tilted pieces 12 drive the rotor 14 are dispersed, and the tilted pieces 12 move back. The non-driving time is shortened as a whole, the reverse rotation of the rotor 14 and the reduction of the rotation speed during non-driving are reduced, and the ultrasonic motor has a high efficiency and smooth rotation. At this time, 12- shown in FIGS.
A set of a and 12-b is driven in the same phase and is always driven by the same number of tilt pieces 12, and the tilt pieces 12 are being driven.
Are distributed evenly on the circumference, the driving force is applied to the rotor 14 in a well-balanced manner, and the ultrasonic motor becomes a more stable rotation.

【0025】つづいて、本発明の第二の実施例を図8お
よび図9に基づいて説明する。前記実施例で示した部分
と同一部分は同一符号を用いて示す(以下の実施例でも
同様とする)。本実施例では、前記実施例の圧電素子1
5に換えて図8に示す円盤状の圧電素子16がステータ
13に貼り付けられている(図9)。この圧電素子16
は円盤状の圧電素子に溝を切り込み片持ち梁11に対応
した各々の圧電素子16aが形成され、かつ、各々の圧
電素子16aの分極方向を圧電素子16a二つ毎に逆に
し+分極、−分極の数を同数とし、かつ、それぞれの分
極が円周上に均等に分布するようにされている。
Next, a second embodiment of the present invention will be described with reference to FIGS. 8 and 9. The same parts as those shown in the above-mentioned embodiments are designated by the same reference numerals (the same applies to the following embodiments). In this embodiment, the piezoelectric element 1 of the above embodiment is used.
Instead of 5, the disk-shaped piezoelectric element 16 shown in FIG. 8 is attached to the stator 13 (FIG. 9). This piezoelectric element 16
Is formed by cutting a groove in a disk-shaped piezoelectric element to form each piezoelectric element 16a corresponding to the cantilever 11, and reversing the polarization direction of each piezoelectric element 16a every two piezoelectric elements 16a + polarization,- The number of polarizations is the same, and the respective polarizations are evenly distributed on the circumference.

【0026】このような構成において、一つの駆動手段
で圧電素子16を駆動しても分極を違えた圧電素子は伸
縮方向が逆になるので、傾斜片12は二つ毎に振動の位
相を180度違えて振動し、一方の傾斜片12が復運動
してロータ14から離れているとき、もう一方の傾斜片
12は往運動しロータ14を駆動している。そのため、
ロータ14が駆動されていない時間が全体として短く、
効率が良く回転の滑らかな超音波モータとなる。さら
に、+分極、−分極の数を同数とし、かつ、それぞれの
分極が円周上に均等に分布されているので、常に同じ個
数の傾斜片12で駆動し、かつ、駆動している傾斜片1
2が円周上に均等に分布し、駆動力がバランス良くロー
タ14に掛かるのでより滑らかなものとなる。また、圧
電素子16は一体とされた構造のためステータへの接着
が一度で済み、さらに駆動手段への配線も一組で済み生
産時の組立て工程を簡略化できるものとなる。
In such a structure, even if the piezoelectric element 16 is driven by one driving means, the piezoelectric elements having different polarizations have the opposite expansion and contraction directions, so that the inclined pieces 12 each have a vibration phase of 180. When one of the inclined pieces 12 retreats and moves away from the rotor 14, the other inclined piece 12 moves forward and drives the rotor 14 by vibrating by mistake. for that reason,
The total time when the rotor 14 is not driven is short,
The ultrasonic motor is efficient and has smooth rotation. Furthermore, since the number of + polarizations and the number of −polarizations are the same and the respective polarizations are evenly distributed on the circumference, the same number of inclined pieces 12 are always driven, and the inclined pieces that are being driven are always the same. 1
2 are evenly distributed on the circumference, and the driving force is applied to the rotor 14 in a well-balanced manner, resulting in smoother driving. Further, since the piezoelectric element 16 has an integrated structure, it only needs to be bonded to the stator once and the wiring to the driving means can be completed in one set, so that the assembly process at the time of production can be simplified.

