JPH05306187A - Carbon fiber reinforced carbon material excellent in oxidation resistance - Google Patents

Carbon fiber reinforced carbon material excellent in oxidation resistance

Info

Publication number
JPH05306187A
JPH05306187A JP4135920A JP13592092A JPH05306187A JP H05306187 A JPH05306187 A JP H05306187A JP 4135920 A JP4135920 A JP 4135920A JP 13592092 A JP13592092 A JP 13592092A JP H05306187 A JPH05306187 A JP H05306187A
Authority
JP
Japan
Prior art keywords
carbon
film
oxidation resistance
fiber reinforced
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4135920A
Other languages
Japanese (ja)
Inventor
Noboru Nakao
昇 中尾
Kazuo Kitagawa
一男 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4135920A priority Critical patent/JPH05306187A/en
Publication of JPH05306187A publication Critical patent/JPH05306187A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another

Abstract

PURPOSE:To improve the heat and oxidation resistance of a carbon fiber reinforced carbon material by forming a ceramic coating film on the surface of the carbon material with a specified carbon film in-between. CONSTITUTION:A thermosetting or thermoplastic substance is impregnated into carbon fibers to form prepreg, this prepreg is press-molded and the resulting molded body is heat-treated, fired and optionally graphitized to obtain a carbon fiber reinforced carbon material. A carbon film with anisotropy of texture inclined in the depth direction is formed in 10-1,000mum thickness on the surface of the carbon material by CVD with hydrocarbon having a relatively small number of carbon atoms as gaseous starting material. A ceramic coating film is then formed in 5-500mum thickness on the carbon film by CVD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性及び耐酸化性に
優れた炭素繊維強化炭素材料(以下「C/Cコンポジッ
ト」という)に関するものであり、航空・宇宙,生体・
医学,電気・磁気,光学,化学等の広い分野での応用が
期待される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced carbon material (hereinafter referred to as "C / C composite") which is excellent in heat resistance and oxidation resistance,
Applications in a wide range of fields such as medicine, electricity / magnetism, optics, and chemistry are expected.

【0002】[0002]

【従来の技術】C/Cコンポジットは、軽量で機械的強
度、耐熱性、耐食性、耐摩耗性、耐熱衝撃性、熱・電気
伝導性等に優れ、ロケットのノズルや航空機のブレーキ
ディスク等航空・宇宙機用材料としての利用が期待され
ている。これらの分野において部材は非常に高温の酸化
性雰囲気に曝されるが、一般に炭素材料は空気中では約
500 ℃以上の高温環境で酸化消耗されるため、このよう
な高温酸化性雰囲気における長時間の使用に耐えられ
ず、この点が実用化の大きな障害となっている。
2. Description of the Related Art C / C composites are lightweight and have excellent mechanical strength, heat resistance, corrosion resistance, wear resistance, thermal shock resistance, heat and electric conductivity, etc. It is expected to be used as a material for spacecraft. In these fields, parts are exposed to a very high temperature oxidizing atmosphere, but in general carbon materials are
Since it is consumed by oxidation in a high temperature environment of 500 ° C or higher, it cannot withstand long-term use in such a high temperature oxidizing atmosphere, which is a major obstacle to practical use.

