JPH05307911A - High dielectric constant composite material - Google Patents

High dielectric constant composite material

Info

Publication number
JPH05307911A
JPH05307911A JP11157692A JP11157692A JPH05307911A JP H05307911 A JPH05307911 A JP H05307911A JP 11157692 A JP11157692 A JP 11157692A JP 11157692 A JP11157692 A JP 11157692A JP H05307911 A JPH05307911 A JP H05307911A
Authority
JP
Japan
Prior art keywords
dielectric constant
high dielectric
powder
composite material
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11157692A
Other languages
Japanese (ja)
Inventor
Tadashi Harada
正 原田
Kenji Yamazaki
健二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP11157692A priority Critical patent/JPH05307911A/en
Publication of JPH05307911A publication Critical patent/JPH05307911A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high dielectric constant in the condition that a mixing rate of a high dielectric constant powder to an organic high molecular compound material is low and excellent formability and workability are maintained. CONSTITUTION:A high dielectric constant composite material 1 is obtained by uniformly mixing a high dielectric constant power 2 to each particle of which a metal coating 3 is applied and which occupies 5 to 10 percent in volume with an organic high molecular compound material 4 which occupies 80 to 95 percent in volume, and after forming the mixture, hardening the mixture under the hardening temperature of the organic high molecular compound material 4. Powder having a predetermined particle distribution by pulverizing a ceramic sintered body is used as the high dielectric constant powder 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に成形性・加工性に
優れた高誘電率複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high dielectric constant composite material which is particularly excellent in moldability and workability.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】コンデ
ンサ等に使用される従来の高誘電率材料は、セラミック
粉末を成形後焼成して得たセラミック焼結体であり、そ
の寸法、形状は成形法による制約を受け、又焼結体は高
硬度で脆性であるため、自由な加工は困難であり、任意
の形状や複雑な形状を得ることが必ずしも容易ではなか
った。
2. Description of the Related Art A conventional high dielectric constant material used for capacitors and the like is a ceramic sintered body obtained by molding and firing ceramic powder, and its size and shape are molded. Since the sintered body is restricted by the method and the sintered body has high hardness and brittleness, it is difficult to perform free processing, and it is not always easy to obtain an arbitrary shape or a complicated shape.

【0003】これを解決するため、高誘電率のセラミッ
ク粉末を有機高分子材料に分散させることによる成形
性,加工性に優れた高誘電率複合材料が考えられた。し
かし、誘電率を上げるためにはセラミック粉末の混合量
を多くしなければならず、その結果、成形性,加工性が
悪くなるため、混合できる量に限界がある。このため、
優れた成形性,加工性を保ちながら高い誘電率を有する
材料を得るのは困難であった。
In order to solve this problem, a high dielectric constant composite material having excellent moldability and processability by dispersing a high dielectric constant ceramic powder in an organic polymer material has been considered. However, in order to increase the dielectric constant, it is necessary to increase the mixing amount of the ceramic powder, and as a result, the formability and workability deteriorate, so there is a limit to the amount that can be mixed. For this reason,
It was difficult to obtain a material with a high dielectric constant while maintaining excellent formability and workability.

【0004】本発明はこのような従来の問題点を解決す
るもので、セラミック粉末のような高誘電率粉末の有機
高分子材料に対する混合率が少なく、優れた成形性,加
工性が維持された状態で従来よりも高い誘電率を有する
複合材料を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. The mixing ratio of a high dielectric constant powder such as ceramic powder to an organic polymer material is small, and excellent moldability and workability are maintained. It is an object of the present invention to provide a composite material having a higher dielectric constant than conventional in the state.

【0005】[0005]

【課題を解決するための手段】この発明の高誘電率複合
材料は、5〜20体積%の金属被覆を施した高誘電率粉
末と、95〜80体積%の有機高分子材料とを均一に混
合し、成形後、前記有機高分子材料の硬化温度条件で硬
化させて得られる。前記高誘電率粉末として、セラミッ
ク焼結体を粉砕して所定の粒度分布とした粉体を用いる
ことができる。
The high dielectric constant composite material of the present invention uniformly comprises a high dielectric constant powder having a metal coating of 5 to 20% by volume and an organic polymer material of 95 to 80% by volume. It is obtained by mixing, molding, and curing under the curing temperature condition of the organic polymer material. As the high-dielectric-constant powder, it is possible to use a powder obtained by pulverizing a ceramic sintered body to have a predetermined particle size distribution.

