JPH0530144Y2 - - Google Patents

Info

Publication number
JPH0530144Y2
JPH0530144Y2 JP1987119534U JP11953487U JPH0530144Y2 JP H0530144 Y2 JPH0530144 Y2 JP H0530144Y2 JP 1987119534 U JP1987119534 U JP 1987119534U JP 11953487 U JP11953487 U JP 11953487U JP H0530144 Y2 JPH0530144 Y2 JP H0530144Y2
Authority
JP
Japan
Prior art keywords
vehicle
light
inter
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987119534U
Other languages
Japanese (ja)
Other versions
JPS6425784U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987119534U priority Critical patent/JPH0530144Y2/ja
Publication of JPS6425784U publication Critical patent/JPS6425784U/ja
Application granted granted Critical
Publication of JPH0530144Y2 publication Critical patent/JPH0530144Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は車間距離測定装置に係り、特に送出し
た光パルスの反射光を受光するまでの伝搬遅延時
間に基づいて車間距離を測定する車間距離測定装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an inter-vehicle distance measuring device, and in particular, an inter-vehicle distance measuring device that measures an inter-vehicle distance based on the propagation delay time until the reflected light of a transmitted light pulse is received. Concerning a measuring device.

[従来の技術] 従来、車間距離を測定する場合、第7図の如
く、測定装置5を備えた車両10から、該車両1
0の前方を走行する車両12に向けて光パルス1
4を送出し、この光パルス14の車両12による
反射光を車両10の測定装置5で受光し、その
送、受パルスの伝搬遅延時間を測定することによ
つて車両10と12間の距離を演算する方法が用
いられている。
[Prior Art] Conventionally, when measuring the inter-vehicle distance, as shown in FIG.
A light pulse 1 is directed toward a vehicle 12 running in front of the vehicle 0.
The distance between the vehicles 10 and 12 is determined by transmitting a light pulse 14 and receiving the reflected light of the light pulse 14 by the vehicle 12 by the measuring device 5 of the vehicle 10, and measuring the propagation delay time of the transmitted and received pulses. A method of calculating is used.

なお、この装置に関するものとして、特開昭58
−37576号公報記載の技術がある。
Regarding this device, please refer to Japanese Patent Application Laid-open No. 58
There is a technique described in the -37576 publication.

[考案が解決しようとする問題点] しかし、従来の車間距離測定装置は、第7図に
示すように、送出した光パルスの目標とする車両
以外の物体(例えばガードレール16、対向車両
18等)からの反射光、あるいは車両10と同一
方式の車間距離測定装置を備えた対向車両18が
発する光パルスを受信可能であるため、これによ
つて車間距離測定装置が誤動作する虞れがある。
[Problems to be solved by the invention] However, as shown in FIG. 7, the conventional inter-vehicle distance measuring device detects objects other than the target vehicle of the transmitted light pulse (for example, guardrail 16, oncoming vehicle 18, etc.). Since it is possible to receive reflected light from a vehicle 10 or a light pulse emitted by an oncoming vehicle 18 equipped with the same type of inter-vehicle distance measuring device as the vehicle 10, this may cause the inter-vehicle distance measuring device to malfunction.

本考案は、測定対象車両以外の物体からの反射
光等の影響による測定誤差が生じないようにした
車間距離測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inter-vehicle distance measuring device that does not cause measurement errors due to the influence of reflected light from objects other than the vehicle to be measured.

[問題点を解決するための手段] 上記目的を達成するために、本考案は、測定車
両から被測定車両に向けて光を送出し、前記被測
定車両からの反射光を前記測定車両で受光して光
の伝播時間から車間距離を測定する車間距離測定
装置において、前記被測定車両に設けられて前記
測定車両からの光を偏光させると共に再帰反射し
て出力する光トランスポンダと、前記測定車両に
設けられて前記光トランスポンダによつて偏光さ
れた光のみを受光する光学系と、を備えて構成し
てある。
[Means for Solving the Problems] In order to achieve the above object, the present invention transmits light from a measurement vehicle toward a vehicle to be measured, and receives reflected light from the vehicle to be measured by the vehicle to be measured. The inter-vehicle distance measuring device measures the inter-vehicle distance from the propagation time of light, which comprises: an optical transponder installed in the vehicle to be measured that polarizes light from the vehicle to be measured, and outputs the reflected light by retroreflecting; and an optical system that receives only the light polarized by the optical transponder.