【0003】炭素材料の耐酸化性を向上させる方法とし
ては、炭素材料表面にセラミックスや高融点の金属をコ
ーティングする方法が一般に知られている。特に炭化珪
素を用いた被覆に関しては、高温中で炭素材料表面に珪
素を拡散させて炭化珪素皮膜を得る方法や化学気相蒸着
法(以下「CVD法」という)によるコーティング方法
が提唱されている。しかしこれら炭素材料表面に耐酸化
被膜を形成する従来の方法においては、基材である炭素
材料と耐酸化被膜との熱膨張係数に差があるため、特に
高温環境において基材と被膜との界面で熱応力による破
壊が起こり割れや剥離が生じる。そしてその割れや剥離
部分を通じて酸素が侵入し、炭素材料が酸化されるとい
う問題が避けられなかった。
As a method of improving the oxidation resistance of a carbon material, a method of coating the surface of the carbon material with ceramics or a metal having a high melting point is generally known. In particular, regarding the coating using silicon carbide, a method of diffusing silicon on the surface of the carbon material at a high temperature to obtain a silicon carbide film and a coating method by a chemical vapor deposition method (hereinafter referred to as “CVD method”) have been proposed. .. However, in the conventional methods of forming an oxidation resistant film on the surface of these carbon materials, there is a difference in the coefficient of thermal expansion between the carbon material that is the base material and the oxidation resistant film, so that the interface between the base material and the film is particularly high temperature environment. At this point, destruction due to thermal stress occurs, causing cracking and peeling. Then, the problem that oxygen invades through the cracks and peeled parts and the carbon material is oxidized is unavoidable.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上のような
問題点に着目してなされたものであって、その目的は耐
熱性及び耐酸化性に優れた炭素繊維強化炭素材料を提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a carbon fiber reinforced carbon material having excellent heat resistance and oxidation resistance. To do.

【0005】[0005]

【課題を解決するための手段】本発明の炭素繊維強化炭
素材料は炭素繊維強化炭素材料の表面に、組織の異方性
が深さ方向に傾斜した炭素膜層を介してセラミックス皮
膜層が形成されたものであることに要旨を有する。
According to the carbon fiber reinforced carbon material of the present invention, a ceramic film layer is formed on the surface of the carbon fiber reinforced carbon material via a carbon film layer in which the anisotropy of the structure is inclined in the depth direction. It has the gist that it was done.

【0006】[0006]

【作用】本発明者等は、C/Cコンポジットの耐熱性及
び耐酸化性を向上させるべく種々検討した結果、基材と
なるC/Cコンポジット表面にまず深さ方向に組織の異
方性が変化した、いわゆる傾斜機能の炭素膜を形成し、
更にその上にセラミックス皮膜層を形成した複合構成と
することによって耐酸化性に優れたC/Cコンポジット
が得られることを見出し、本発明の完成に至ったもので
ある。
The present inventors have conducted various studies to improve the heat resistance and oxidation resistance of the C / C composite, and as a result, the anisotropy of the structure is first observed in the depth direction on the surface of the C / C composite as a base material. Forming a changed, so-called functionally graded carbon film,
Further, they have found that a C / C composite having excellent oxidation resistance can be obtained by using a composite structure in which a ceramics film layer is formed on it, and have completed the present invention.

【0007】C/Cコンポジット表面に耐酸化性向上を
目的としてセラミックスを被覆する場合、上述したよう
に基材とセラミックス皮膜との熱膨張係数の差が問題に
なるが、本発明者等はセラミックス層ではなく炭素層の
熱膨張係数に着目し、基材C/Cコンポジットと炭化珪
素皮膜との間に炭素膜を介在させ、その炭素膜の熱膨張
係数を、具体的には深さ方向でセラミックス層からC/
Cコンポジット層へ向けて小さくなるように構成するこ
とによって、セラミックス層と炭素層との熱膨張係数の
差による熱応力を解消することができ、従って高温酸化
性環境でのセラミックス層の割れや剥離がなく、セラミ
ックスの耐酸化性が十分に発揮されたC/Cコンポジッ
トが得られることを見出した。また、熱膨張係数が深さ
方向に傾斜した炭素層を形成するためには、化学気相蒸
着法を用いて、蒸着温度、反応炉内圧力、2種類以上の
原料ガスを用いた場合の混合比率等を経時的に変化させ
ることによって、炭素組織の異方性の傾斜した炭素層を
形成すればよいということも解明した。
When the C / C composite surface is coated with ceramics for the purpose of improving the oxidation resistance, the difference in the coefficient of thermal expansion between the base material and the ceramic coating becomes a problem as described above. Paying attention to the coefficient of thermal expansion of the carbon layer, not the layer, the carbon film is interposed between the base material C / C composite and the silicon carbide film, and the coefficient of thermal expansion of the carbon film is measured in the depth direction. C / from ceramic layer
By making the structure so that it becomes smaller toward the C composite layer, it is possible to eliminate the thermal stress due to the difference in thermal expansion coefficient between the ceramic layer and the carbon layer, and therefore cracking or peeling of the ceramic layer in a high temperature oxidizing environment. It was found that a C / C composite in which the oxidation resistance of ceramics was sufficiently exhibited was obtained. Further, in order to form a carbon layer having a coefficient of thermal expansion that is inclined in the depth direction, a chemical vapor deposition method is used, and the deposition temperature, the pressure in the reaction furnace, and the mixing when two or more kinds of source gases are used. It was also clarified that a carbon layer having an anisotropic carbon structure may be formed by changing the ratio and the like with time.