【0006】[0006]

【実施例】本発明の実施例を図1,図2に基ずき説明す
る。この実施例においては、高誘電率粉体2としてチタ
ン酸バリウム(BaTiO3 )焼結体のようなセラミッ
ク粉末を粉砕後、10〜40μmの粒度分布とし、これ
に平均1μm厚のNiめっきのような金属被覆3を施し
た粉末を用いた。これを、エポキシ樹脂のような有機高
分子材料4に均一に分散させ、有機高分子材料4の硬化
温度(本実施例で用いたエポキシ樹脂の場合は90℃)
で硬化させ、その後研摩して直径30mmの円板とし、最
後にこの両面に電極としてAgペーストを塗布して90
℃で焼付した。
Embodiments of the present invention will be described with reference to FIGS. In this example, a ceramic powder such as barium titanate (BaTiO 3 ) sintered body was crushed as the high dielectric constant powder 2 to obtain a particle size distribution of 10 to 40 μm, which was then plated with Ni having an average thickness of 1 μm. A powder coated with a different metal coating 3 was used. This is uniformly dispersed in an organic polymer material 4 such as an epoxy resin, and the curing temperature of the organic polymer material 4 (90 ° C. in the case of the epoxy resin used in this example)
Then, it is hardened by grinding and then polished to make a disk with a diameter of 30 mm.
It was baked at ℃.

【0007】このようにして高誘電率粉末の混合率を種
々変えて作成した試料で測定された誘電率εと誘電損失
tanδの各測定値を図2に示す。また本発明のこれら試
料と、高誘電率粉末2として従来例のように金属被覆を
施さないBaTiO3 粉を用いて同様に作成した試料と
で測定されたε,tan δの前記混合率に対する変化特性
を示したのが図1Bである。なお図1Bの測定は1MHz
で行っているが、測定周波数10kHz 〜10MHz におい
ても、ほぼ同様のデータが得られる。
Dielectric constant ε and dielectric loss measured on the samples prepared by changing the mixing ratio of the high dielectric constant powder in this way
Each measured value of tan δ is shown in FIG. Further, changes in ε and tan δ with respect to the mixing ratio measured with these samples of the present invention and samples similarly prepared by using, as the high-dielectric-constant powder 2, BaTiO 3 powder without metal coating as in the conventional example. The characteristics are shown in FIG. 1B. The measurement in Fig. 1B is 1MHz.
However, almost the same data can be obtained even at the measurement frequency of 10 kHz to 10 MHz.

【0008】図1Bに示したように、高誘電率粉末とし
て金属被覆を施さないBaTiO3粉を用いた従来例に
比べて本実施例では同じ高誘電率粉末の混合量でも高い
誘電率が得られる。しかし、金属被覆を施した高誘電率
粉末が過剰に混合されるとtan δが増大し、絶縁抵抗が
低下する傾向があり、その量が25体積%以上になると
短絡する。すなわち金属被覆を施した高誘電率粉末の混
合量は20体積%以下が望ましい。
As shown in FIG. 1B, in this embodiment, a high dielectric constant can be obtained with the same amount of the high dielectric constant powder as compared with the conventional example using BaTiO 3 powder without metal coating as the high dielectric constant powder. Be done. However, when the metal-coated high-dielectric-constant powder is excessively mixed, tan δ tends to increase and the insulation resistance tends to decrease. When the amount becomes 25% by volume or more, a short circuit occurs. That is, the mixing amount of the high dielectric constant powder coated with metal is preferably 20% by volume or less.

【0009】また、金属被覆を施した高誘電率粉末の混
合量が5体積%以下では、金属被覆を施さない高誘電率
粉末を用いた従来例と比較したとき、金属被覆の効果が
ほとんど認められない。すなわち金属被覆を施した高誘
電率粉末の混合量は、5体積%以上であることが望まし
い。以上より、金属被覆を施した高誘電率粉末の混合量
を5〜20体積%と限定するものである。
When the amount of the high dielectric constant powder coated with a metal is 5% by volume or less, the effect of the metal coating is almost recognized when compared with the conventional example using the high dielectric constant powder not coated with a metal. I can't. That is, the mixing amount of the high dielectric constant powder coated with metal is preferably 5% by volume or more. From the above, the mixing amount of the high dielectric constant powder coated with metal is limited to 5 to 20% by volume.