【0027】また、いうまでもなく複数の駆動手段とす
れば、さらに細かい位相分割(駆動手段の数の2倍)が
でき、より効率が高く滑らかな回転のものとなる。
Needless to say, if a plurality of driving means are used, finer phase division (twice the number of driving means) can be performed, resulting in more efficient and smooth rotation.

【0028】つぎに、本発明の第三の実施例を図10お
よび図11に基づいて説明する。本実施例は直線運動を
取り出す超音波リニアモータで、断面矩形で棒状の支持
部17に設けられた複数の片持ち梁18の自由端18a
の上面に傾斜片12を設けステータ19が形成され、こ
のステータ19の傾斜片12の先端12aに断面矩形の
移動体20が圧接されている。また、前記片持ち梁18
に取り付けられた傾斜片12は先端12aを前記移動体
20の進行方向に進めて傾けられている。さらに、前記
ステータ19の片持ち梁18の下面には超音波振動子と
しての圧電素子21が貼り付けられている。
Next, a third embodiment of the present invention will be described with reference to FIGS. This embodiment is an ultrasonic linear motor that takes out linear motion, and has free ends 18a of a plurality of cantilevers 18 provided on a rod-shaped support portion 17 having a rectangular cross section.
An inclined piece 12 is provided on the upper surface of the stator 19 to form a stator 19, and a movable body 20 having a rectangular cross section is pressed against the tip 12a of the inclined piece 12 of the stator 19. In addition, the cantilever 18
The tilting piece 12 attached to is tilted by advancing the tip 12a in the traveling direction of the moving body 20. Further, a piezoelectric element 21 as an ultrasonic transducer is attached to the lower surface of the cantilever 18 of the stator 19.

【0029】このような構成において、図示しない駆動
手段により各圧電素子21を片持ち梁18の一次共振周
波数で駆動すると片持ち梁18が振動し、その自由端1
8aに設けられた傾斜片12は移動体20に突き上げる
ように押しつけられ傾斜片12の傾き方向に屈曲し移動
体20を屈曲方向に移動させる。この繰返しによって移
動体20は駆動される。
In such a structure, when each piezoelectric element 21 is driven by the primary resonance frequency of the cantilever 18 by a driving means (not shown), the cantilever 18 vibrates and its free end 1
The tilting piece 12 provided on 8a is pressed so as to push it up against the moving body 20 and bends in the tilting direction of the tilting piece 12 to move the moving body 20 in the bending direction. The mobile body 20 is driven by this repetition.

【0030】つぎに、本発明の第四の実施例を図12お
よび図13に基づいて説明する。本実施例は、移動体の
移動方向を可変できる超音波リニアモータで、前記実施
例のステータ19が振動片12の傾き方向を逆にするよ
うにして、かつ、互いの片持ち梁18を交互に交わるよ
うにして向いあわされている。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13. The present embodiment is an ultrasonic linear motor capable of changing the moving direction of a moving body, in which the stator 19 of the above-described embodiment reverses the inclination direction of the vibrating reed 12 and alternates the cantilevers 18. It's faced to intersect with.

【0031】このような構成において、向いあった二つ
のステータ19のどちらか片方を駆動すると、そのステ
ータ19の振動片12の傾き方向に移動体20は移動す
るので、駆動するステータを選択することによって移動
体20の移動方向を選択でき、移動体20の移動方向を
可変できるものとなる。
In such a structure, when either one of the two facing stators 19 is driven, the moving body 20 moves in the inclination direction of the vibrating reed 12 of the stator 19, so the stator to be driven should be selected. Thus, the moving direction of the moving body 20 can be selected, and the moving direction of the moving body 20 can be changed.