【0008】本発明において基材として用いるC/Cコ
ンポジットとしては特に限定されるものではないが、構
成する炭素繊維としては、例えばフィラメントヤ−ン等
の一次元配向材、平織、朱子織、綾織などの二次元配向
材、フェルト等の三次元配向材等が挙げられ、バインダ
ーとしては、フェノール樹脂、フラン樹脂などの熱硬化
性物質、ピッチのような熱可塑性物質等が挙げられる。
またその製法も特に限定されるものではなく、常法に従
い、炭素繊維を含浸、塗布などによりプリプレグ化し、
加圧成形して成形体とし、この成形体を熱処理してバイ
ンダーを硬化させ焼成し、更に必要に応じて黒鉛化する
ことによりC/Cコンポジットとすれば良い。その後用
途に応じて含浸法、CVD法等を用いて緻密化を繰り返
して更に高強度のC/Cコンポジットとすることも勿論
可能である。
The C / C composite used as the substrate in the present invention is not particularly limited, but examples of the carbon fibers constituting the one-dimensionally oriented material such as filament yarn, plain weave, satin weave, twill weave. Examples thereof include a two-dimensional orientation material such as, a three-dimensional orientation material such as felt, and the like, and examples of the binder include a thermosetting substance such as phenol resin and furan resin, and a thermoplastic substance such as pitch.
The method for producing the same is not particularly limited, and in accordance with a conventional method, carbon fiber is impregnated into a prepreg by coating,
A C / C composite may be obtained by pressure-forming a molded body, heat-treating the molded body to harden the binder, baking the same, and graphitizing it as necessary. After that, it is of course possible to obtain a C / C composite having a higher strength by repeating densification using an impregnation method, a CVD method or the like depending on the application.

【0009】C/Cコンポジット表面に形成する傾斜機
能炭素層はCVD法を用いて形成するのが好ましい。C
VD法によれば緻密な炭素層を得ることが容易で、その
組織異方性、ひいては熱膨張係数を傾斜化させるための
制御も行ない易いからである。CVD法であればその種
類は特に限定されず、熱CVD法、パルスCVI法、プ
ラズマCVD法などを採用することができる。
The functionally graded carbon layer formed on the C / C composite surface is preferably formed by the CVD method. C
This is because according to the VD method, it is easy to obtain a dense carbon layer, and it is also easy to control the anisotropy of the structure, and hence the gradient of the thermal expansion coefficient. The type is not particularly limited as long as it is a CVD method, and a thermal CVD method, a pulse CVI method, a plasma CVD method or the like can be adopted.

【0010】炭素層のCVD法による蒸着条件として
は、炭素層の組織異方性を深さ方向に傾斜させる為に、
2種類以上の原料ガスを用いた場合の原料ガスの比率、
反応炉内圧力、または蒸着温度の各条件の1つ以上を経
時的に変化させる必要がある。
The vapor deposition conditions for the carbon layer by the CVD method are as follows: the texture anisotropy of the carbon layer is inclined in the depth direction.
Ratio of source gas when two or more source gases are used,
It is necessary to change one or more of the conditions of the reactor internal pressure or the vapor deposition temperature with time.