【0010】本発明の高誘電率複合材料が従来例に比べ
高い誘電率を示すのは次の理由によるものと考えられ
る。まずひとつの理由は、高分子材料中に分散された金
属被覆膜が高分子材料に対する内部電極として作用した
ことが考えられる。本実施例では、図3に示したような
Ag電極6を付与した円板状の複合材料(試料)5の静
電容量を測定することにより、誘電率εを求めている。
試料の誘電率εと静電容量Cとの間には次の関係があ
る。
The reason why the high dielectric constant composite material of the present invention exhibits a higher dielectric constant than the conventional example is considered to be as follows. One reason is that the metal coating film dispersed in the polymer material acted as an internal electrode for the polymer material. In this embodiment, the dielectric constant ε is obtained by measuring the capacitance of the disk-shaped composite material (sample) 5 provided with the Ag electrode 6 as shown in FIG.
There is the following relationship between the dielectric constant ε of the sample and the capacitance C.

【0011】 C=ε0 ・ε・S/d ・・・・・・(1) ただし、ε0 :真空の誘電率、S:電極面積(S=π・
r2)、r:電極の半径、d:試料の厚さである。金属被
覆膜の一部同士および金属被覆膜の一部とAg電極とが
接触すると、実質的な電極面積Sが増大し、試料厚さd
が減少したのと同じような効果があらわれる。すなわち
セラミック粉末のεが有機高分子材料のεより大きいと
言う効果を全く考慮しなくても測定される静電容量は増
大し、(1)式から求められる試料の誘電率も増大する
と考えられる。このことは比較例としてエポキシ樹脂に
均一にCu粉末を分散させた複合材料を作製し、本実施
例の複合材料と同様の方法で誘電率を求めることにより
検証された。比較例の測定結果も前述の図1Bに示し
た。
C = ε 0 · ε · S / d (1) where ε 0 : dielectric constant of vacuum, S: electrode area (S = π ·
r 2 ), r: radius of electrode, d: thickness of sample. When a part of the metal coating film and a part of the metal coating film come into contact with the Ag electrode, the substantial electrode area S increases and the sample thickness d
It has the same effect as the decrease of. That is, it is considered that the capacitance to be measured is increased and the dielectric constant of the sample obtained from the equation (1) is increased without considering the effect that ε of the ceramic powder is larger than ε of the organic polymer material. . This was verified by producing a composite material in which Cu powder was uniformly dispersed in an epoxy resin as a comparative example, and determining the dielectric constant by the same method as the composite material of this example. The measurement results of the comparative example are also shown in FIG. 1B described above.

【0012】なお、図1Bで比較例の比誘電率と従来例
の比誘電率の上昇傾向がほとんど一致しているが、従来
例の場合は内部電極が存在しないため誘電率の上昇は、
比較例とは別の理由で説明される。すなわち、従来例の
誘電率が高誘電率粉末の混合率の増加に応じて増加する
特性は、一般に知られている次の経験式によく一致して
いる。
In FIG. 1B, the relative permittivity of the comparative example and the increasing tendency of the relative permittivity of the conventional example almost coincide with each other. However, in the conventional example, since the internal electrodes are not present, the increase of the permittivity is:
It will be explained for a reason different from that of the comparative example. That is, the characteristic that the dielectric constant of the conventional example increases as the mixing ratio of the high-dielectric-constant powder increases is in good agreement with the following generally known empirical formula.

【0013】 lnε=x×lnεa +(1−x)×lnεb ・・・・・(2) ただしε:複合材料の誘電率、εa :高誘電率粉末の誘
電率、εb :高分子材料の誘電率、x:高誘電率粉末の
体積分率である。(2)式は、高誘電率粉末の誘電率ε
a が高分子材料の誘電率εb より大きいので、高誘電率
粉末の体積分率xが増加するに従って、複合材料の誘電
率εが増加することを表している。
[0013] lnε = x × lnε a + ( 1-x) × lnε b ····· (2) provided that epsilon: dielectric constant of the composite material, epsilon a: dielectric constant of the high dielectric constant powder, epsilon b: High Dielectric constant of molecular material, x: volume fraction of high dielectric constant powder. Equation (2) is the dielectric constant ε of the high dielectric constant powder.
Since a is larger than the dielectric constant ε b of the polymer material, it means that the dielectric constant ε of the composite material increases as the volume fraction x of the high dielectric constant powder increases.