[作用] 本考案によれば、光トランスポンダによつて、
測定車両より送出された光が偏光されると共に再
帰反射して測定車両側へ出力される。また、光学
系は、光トランスポンダによつて偏光された光の
みを受光する。したがつて、偏光されていないガ
ードレール、対向車等よりの反射光は受光部に入
光されることはないため、誤動作の発生が防止さ
れる。
[Operation] According to the present invention, by the optical transponder,
The light sent out from the measurement vehicle is polarized, retroreflected, and output to the measurement vehicle. Further, the optical system receives only the light polarized by the optical transponder. Therefore, unpolarized light reflected from a guardrail, an oncoming vehicle, etc. will not enter the light receiving section, thereby preventing malfunctions.

[実施例] 以下、図面を参照して本考案の実施例を詳細に
説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本考案による車間距離測定装置の一実
施例を示すものであり、被測定車両12の後部に
は、測定車両10より発せられたレーザビーム2
4の一部を反射して再び測定車両10の受光部方
向へ射出させる光トランスポンダ20が装着され
ている。さらに、測定車両10の前部には光学系
22が設けられている。
FIG. 1 shows an embodiment of the inter-vehicle distance measuring device according to the present invention, in which a laser beam 2 emitted from the measuring vehicle 10 is placed at the rear of the vehicle 12 to be measured.
An optical transponder 20 is mounted to reflect a portion of the light beam 4 and emit it again toward the light receiving section of the measuring vehicle 10. Furthermore, an optical system 22 is provided at the front of the measurement vehicle 10.

第2図は光トランスポンダ20の詳細を示すも
のである。この光トランスポンダ20は、再帰反
射する再帰反射系としてのコーナキユーブプリズ
ム26と、このプリズムの入射面(出射面を兼ね
る)に装着された1/4波長板28とより成る。コ
ーナキユーブプリズム26は、入射光が有効口径
に対していかなる角度で入射しても、その反射光
が入射光に平行で且つ逆向きになる構成を有し
(再帰反射)、有効口径の全域に入射された光線の
反射光32は入射光30に完全に平行になる。
FIG. 2 shows details of the optical transponder 20. This optical transponder 20 consists of a corner cube prism 26 as a retroreflection system that performs retroreflection, and a 1/4 wavelength plate 28 attached to the entrance surface (also serving as the exit surface) of this prism. The corner cube prism 26 has a configuration in which, no matter what angle the incident light is incident on the effective aperture, the reflected light is parallel to and in the opposite direction to the incident light (retroreflection), and the entire area of the effective aperture is The reflected light 32 of the incident light ray becomes completely parallel to the incident light 30.

1/4波長28は、相互に垂直な方向に振動する
直線偏光の間に1/4波長の光路差が生ずるように
厚さが決定された複屈曲板で、その材料には雲
母、水晶等が用いられる。
The 1/4 wavelength 28 is a birefringent plate whose thickness is determined so that an optical path difference of 1/4 wavelength occurs between linearly polarized lights vibrating in directions perpendicular to each other, and its material includes mica, quartz, etc. is used.

第3図は光学系22の詳細を示すものであり、
レーザ光(送出光)34を発振する半導体レーザ
36のレーザ光射出側には偏光ビームスプリツタ
38および集光レンズ40が順次配設されてい
る。偏光ビームスプリツタ38は、半導体レーザ
36からのレーザ光34をそのまま通過させると
共に、光トランスポンダ20からの反射光42を
レーザ光34に対し直角な方向に反射させる。ま
た、集光レンズ40は半導体レーザ36からのレ
ーザ光34を特定のビーム開き角を持つた射出光
とすると共に、光トランスポンダ20よりの反射
光42を所定位置に収束させる。集光レンズ40
による反射光42の収束位置に受光素子44が配
設されている。
FIG. 3 shows details of the optical system 22,
A polarizing beam splitter 38 and a condensing lens 40 are sequentially arranged on the laser beam emission side of a semiconductor laser 36 that oscillates a laser beam (transmission light) 34. The polarizing beam splitter 38 allows the laser beam 34 from the semiconductor laser 36 to pass through as it is, and reflects the reflected light 42 from the optical transponder 20 in a direction perpendicular to the laser beam 34. Further, the condenser lens 40 converts the laser beam 34 from the semiconductor laser 36 into an emitted beam having a specific beam aperture angle, and converges the reflected light 42 from the optical transponder 20 at a predetermined position. Condensing lens 40
A light receiving element 44 is disposed at a position where the reflected light 42 is converged.