【0011】CVD法による炭素層形成の原料ガスの種
類は特に限定されないが、メタン、プロパン、アセチレ
ン、プロピレン等の様に比較的低炭素数の炭化水素を用
いれば良い。これら原料ガスは1種類を単独で用いても
良いが、2種類以上を組合せて用いても良い。その場合
2種類以上の原料ガスの混合比率を経時的に変化させる
ことによって炭素組織の異方性の制御が可能となる。基
材上に形成される炭素層の厚さは、基材の種類、セラミ
ックス皮膜の種類、或はそれらの熱膨張係数の差に応じ
て適宜決定すれば良いが、10〜1000μm の範囲が好まし
い。層厚が薄すぎると熱応力の分散が十分でなく、また
厚すぎると析出に時間がかかり非経済的である。本発明
のセラミックス皮膜としては要はそれ自体が耐酸化性に
優れたものであれば良いので特に限定されないが、例え
ば炭化珪素、炭化チタン、窒化ホウ素、炭化タンタル等
の炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム
等の窒化物、アルミナ、ジルコニア等の酸化物、その他
ホウ化物等が挙げられる。またセラミックス皮膜を施す
方法も特に限定されないが、緻密な膜を得やすいという
理由からCVD法が推奨される。また、セラミックス皮
膜の厚さは、用途や要求される特性に応じて適宜決定す
れば良いが例えばCVD法を用いた場合5 〜500 μm の
範囲が好ましい。膜厚が5 μm 未満ではその耐酸化性が
十分発揮されず、逆に500 μm を超えると析出に時間が
かかり実用的でないと共に耐熱衝撃性がかえって低下し
て皮膜の割れや剥離を生じやすくなる。
The kind of the raw material gas for forming the carbon layer by the CVD method is not particularly limited, but a hydrocarbon having a relatively low carbon number such as methane, propane, acetylene, propylene and the like may be used. These raw material gases may be used alone or in combination of two or more. In that case, the anisotropy of the carbon structure can be controlled by changing the mixing ratio of two or more source gases with time. The thickness of the carbon layer formed on the substrate may be appropriately determined according to the type of the substrate, the type of the ceramic film, or the difference in the coefficient of thermal expansion between them, but the range of 10 to 1000 μm is preferable. .. If the layer thickness is too thin, the thermal stress will not be sufficiently dispersed, and if it is too thick, precipitation will take time and it will be uneconomical. The ceramic coating of the present invention is not particularly limited as long as it has excellent oxidation resistance, and is not particularly limited. For example, carbides such as silicon carbide, titanium carbide, boron nitride, tantalum carbide, boron nitride and titanium nitride. , Nitrides such as zirconium nitride, oxides such as alumina and zirconia, and other borides. The method of applying the ceramic film is not particularly limited, but the CVD method is recommended because it is easy to obtain a dense film. The thickness of the ceramic film may be appropriately determined according to the application and required characteristics, but is preferably in the range of 5 to 500 μm when using the CVD method, for example. If the film thickness is less than 5 μm, its oxidation resistance will not be fully exhibited, while if it exceeds 500 μm, precipitation will take time and it will be impractical, and the thermal shock resistance will rather deteriorate and the film will easily crack or peel. .

【0012】[0012]

【実施例】以下実施例を挙げて本発明を更に詳細に説明
するが、下記実施例は本発明を制限するものではなく、
前・後記の趣旨を逸脱しない範囲で変更実施することは
全て本発明の技術的範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All changes and modifications made without departing from the spirit of the above and the following are included in the technical scope of the present invention.