【0014】図1Bからわかるように本実施例の誘電率
は単に金属粉末を分散させた比較例の誘電率よりも高
い。このことから、本発明材料が高い誘電率を示すさら
にもうひとつの理由として高誘電率粉末2のεが有機高
分子材料4のεより大きい効果があると考えられる。本
実施例のセラミック粉末は金属皮膜でおおわれており、
このことは静電場で考えた場合にはセラミック粉末は等
電位面で囲まれているとみなされ、高誘電体として機能
しない。しかし、測定を行った周波数領域、言い換えれ
ば本発明の複合材料が使われるような周波数領域では金
属皮膜内に電位勾配が生じ金属皮膜はその内部のセラミ
ック粉末に対して一対の電極として作用し、個々のセラ
ミック粉末は高誘電体として機能するようになり、この
ことが、試料全体として高い誘電率を示す理由のひとつ
と考えられる。
As can be seen from FIG. 1B, the dielectric constant of this example is higher than that of the comparative example in which the metal powder is simply dispersed. From this, it is considered that the ε of the high dielectric constant powder 2 is larger than the ε of the organic polymer material 4 as another reason why the material of the present invention exhibits a high dielectric constant. The ceramic powder of this example is covered with a metal film,
When this is considered in the electrostatic field, the ceramic powder is considered to be surrounded by equipotential surfaces and does not function as a high dielectric material. However, in the frequency range where the measurement is performed, in other words, in the frequency range where the composite material of the present invention is used, a potential gradient is generated in the metal film, and the metal film acts as a pair of electrodes with respect to the ceramic powder therein, The individual ceramic powders come to function as a high dielectric substance, which is considered to be one of the reasons why the sample as a whole exhibits a high dielectric constant.

【0015】なお高誘電率粉末の混合にともなって tan
δが増大するのも、この金属皮膜内に生じる電位勾配が
原因と推定される。
It should be noted that when the high dielectric constant powder is mixed, tan
It is presumed that the increase in δ is also due to the potential gradient generated in this metal film.

【0016】[0016]

【発明の効果】以上説明したように本発明による複合材
料1は、高誘電率粉末2に内部電極として作用する金属
被覆3を施すことにより、高誘電率粉末2の有機高分子
材料4に対する混合率が少なく、優れた成形性,加工性
が維持された状態において、従来より高い誘電率を得る
ことができる。
As described above, in the composite material 1 according to the present invention, the high dielectric constant powder 2 is coated with the metal coating 3 acting as an internal electrode, so that the high dielectric constant powder 2 is mixed with the organic polymer material 4. The dielectric constant can be higher than that of the conventional one in the state where the rate is small and the excellent moldability and workability are maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは本発明の実施例を示す断面図、Bは実施
例、従来例及び高誘電率粉末の代りにCu粉末を混合し
た比較例の、高誘電率粉末又はCu粉末の混合比の変化
に対する誘電率ε及び tanδの変化特性を示す図。
FIG. 1A is a cross-sectional view showing an embodiment of the present invention, and B is a mixing ratio of a high dielectric constant powder or Cu powder of the embodiment, a conventional example and a comparative example in which Cu powder is mixed instead of the high dielectric constant powder. FIG. 6 is a diagram showing the change characteristics of the dielectric constants ε and tan δ with respect to changes in γ.

【図2】実施例において、高誘電率粉末の混合比を変化
させた場合の誘電率ε及び tanδの測定データを示す
図。
FIG. 2 is a diagram showing measurement data of dielectric constants ε and tan δ when the mixing ratio of the high dielectric constant powder is changed in the examples.

【図3】図1B及び図2の試料の形状を示す断面図。FIG. 3 is a cross-sectional view showing the shapes of the samples of FIGS. 1B and 2.