【0032】つぎに、本発明の第五の実施例を図14お
よび図15に基づいて説明する。本実施例は、第一の実
施例と同じく、回転運動を取り出す超音波モータである
が、回転方向を選択できるものである。基本的な構成
は、第一の実施例と同じであるが、図15に示すように
傾斜片12−αは右回転方向に傾けられ、傾斜片12−
βは左回転方向に傾けられている。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 14 and 15. Like the first embodiment, this embodiment is an ultrasonic motor that takes out rotary motion, but the rotation direction can be selected. The basic configuration is the same as that of the first embodiment, but as shown in FIG. 15, the inclined piece 12-α is inclined in the right rotation direction, and the inclined piece 12-α is inclined.
β is tilted counterclockwise.

【0033】このような構成において、傾斜片12−α
の組だけを駆動すればロータ14は右回転し、傾斜片1
2−βの組だけを駆動すればロータ14は左回転するの
で、回転方向を選択出来るものとなる。
In such a structure, the inclined piece 12-α
If only the set of
If only the 2-β pair is driven, the rotor 14 rotates counterclockwise, so that the rotation direction can be selected.

【0034】なお、これまでの実施例においては、一つ
の片持ち梁に一つの傾斜片しか設けていないがこれに限
るものではなく、一つの片持ち梁に複数の傾斜片を設け
ても良い。このようにすることによって傾斜片と傾斜片
の当る面の摩耗を小さくすることができる。
In the above embodiments, one cantilever is provided with only one inclined piece, but the invention is not limited to this, and one cantilever may be provided with a plurality of inclined pieces. .. By doing so, it is possible to reduce the wear of the inclined pieces and the surfaces contacting the inclined pieces.

【0035】[0035]

【発明の効果】請求項1記載の発明によれば、片持ち梁
の自由端の共振による振動でこの片持ち梁の自由端に取
り付けられた駆動片を移動体に突き当てるようにしたの
で、従来のランジュバン型の振動子を使用したものに比
べ扁平小型な「振動片型」の駆動機構となる。
According to the first aspect of the present invention, the drive piece attached to the free end of the cantilever is struck against the moving body by the vibration due to the resonance of the free end of the cantilever. Compared to the conventional Langevin-type vibrator, the drive mechanism is flat and small.

【0036】請求項2記載の発明によれば、各超音波振
動子の位相を適宜にずらして駆動できるので、各駆動片
が移動体を駆動するタイミングを分散させ、駆動片が復
運動している無駆動時間を全体として短くできる。よっ
て、無駆動時の移動体の逆移動や移動速度の低下が少な
くなり移動体を高効率で滑らかに移動できる駆動機構と
なる。
According to the second aspect of the invention, since the phase of each ultrasonic transducer can be appropriately shifted and driven, the timing at which each driving piece drives the moving body is dispersed, and the driving piece moves back. The non-driving time can be shortened as a whole. As a result, the reverse movement of the moving body and the decrease in the moving speed during non-driving are reduced, and the driving mechanism can smoothly move the moving body with high efficiency.

【0037】請求項3記載の発明によれば、複数の片持
ち梁に取り付けられた圧電素子を一体で形成したので、
片持ち梁への取り付けが簡単で配線も1組で済む。ま
た、一つの駆動手段による駆動でも、一体で形成した圧
電素子の片持ち梁との取付け部の分極方向を変えている
ので、一方の駆動片が移動体から離れているときは他方
の駆動片が移動体を突くようになり、駆動片が復運動し
ている無駆動時間を全体として短くできる。よって、移
動体を高効率で滑らかに移動できかつ、コストのかから
ない駆動機構となる。
According to the third aspect of the invention, since the piezoelectric elements attached to the plurality of cantilever beams are integrally formed,
It can be easily attached to a cantilever and requires only one set of wiring. Further, even when driven by one driving means, the polarization direction of the mounting portion of the integrally formed piezoelectric element with the cantilever is changed, so when one driving piece is separated from the moving body, the other driving piece is driven. Can poke the moving body, and the non-driving time during which the driving piece is returning can be shortened as a whole. Therefore, the driving mechanism can move the moving body smoothly with high efficiency and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す側断面図である。FIG. 1 is a side sectional view showing a first embodiment of the present invention.