【0013】実施例1 ポリアクリロニトリル系炭素繊維の二次元織物50vol
%、マトリックスとして熱硬化性樹脂を出発原料とする
ガラス状炭素40vol %、ピッチを出発原料とする易黒鉛
化性炭素10vol %から構成される、焼成温度2600℃のC
/Cコンポジットを基材として用いた。このC/Cコン
ポジットの試験片(幅20mm×長さ20mm×厚さ5mm)を用
いて、以下の条件で化学気相蒸着法により皮膜を形成し
た。 ・装置 …ホットウォール型化学気相蒸着装置 ・原料ガス …アセチレンガス及びプロパンガス ・キャリアガス…H2 ガス ・反応炉内圧力…50 Torr ・蒸着温度 …1200℃ ・蒸着時間 …4時間
Example 1 Two-dimensional woven fabric of polyacrylonitrile-based carbon fiber 50vol
%, Glass-like carbon 40 vol% of which a thermosetting resin is used as a starting material as a matrix, and graphitizable carbon 10 vol% of which a pitch is used as a starting material.
The / C composite was used as the substrate. Using this C / C composite test piece (width 20 mm x length 20 mm x thickness 5 mm), a film was formed by the chemical vapor deposition method under the following conditions.・ Apparatus: Hot-wall type chemical vapor deposition apparatus ・ Source gas: Acetylene gas and propane gas ・ Carrier gas: H 2 gas ・ Reactor pressure: 50 Torr ・ Deposition temperature: 1200 ° C ・ Deposition time: 4 hours

【0014】但しこの時2種類の原料ガスを反応炉内へ
導入する割合を時間とともに変化させ、蒸着の初期にお
いては、プロパンガスをアセチレンガスに比べて多く炉
内に導入することにより炭素組織の異方性が大きく熱膨
張率の小さな炭素を蒸着し、蒸着の後半においてはアセ
チレンガスをプロパンガスに比べて多く炉内に導入する
ことにより組織の異方性が小さく熱膨張率が大きい炭素
を蒸着した。この方法により蒸着した炭素膜の厚みは約
500 μm であった。図1にこの時得られた炭素膜の組織
異方性に関するデ−タを示す。炭素膜をC/Cコンポジ
ットから剥した後、炭化珪素蒸着側(表面)とC/Cコ
ンポジット側(裏面)とについてX線回折を行い、配向
性係数を求めたものである。尚、配向性係数が大きいほ
ど異方性が大きいことを示す。
However, at this time, the ratios of introducing the two kinds of raw material gases into the reaction furnace are changed with time, and by introducing a larger amount of propane gas into the furnace than in the acetylene gas in the initial stage of vapor deposition, the carbon structure of the carbon structure is changed. Carbon with a large anisotropy and a small coefficient of thermal expansion is vapor-deposited, and in the latter half of the vapor deposition, a large amount of acetylene gas is introduced into the furnace as compared with propane gas, so that a carbon with a small anisotropy in the structure and a large coefficient of thermal expansion is produced. It was vapor-deposited. The thickness of the carbon film deposited by this method is about
It was 500 μm. FIG. 1 shows the data on the anisotropy of the carbon film obtained at this time. After peeling the carbon film from the C / C composite, X-ray diffraction was performed on the silicon carbide vapor deposition side (front surface) and the C / C composite side (back surface) to determine the orientation coefficient. The larger the orientation coefficient, the larger the anisotropy.

【0015】この炭素膜の被覆を行った試験片表面に更
に以下の条件で化学気相蒸着法を用いて炭化珪素被膜を
形成した。 ・装置 …ホットウォール型化学気相蒸着装置 ・原料ガス …SiCl4 ,CH4 ・キャリアガス…H2 ガス ・反応炉内圧力…40 Torr ・蒸着温度 …1350℃ ・蒸着時間 …2時間 ・炭化珪素膜厚…50μm 得られた試験片を酸化雰囲気炉に入れ、大気圧下で1200
℃、1時間の耐酸化試験を実施した。試験片の試験前の
重量に対する試験後の重量変化を調べたところ2.5 重量
%の重量増加がみられた。
A silicon carbide coating film was further formed on the surface of the test piece coated with the carbon film by the chemical vapor deposition method under the following conditions.・ Apparatus: Hot-wall type chemical vapor deposition apparatus ・ Source gas: SiCl 4 , CH 4・ Carrier gas: H 2 gas ・ Reactor pressure: 40 Torr ・ Deposition temperature: 1350 ° C ・ Deposition time: 2 hours ・ Silicon carbide Film thickness… 50μm Put the obtained test piece in an oxidizing atmosphere furnace and set it to 1200 at atmospheric pressure.
An oxidation resistance test was carried out at 1 ° C for 1 hour. When the change in weight of the test piece after the test with respect to the weight before the test was examined, a weight increase of 2.5% by weight was observed.