なお、上記の車間距離測定装置では半導体レー
ザ36による光パルスの発生タイミングから受光
素子44による反射光の受光タイミングまでの時
間から車間距離を算出するわけであるが、ここで
はその演算部の構成については説明を省略する。
In addition, in the above-mentioned inter-vehicle distance measuring device, the inter-vehicle distance is calculated from the time from the timing of the generation of the optical pulse by the semiconductor laser 36 to the timing of the reception of the reflected light by the light-receiving element 44. Here, we will explain the configuration of the calculation section. The explanation will be omitted.

次に、第4図乃至第6図を参照して上記実施例
の作用について説明する。
Next, the operation of the above embodiment will be explained with reference to FIGS. 4 to 6.

光学系22の半導体レーザ36が図示しない駆
動回路によつて駆動されると、第4図に示すよう
に、X方向を偏光面とする直線偏光のレーザ光3
4が発生し、その全量が偏光ビームスプリツタ3
8を通過したのち、集光レンズ40で特定のビー
ム開き角を持つた射出光として被測定車両12に
向けて送出される。この射出光の一部は被測定車
両12の後部に装着された光トランスポンダ20
に入射する。入射光は、1/4波長板28を通過し
て円偏光になり、さらにコーナキューブプリズム
26によつて3回の全反射が行なわれて、入射光
30に対し偏光面が180度回転して反射される。
このコーナキユーブプリズム26による反射光
は、再び1/4波長板28を通過し、その際に円偏
光48から直線偏光50にされ、反射光として光
トランスポンダ20から測定車両10の光学系2
2に向けて反射される。直線偏光50は、Y方向
を偏光面とし、入射光に対し偏光面が90度回転し
ている。
When the semiconductor laser 36 of the optical system 22 is driven by a drive circuit (not shown), a linearly polarized laser beam 3 whose polarization plane is in the X direction is generated as shown in FIG.
4 is generated, and the entire amount is transmitted to the polarizing beam splitter 3.
8, the light beam passes through the condenser lens 40 and is emitted toward the vehicle to be measured 12 as an emitted light beam having a specific beam aperture angle. A part of this emitted light is transmitted to an optical transponder 20 mounted on the rear of the vehicle 12 to be measured.
incident on . The incident light passes through the 1/4 wavelength plate 28 and becomes circularly polarized light, and is then totally reflected three times by the corner cube prism 26, so that the plane of polarization is rotated 180 degrees relative to the incident light 30. reflected.
The reflected light from the corner cube prism 26 passes through the 1/4 wavelength plate 28 again, at which time the circularly polarized light 48 becomes linearly polarized light 50, and the reflected light is transmitted from the optical transponder 20 to the optical system of the measuring vehicle 10.
It is reflected towards 2. The linearly polarized light 50 has a polarization plane in the Y direction, and the polarization plane is rotated by 90 degrees with respect to the incident light.

光トランスポンダ20からの反射光は、集光レ
ンズ40で集光され、さらに偏光ビームスプリツ
タ38の接合面によつて受光素子44方向へ全反
射される。この偏光ビームスプリツタ38には光
トランスポンダ20の反射光のほか、ガードレー
ル16や対向車両等からの反射光も入光する。し
かし、これらの光はパワーが小さくかつレーザ光
34と同一の直線偏光であるため、偏光ビームス
プリツタ38の接合面では反射されずに直進する
ため、受光素子44に入光することが無い。した
がつて光トランスポンダ20からの反射光のみが
受光素子44に受光される。このため、従来のよ
うに被測定車両以外からの反射光等による影響が
除去され、誤動作等を招くことがない。
The reflected light from the optical transponder 20 is condensed by the condenser lens 40 and further totally reflected by the joint surface of the polarizing beam splitter 38 toward the light receiving element 44 . In addition to the reflected light from the optical transponder 20, reflected light from the guardrail 16, oncoming vehicles, etc. also enters the polarizing beam splitter 38. However, since these lights have low power and are the same linearly polarized light as the laser light 34, they are not reflected at the junction surface of the polarizing beam splitter 38 and travel straight, so they do not enter the light receiving element 44. Therefore, only the reflected light from the optical transponder 20 is received by the light receiving element 44. Therefore, the influence of reflected light etc. from sources other than the vehicle to be measured is removed, unlike in the past, and malfunctions and the like are not caused.