【図2】ステータを示す平面図である。FIG. 2 is a plan view showing a stator.

【図3】ステータを示す側断面図である。FIG. 3 is a side sectional view showing a stator.

【図4】図3矢印A方向から見た傾斜片の拡大図であ
る。
FIG. 4 is an enlarged view of the inclined piece viewed from the direction of arrow A in FIG.

【図5】片持ち梁の振動の往運動を示す説明図である。FIG. 5 is an explanatory diagram showing a forward movement of vibration of the cantilever.

【図6】片持ち梁の振動の復運動を示す説明図である。FIG. 6 is an explanatory diagram showing a returning motion of vibration of the cantilever.

【図7】片持ち梁の駆動分布を示す説明図である。FIG. 7 is an explanatory diagram showing a drive distribution of a cantilever.

【図8】本発明の第二の実施例の圧電素子を示すもので
(a)は平面図(b)は側断面図である。
FIG. 8 shows a piezoelectric element of a second embodiment of the present invention, (a) is a plan view and (b) is a side sectional view.

【図9】圧電素子を貼り付けられたステータを示す平面
図である。
FIG. 9 is a plan view showing a stator to which a piezoelectric element is attached.

【図10】本発明の第三の実施例のステータを示す平面
図である。
FIG. 10 is a plan view showing a stator according to a third embodiment of the present invention.

【図11】ステータと移動体を示す側面図である。FIG. 11 is a side view showing a stator and a moving body.

【図12】本発明の第四の実施例のステータを示す平面
図である。
FIG. 12 is a plan view showing a stator according to a fourth embodiment of the present invention.

【図13】傾斜片を示し、(a)は図12矢印A方向か
ら見た拡大図で、(b)は図12矢印B方向から見た拡
大図である。
13A and 13B show an inclined piece, FIG. 13A is an enlarged view seen from the direction of arrow A in FIG. 12, and FIG. 13B is an enlarged view seen from the direction of arrow B in FIG.

【図14】本発明の第五の実施例のステータを示す平面
図である。
FIG. 14 is a plan view showing a stator according to a fifth embodiment of the present invention.

【図15】傾斜片を示し、(a)は図14矢印A方向か
ら見た拡大図で、(b)は図14矢印B方向から見た拡
大図である。
15A and 15B show an inclined piece, FIG. 15A is an enlarged view seen from the direction of arrow A in FIG. 14, and FIG. 15B is an enlarged view seen from the direction of arrow B in FIG.

【図16】「振動片型」の超音波モータの動作原理を示
した説明図である。
FIG. 16 is an explanatory diagram showing an operating principle of a “vibration piece type” ultrasonic motor.

【図17】「振動片型」の超音波モータの典型例を示す
側面図である。
FIG. 17 is a side view showing a typical example of a “vibration piece type” ultrasonic motor.

【符号の説明】[Explanation of symbols]