【0016】実施例2 下記に示す条件以外は実施例1と同様にしてC/Cコン
ポジット基材上に炭素膜を形成した。 ・原料ガス …プロパンガス ・反応炉内圧力…80 Torr ・蒸着温度 …1200℃〜1500℃ 但し、この場合、原料ガス及びキャリアガスの分圧は一
定とし、かわりに蒸着温度を1200℃から1500℃まで経時
的に変化させて、炭素組織の異方性が深さ方向に傾斜し
た炭素膜を得た。この炭素膜で被覆したC/Cコンポジ
ットに、実施例1と同様にして炭化珪素膜を形成し供試
片として、耐酸化試験を行った。1時間後の重量変化は
+0.31重量%であった。
Example 2 A carbon film was formed on a C / C composite substrate in the same manner as in Example 1 except for the following conditions.・ Source gas ・ ・ ・ Propane gas ・ Reactor pressure ・ ・ ・ 80 Torr ・ Deposition temperature ・ ・ ・ 1200 ℃ ~ 1500 ℃ However, in this case, the partial pressure of the source gas and carrier gas is constant, and instead the deposition temperature is 1200 ℃ ~ 1500 ℃ After that, the carbon film was changed with time to obtain a carbon film in which the anisotropy of the carbon structure was inclined in the depth direction. A silicon carbide film was formed on the C / C composite coated with this carbon film in the same manner as in Example 1, and an oxidation resistance test was performed as a test piece. The weight change after 1 hour was + 0.31% by weight.

【0017】実施例3 下記に示す条件以外は実施例2と同様にして化学気相蒸
着法によりC/Cコンポジット表面に炭素膜を形成し
た。 ・反応炉内圧力…10〜300 Torr ・蒸着温度 …1300℃(一定) ・蒸着時間 …4時間 但しこの場合、蒸着温度は1300℃で一定とし、かわりに
反応炉内圧力を10Torrから300 Torrまで経時的に変化さ
せることによって、炭素組織の異方性が深さ方向に傾斜
した炭素膜を形成した。この炭素膜で被覆したC/Cコ
ンポジットに実施例1と同様にして炭化珪素膜を形成し
供試片として耐酸化試験を行ったところ、1時間後の重
量変化は+0.30重量%であった。
Example 3 A carbon film was formed on the surface of a C / C composite by the chemical vapor deposition method in the same manner as in Example 2 except for the following conditions.・ Pressure in the reaction furnace… 10 to 300 Torr ・ Deposition temperature… 1300 ℃ (constant) ・ Deposition time… 4 hours However, in this case, the deposition temperature is fixed at 1300 ℃, and instead the pressure in the reaction furnace is from 10 Torr to 300 Torr. By changing with time, a carbon film was formed in which the anisotropy of the carbon structure was inclined in the depth direction. When a silicon carbide film was formed on the C / C composite coated with this carbon film in the same manner as in Example 1 and an oxidation resistance test was performed as a test piece, the weight change after 1 hour was + 0.30% by weight. It was

【0018】比較例1 実施例1と同様の基材及び装置を用い、炭素膜を形成す
ることなく、直接基材表面に炭化珪素膜を形成し、これ
を供試片として耐酸化試験を行った。1時間後の供試片
の重量変化は−5.2 重量%で酸化による重量減少が認め
られた。
Comparative Example 1 A silicon carbide film was directly formed on the surface of the base material without forming a carbon film by using the same base material and apparatus as in Example 1, and an oxidation resistance test was conducted by using this as a test piece. It was The weight change of the test piece after 1 hour was -5.2% by weight, and the weight loss due to oxidation was recognized.