受光素子44の光一電変換出力に対し、半導体
レーザ36のレーザ光の発生時点からの経過時
間、すなわち光パルスの発光から受光までの伝搬
遅延時間tが演算され、この時間tに基づいて下
式から車間距離Lが求められる。
The elapsed time from the time when the laser beam of the semiconductor laser 36 is generated, that is, the propagation delay time t from the emission of the optical pulse to the reception of the light pulse, is calculated for the optical-to-electrical conversion output of the light receiving element 44, and the following formula is calculated based on this time t. The inter-vehicle distance L can be calculated from .

L=Ct/2(但し、Cは光速) エラレタ車間距離情報は、例えば、アクセル、
ブレーキ等を自動的に制御し、安全な車間距離を
保つためのオートドライブシステムに用いること
ができる。
L=Ct/2 (C is the speed of light) Erareta inter-vehicle distance information is, for example, an accelerator,
It can be used in auto-drive systems that automatically control brakes and other functions to maintain a safe distance between vehicles.

本考案によれば、光トランスポンダの反射光の
みを受光部に入射させることができるため、従来
に比べ発光素子の光出力が小さくて済み、低価格
の半導体レーザを用いることができる。これによ
つて、駆動回路の簡略化が図られ、信頼性及び耐
久性の向上が可能になる。
According to the present invention, since only the reflected light from the optical transponder can be made incident on the light receiving section, the light output of the light emitting element can be smaller than that of the conventional device, and a low-cost semiconductor laser can be used. This simplifies the drive circuit and improves reliability and durability.

[考案の効果] 以上説明したように、本考案によれば、車間距
離測定用の光を被測定車両に設けた光トランスポ
ンダによつて偏光及び再帰反射させ、この偏光さ
れた光のみを受光するようにしているため、被測
定車両以外の物体からの反射光及び直接光に起因
する誤動作を防止することができる、という優れ
た効果を有する。
[Effects of the invention] As explained above, according to the invention, the light for measuring the inter-vehicle distance is polarized and retroreflected by the optical transponder installed in the vehicle to be measured, and only this polarized light is received. This has the excellent effect of preventing malfunctions caused by reflected light and direct light from objects other than the vehicle to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による車間距離測定装置の一実
施例を示す構成図、第2図は本考案に係る光トラ
ンスポンダの構成を示す断面図、第3図は本考案
に係る光学系の構成を示す断面図、第4図はレー
ザビームの偏光状態を示す説明図、第5図は光ト
ランスポンダにおける偏光状態を示す説明図、第
6図は偏光ビームスプリツタにおける偏光状態を
示す説明図、第7図は従来の車間距離測定装置に
よる距離測定方法を説明する説明図である。 10……測定車両、12……被測定車両、20
……光トランスポンダ、22……光学系、26…
…コーナキユーブプリズム、28……1/4波長板、
36……半導体レーザ、38……偏光ビームスプ
リツタ、44……受光素子。
Fig. 1 is a block diagram showing an embodiment of the inter-vehicle distance measuring device according to the present invention, Fig. 2 is a sectional view showing the structure of the optical transponder according to the present invention, and Fig. 3 is a diagram showing the structure of the optical system according to the present invention. FIG. 4 is an explanatory diagram showing the polarization state of the laser beam, FIG. 5 is an explanatory diagram showing the polarization state in the optical transponder, FIG. 6 is an explanatory diagram showing the polarization state in the polarizing beam splitter, and FIG. The figure is an explanatory diagram illustrating a distance measuring method using a conventional inter-vehicle distance measuring device. 10... Measurement vehicle, 12... Vehicle to be measured, 20
...Optical transponder, 22...Optical system, 26...
...corner cube prism, 28...1/4 wavelength plate,
36... Semiconductor laser, 38... Polarizing beam splitter, 44... Light receiving element.