10 支持部 11 片持ち梁 11a 自由端 12 駆動片 14 移動体 15 超音波振動子 16 圧電素子 17 支持部 18 片持ち梁 18a 自由端 20 移動体 21 圧電素子 DESCRIPTION OF SYMBOLS 10 Support part 11 Cantilever 11a Free end 12 Driving piece 14 Moving body 15 Ultrasonic transducer 16 Piezoelectric element 17 Support part 18 Cantilever 18a Free end 20 Moving body 21 Piezoelectric element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一端を支持部に固定されて移動体の移動
方向に沿わせて配設された複数の片持ち梁と、先端を前
記移動体に圧接され後端を前記片持ち梁の自由端に支持
されて前記移動体の移動方向に傾けられた駆動片と、前
記片持ち梁に取り付けられた超音波振動子と、この超音
波振動子を駆動する駆動手段とよりなることを特徴とし
た駆動機構。
1. A plurality of cantilever beams, one end of which is fixed to a supporting portion and arranged along a moving direction of a moving body, and a front end of which is pressed against the moving body and a rear end of which is free of the cantilever beam. A driving piece supported at an end and inclined in the moving direction of the moving body; an ultrasonic transducer attached to the cantilever; and driving means for driving the ultrasonic transducer. Drive mechanism.
【請求項2】 各超音波振動子の位相を適宜にずらして
駆動する複数の駆動手段としたこを特徴とする請求項1
記載の駆動機構
2. A plurality of driving means for driving by shifting the phase of each ultrasonic transducer appropriately.
Drive mechanism described
【請求項3】 複数の片持ち梁に取り付けられた圧電素
子を一体に形成し、この圧電素子の前記片持ち梁との取
付け部の分極方向を変えたことを特徴とする請求項1記
載の駆動機構。
3. A piezoelectric element attached to a plurality of cantilever beams is integrally formed, and a polarization direction of an attaching portion of the piezoelectric element to the cantilever beam is changed. Drive mechanism.
JP4110972A 1992-04-30 1992-04-30 Driving mechanism Pending JPH05308786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4110972A JPH05308786A (en) 1992-04-30 1992-04-30 Driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4110972A JPH05308786A (en) 1992-04-30 1992-04-30 Driving mechanism

Publications (1)

Publication Number Publication Date
JPH05308786A true JPH05308786A (en) 1993-11-19

Family

ID=14549169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4110972A Pending JPH05308786A (en) 1992-04-30 1992-04-30 Driving mechanism

Country Status (1)

Country Link
JP (1) JPH05308786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078847B2 (en) 1998-12-21 2006-07-18 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2014233191A (en) * 2013-05-30 2014-12-11 キヤノン株式会社 Vibration type actuator and optical equipment
CN117949516A (en) * 2024-03-22 2024-04-30 山西天和盛环境检测股份有限公司 Water body detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078847B2 (en) 1998-12-21 2006-07-18 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
US7253552B2 (en) 1998-12-21 2007-08-07 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2014233191A (en) * 2013-05-30 2014-12-11 キヤノン株式会社 Vibration type actuator and optical equipment
CN117949516A (en) * 2024-03-22 2024-04-30 山西天和盛环境检测股份有限公司 Water body detection device

Similar Documents

Publication Publication Date Title
EP0308970B1 (en) Piezoelectric motor
JPH0117354B2 (en)
JP2632811B2 (en) Vibration drive motor
JPH0117353B2 (en)
JPH05308786A (en) Driving mechanism
JP3566711B2 (en) Vibration wave drive
Ueha Present state of the art of ultrasonic motors
JPS59185180A (en) Supersonic motor
JP2975072B2 (en) Actuator driving method and ultrasonic actuator realizing this driving method
JP2605121B2 (en) Ultrasonic vibrator and ultrasonic motor using the same
JPH0552137B2 (en)
KR100478516B1 (en) Micro-stepping moter using piezoelectric torsional actuator
JP2971971B2 (en) Ultrasonic actuator
JPH02188168A (en) Ultrasonic linear motor
JP3492163B2 (en) Piezo actuator
JPH04331478A (en) Driving mechanism
JP2625653B2 (en) Vibration wave motor
JPH0479236B2 (en)
JPS63110973A (en) Piezoelectric driver
JPH05122951A (en) Driving mechanism
JPH06261565A (en) Vibrating actuator
JPS63214381A (en) Ultrasonic vibrator and drive control method thereof
JPH0467785A (en) Ultrasonic actuator
JPH06210244A (en) Ultrasonic vibrator and ultrasonic actuator
JPH05111268A (en) Piezoelectric actuator