【0019】比較例2 下記の条件以外は実施例1と同様にしてC/Cコンポジ
ット基材表面に膜厚500 μm の炭素膜を形成した。 ・原料ガス…プロパンガス(分圧一定) ・蒸着時間…3時間 但しこの場合、原料ガスは1種類でその分圧は一定と
し、組織の異方性の傾斜のない炭素膜を得た。この炭素
膜で被覆したC/Cコンポジットを用い、実施例1と同
様に炭化珪素膜を形成し供試材として耐酸化試験を行っ
たところ、1時間後の重量変化量は−4.92重量%であ
り、酸化による重量の減少が認められた。
Comparative Example 2 A carbon film having a thickness of 500 μm was formed on the surface of a C / C composite substrate in the same manner as in Example 1 except for the following conditions. -Source gas: Propane gas (constant partial pressure) -Vapor deposition time: 3 hours However, in this case, one source gas was used and the partial pressure was constant, and a carbon film having no structure anisotropy gradient was obtained. Using this C / C composite coated with a carbon film, a silicon carbide film was formed in the same manner as in Example 1 and an oxidation resistance test was conducted as a test material. The amount of weight change after 1 hour was -4.92% by weight. There was a decrease in weight due to oxidation.

【0020】比較例3 下記の条件以外は実施例1と同様にして基材表面に膜厚
500 μm の炭素膜を形成した。 ・原料ガス …アセチレンガス(分圧一定) ・反応炉内圧力…20 Torr ・蒸着温度 …1400℃ ・蒸着時間 …4時間 但しこの場合、原料ガスは1種類でその分圧は一定と
し、深さ方向に組織の異方性の傾斜のない炭素膜を得
た。この炭素膜で被覆したC/Cコンポジットを用い、
実施例1と同様にして炭化珪素膜を形成し供試材として
耐酸化試験を行ったところ、1時間後の重量変化量は−
3.76重量%であり、酸化による重量の減少が認められ
た。実施例及び比較例の被覆条件及び耐酸化試験結果を
表1に一括して示す。
Comparative Example 3 The film thickness on the surface of the substrate was the same as in Example 1 except for the following conditions.
A 500 μm carbon film was formed. -Source gas: Acetylene gas (constant partial pressure) -Reactor pressure: 20 Torr-Deposition temperature: 1400 ° C-Deposition time: 4 hours However, in this case, one source gas is used and its partial pressure is constant, and the depth is A carbon film with no anisotropic inclination of the structure in the direction was obtained. Using C / C composite coated with this carbon film,
When a silicon carbide film was formed in the same manner as in Example 1 and an oxidation resistance test was performed as a test material, the weight change amount after 1 hour was −.
It was 3.76% by weight, and a decrease in weight due to oxidation was observed. Table 1 collectively shows the coating conditions and the results of the oxidation resistance test of Examples and Comparative Examples.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、本発明の構成要
件を満足する実施例1〜3はいずれも基材C/Cコンポ
ジットの酸化による重量減少はみられず、耐酸化性に優
れていることが判明した。これに対し、基材表面に炭素
膜を介さずに直接に炭化珪素膜を形成した比較例1及び
炭素膜は形成したがその組成や組織異方性は深さ方向に
一定である比較例2,3はいずれも酸化による重量減少
がみられ、耐酸化性に劣ることが判明した。
As is clear from Table 1, in Examples 1 to 3 satisfying the constitutional requirements of the present invention, no weight reduction due to the oxidation of the base material C / C composite was observed, and the oxidation resistance was excellent. It has been found. On the other hand, Comparative Example 1 in which the silicon carbide film was directly formed on the surface of the base material without interposing the carbon film, and Comparative Example 2 in which the carbon film was formed but the composition and texture anisotropy were constant in the depth direction. It was found that the samples No. 3 and No. 3 each had a weight loss due to oxidation, and thus were inferior in oxidation resistance.