【図4】従来の高誘電率複合材料の一例を示す断面図。FIG. 4 is a sectional view showing an example of a conventional high dielectric constant composite material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 5〜20体積%の金属被覆を施した高誘
電率粉末と、95〜80体積%の有機高分子材料とを均
一に混合し、成形後、前記有機高分子材料の硬化温度条
件で硬化させることを特徴とする高誘電率複合材料。
1. A high dielectric constant powder having a metal coating of 5 to 20% by volume and an organic polymer material of 95 to 80% by volume are uniformly mixed and, after molding, a curing temperature of the organic polymer material. A high dielectric constant composite material characterized by being cured under the conditions.
【請求項2】 前記高誘電率粉末が、セラミック焼結体
を粉砕して所定の粒度分布とした粉体であることを特徴
とする請求項1記載の高誘電率複合材料。
2. The high-dielectric-constant composite material according to claim 1, wherein the high-dielectric-constant powder is a powder obtained by crushing a ceramic sintered body into a predetermined particle size distribution.
JP11157692A 1992-04-30 1992-04-30 High dielectric constant composite material Withdrawn JPH05307911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157692A JPH05307911A (en) 1992-04-30 1992-04-30 High dielectric constant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157692A JPH05307911A (en) 1992-04-30 1992-04-30 High dielectric constant composite material

Publications (1)

Publication Number Publication Date
JPH05307911A true JPH05307911A (en) 1993-11-19

Family

ID=14564879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157692A Withdrawn JPH05307911A (en) 1992-04-30 1992-04-30 High dielectric constant composite material

Country Status (1)

Country Link
JP (1) JPH05307911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739193A (en) * 1996-05-07 1998-04-14 Hoechst Celanese Corp. Polymeric compositions having a temperature-stable dielectric constant
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
US5965273A (en) * 1997-01-31 1999-10-12 Hoechst Celanese Corporation Polymeric compositions having a temperature-stable dielectric constant
US6562448B1 (en) 2000-04-06 2003-05-13 3M Innovative Properties Company Low density dielectric having low microwave loss
JP2016511550A (en) * 2013-03-14 2016-04-14 サウジ・ベーシック・インダストリーズ・コーポレーション Non-integer order capacitors based on dielectric polymers doped with conductive nanofillers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
US5739193A (en) * 1996-05-07 1998-04-14 Hoechst Celanese Corp. Polymeric compositions having a temperature-stable dielectric constant
US5965273A (en) * 1997-01-31 1999-10-12 Hoechst Celanese Corporation Polymeric compositions having a temperature-stable dielectric constant
US6562448B1 (en) 2000-04-06 2003-05-13 3M Innovative Properties Company Low density dielectric having low microwave loss
JP2003530463A (en) * 2000-04-06 2003-10-14 スリーエム イノベイティブ プロパティズ カンパニー Low microwave loss low density dielectric
JP2016511550A (en) * 2013-03-14 2016-04-14 サウジ・ベーシック・インダストリーズ・コーポレーション Non-integer order capacitors based on dielectric polymers doped with conductive nanofillers

Similar Documents

Publication Publication Date Title
Dang et al. Dielectric behavior of three-phase percolative Ni–BaTiO 3/polyvinylidene fluoride composites
KR100689352B1 (en) Dielectric ceramic, resin-ceramics composite, and electric parts and antenna and method for their manufacture
US20070097597A1 (en) Polymer-ceramic dielectric composition, embedded capacitor using the dielectric composition and printed circuit board having the capacitor embedded therein
JP3127623B2 (en) Measurement method of relative permittivity of powder
JPH05307911A (en) High dielectric constant composite material
CN108485133B (en) high-energy-storage-density composite material and preparation method thereof
JP3030387B2 (en) High dielectric constant composite material
JPH04161461A (en) Composite material for dielectric electromotive type antenna
JPH0867556A (en) Dielectric ceramic for planar antenna and planar antenna using the same
JPH03254011A (en) High molecular composite dielectric substance
JP2020066723A (en) Dielectric composition
Wu et al. Dielectric studies of mineral‐filled epoxy
JP2002293619A (en) Dielectric composite material and production method therefor
JP3246001B2 (en) Measurement method of relative permittivity of powder
Burianova et al. Piezoelectric, dielectric and pyroelectric properties of 0-3 ceramic-polymer composites
US4558021A (en) Ceramic high dielectric composition
JP2687375B2 (en) Composite dielectric
JPS6347083B2 (en)
EP0705230A1 (en) NOVEL CERAMIC FERROELECTRIC COMPOSITE MATERIAL - BSTO-MgO
US4769354A (en) Type I dielectric composition based on neodymium titanate
JPS58166608A (en) Composite dielectric
JPH0517220A (en) Piezoelectric porcelain composition
JPH0346210A (en) Manufacture of semiconductor porcelain element
KR19980082650A (en) Piezoelectric Ceramic Compositions for High Frequency
JPH04171606A (en) Vitreous dielectric of semiconductor interparticle insulation type

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706