Claims (1)

【実用新案登録請求の範囲】 (1) 測定車両から被測定車両に向けて光を送出
し、前記被測定車両からの反射光を前記測定車
両で受光して光の伝播時間から車間距離を測定
する車間距離測定装置において、前記被測定車
両に設けられて前記測定車両からの光を偏光さ
せると共に再帰反射して出力する光トランスポ
ンダと、前記測定車両に設けられて前記光トラ
ンスポンダによつて偏光された光のみを受光す
る光学系と、を備えた車間距離測定装置。 (2) 前記光トランスポンダは、再帰反射する再帰
反射系と、該再帰反射系の入出力側に配置され
た1/4波長板とより成る実用新案登録請求の範
囲第(1)項に記載の車間距離測定装置。
[Claims for Utility Model Registration] (1) Light is transmitted from a measurement vehicle toward a vehicle to be measured, and the reflected light from the vehicle to be measured is received by the vehicle to be measured, and the inter-vehicle distance is measured from the propagation time of the light. In the inter-vehicle distance measuring device, an optical transponder is provided on the vehicle to be measured and polarizes light from the measurement vehicle, and outputs the light by retroreflecting it; An inter-vehicle distance measuring device equipped with an optical system that receives only the light that is received by the vehicle. (2) The optical transponder comprises a retroreflective system that performs retroreflection, and a quarter-wave plate disposed on the input and output sides of the retroreflection system, as set forth in claim (1) of the utility model registration claim. Inter-vehicle distance measuring device.
JP1987119534U 1987-08-04 1987-08-04 Expired - Lifetime JPH0530144Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987119534U JPH0530144Y2 (en) 1987-08-04 1987-08-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987119534U JPH0530144Y2 (en) 1987-08-04 1987-08-04

Publications (2)

Publication Number Publication Date
JPS6425784U JPS6425784U (en) 1989-02-13
JPH0530144Y2 true JPH0530144Y2 (en) 1993-08-02

Family

ID=31364848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987119534U Expired - Lifetime JPH0530144Y2 (en) 1987-08-04 1987-08-04

Country Status (1)

Country Link
JP (1) JPH0530144Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296271B2 (en) * 2013-01-08 2018-03-20 三菱重工業株式会社 Measuring system and measuring method
WO2019230890A1 (en) * 2018-05-30 2019-12-05 富士フイルム株式会社 Signal detection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168574A (en) * 1984-09-13 1986-04-08 Fujitsu Ten Ltd Optical type sensor system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168574A (en) * 1984-09-13 1986-04-08 Fujitsu Ten Ltd Optical type sensor system

Also Published As

Publication number Publication date
JPS6425784U (en) 1989-02-13

Similar Documents

Publication Publication Date Title
JPH07253460A (en) Distance measuring instrument
JPH10221064A (en) Optical distance-measuring device
CA2411774C (en) Optical rangefinder
JP2589278Y2 (en) Apparatus for detecting an object in sheet form
JPH0530144Y2 (en)
JPH10301056A (en) Light projecting and receiving device
WO2023225963A1 (en) Scanning device, laser radar, and terminal
WO2022188687A1 (en) Detection apparatus, detector, laser radar, and terminal device
JPH06281740A (en) Distance measuring instrument
JP4129233B2 (en) Optical distance measuring device
JP2004518107A (en) Optical distance measuring device
JPH07253461A (en) Distance measuring instrument
JPH07253462A (en) Distance measuring instrument
JP2765291B2 (en) Laser radar device
CN116559838B (en) Acousto-optic deflection module based on cylindrical lens beam expansion, photoelectric device and electronic equipment
CN116559835B (en) Acousto-optic deflection transmitting module based on cylindrical lens, detecting device and electronic equipment
JP2002350543A (en) Laser range finder
JPH0452919Y2 (en)
JP3096795B2 (en) Tracking ranging system
CN116559839B (en) Acousto-optic deflection module based on cylindrical lens collimation, photoelectric device and electronic equipment
CN116559837B (en) Acousto-optic deflection module based on superlens collimation, photoelectric device and electronic equipment
JP2001133551A (en) Range finder
CN116560155B (en) Acousto-optic deflection module based on superlens collimation, distance measuring device and electronic equipment
CN116560157B (en) Acousto-optic deflection module based on cylindrical lens beam expansion, distance measuring device and electronic equipment
CN116559836B (en) Acousto-optic deflection module based on diffusion sheet beam expansion, photoelectric device and electronic equipment