【0023】[0023]

【発明の効果】本発明は以上のように構成されており、
高温酸化性雰囲気下でも表面の割れや剥離がなく、耐熱
性・耐酸化性に優れた炭素材料を提供できるようになっ
た。
The present invention is configured as described above,
It has become possible to provide a carbon material that has excellent heat resistance and oxidation resistance without cracking or peeling of the surface even in a high temperature oxidizing atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で得られた炭素膜の組織の異方性の傾斜
を示す図である。
FIG. 1 is a diagram showing a gradient of anisotropy of a structure of a carbon film obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素材料の表面に、組織の
異方性が深さ方向に傾斜した炭素膜層を介してセラミッ
クス皮膜層が形成されたものであることを特徴とする耐
酸化性に優れた炭素繊維強化炭素材料。
1. An oxidation resistance characterized in that a ceramics film layer is formed on the surface of a carbon fiber reinforced carbon material through a carbon film layer in which the anisotropy of the structure is inclined in the depth direction. Excellent carbon fiber reinforced carbon material.
JP4135920A 1992-04-28 1992-04-28 Carbon fiber reinforced carbon material excellent in oxidation resistance Withdrawn JPH05306187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135920A JPH05306187A (en) 1992-04-28 1992-04-28 Carbon fiber reinforced carbon material excellent in oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135920A JPH05306187A (en) 1992-04-28 1992-04-28 Carbon fiber reinforced carbon material excellent in oxidation resistance

Publications (1)

Publication Number Publication Date
JPH05306187A true JPH05306187A (en) 1993-11-19

Family

ID=15162944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135920A Withdrawn JPH05306187A (en) 1992-04-28 1992-04-28 Carbon fiber reinforced carbon material excellent in oxidation resistance

Country Status (1)

Country Link
JP (1) JPH05306187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003281A (en) * 2000-06-20 2002-01-09 Natl Aerospace Lab Oxidation resistant c/c base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003281A (en) * 2000-06-20 2002-01-09 Natl Aerospace Lab Oxidation resistant c/c base material

Similar Documents

Publication Publication Date Title
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
US5051300A (en) Composite material with carbon reinforcing fibers and its production process
US6284357B1 (en) Laminated matrix composites
JP4191247B2 (en) High temperature composite with improved oxidation resistance having a reinforcement consisting of carbon fibers or fibers coated with carbon
US4487799A (en) Pyrolytic graphite pretreatment for carbon-carbon composites
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP3605133B2 (en) Carbide material coated with diamond-like carbon film functionally graded to substrate and method for producing the same
JPH03290375A (en) Composite material reinforced with coated carbon fiber
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JPH05306187A (en) Carbon fiber reinforced carbon material excellent in oxidation resistance
JPH03199172A (en) Coated carbon fiber reinforced composite material
JP2939470B2 (en) Manufacturing method of nuclear fuel
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP3219314B2 (en) Method for producing boron carbide-based carbon material
US5523035A (en) Process for producing carbonaceous material
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP3042832B2 (en) Heat and oxidation resistant carbon material manufacturing method
JP2976369B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material
Naslain Processing of non-oxide ceramic matrix composites: an overview
JP3031853B2 (en) Heat and oxidation resistant carbon materials
EP0428977B1 (en) Process for producing carbonaceous material
JPH11314985A (en) Heat resistant/oxidation resistant carbon fiber reinforced carbon material
JP4616442B2 (en) Carbonaceous material having oxidation-resistant protective layer and method for producing the same
JPH10209061A (en) Constitution member for semiconductor diffusion furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706