JPH05300057A - Power feeding circuit for submarine branch device - Google Patents

Power feeding circuit for submarine branch device

Info

Publication number
JPH05300057A
JPH05300057A JP4128053A JP12805392A JPH05300057A JP H05300057 A JPH05300057 A JP H05300057A JP 4128053 A JP4128053 A JP 4128053A JP 12805392 A JP12805392 A JP 12805392A JP H05300057 A JPH05300057 A JP H05300057A
Authority
JP
Japan
Prior art keywords
power supply
power
circuit
contact
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4128053A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Shimoyamada
國悦 下山田
Taiichi Takeda
泰一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4128053A priority Critical patent/JPH05300057A/en
Publication of JPH05300057A publication Critical patent/JPH05300057A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain the power feeding circuit with less heat dissipation from small number of components while facilitating the design of insulation structure by inserting a self-hold contact of a relay connecting to sea earth in the operation and used to form a feeding line into the power feeding circuit and connecting a discharge tube in parallel with the contact. CONSTITUTION:When a voltage applied to a branch circuit use feeding line 100 is less than a discharge start voltage, since a discharge tube 103 is not discharged, the feeding line 100 is disconnected from sea earth by a relay contact 102 and kept open. Thus, the insulation resistance test is conducted in this state. On the other hand, when a voltage over the discharge start voltage is fed to the feeding line 100, a relay 101 is activated by the discharge of the discharge tube 103 and its self-hold contact 102 is closed. Then the self-hold circuit is formed and the feeding line 100 connects to sea ground through the self-hold contact 102. As a result, the submarine branch device is realized, in which number of components is less, the power consumption is remarkably reduced and the temperature rise in the components in use is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光海底ケーブルなどの
海底ケーブルを海中で分岐して複数の陸揚局間で通信を
行う海底ケーブル伝送システムにおいて海底ケーブルを
海中で分岐するための海中分岐装置の給電回路に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submarine cable branching system for branching a submarine cable in the sea in a submarine cable transmission system for branching a submarine cable such as an optical submarine cable into the sea for communication between a plurality of landing stations. The present invention relates to a power supply circuit of a device.

【0002】海底ケーブル伝送システムでは、海底ケー
ブルに中継器が間隔を置いて配置されており、これらの
中継器は海底ケーブル中に設けた給電路を介して直流給
電されることによりその動作電源を得ている。
In a submarine cable transmission system, repeaters are arranged at intervals on the submarine cable, and these repeaters are supplied with direct current through a power feeding path provided in the submarine cable, thereby operating power thereof. It has gained.

【0003】ところで、海底ケーブルの敷設にあたって
は、その敷設中、または敷設後の障害修復時などに、海
底ケーブルが正常に敷設されたかどうかを確認する必要
があり、この確認は、海底ケーブル中の給電路に対して
直流絶縁抵抗試験を行ってその給電路が途中で地絡して
いるかどうかを調べることによって行っている。この直
流絶縁抵抗試験を行うためには、給電路の一端を海中側
において海水から絶縁した状態で開放する必要があり、
そのために海中分岐装置は無給電時に給電路の一端を開
放できるような構成となっている。しかしながら、海中
分岐装置をそのような構成としたために回路が複雑化し
て、信頼性が低下したり、コストが高くなったり、操作
性が悪くなったりしてはならない。
By the way, when laying a submarine cable, it is necessary to confirm whether the submarine cable has been normally laid during the laying of the submarine cable or at the time of repairing a fault after the laying. This is done by conducting a DC insulation resistance test on the power supply line and checking whether the power supply line is grounded in the middle. In order to perform this DC insulation resistance test, it is necessary to open one end of the power supply line in a state of being insulated from seawater on the undersea side,
For this reason, the undersea branching device is constructed so that one end of the power feeding path can be opened when there is no power feeding. However, since the submarine branching device has such a configuration, the circuit must not be complicated, so that the reliability is not lowered, the cost is increased, and the operability is not deteriorated.

【0004】[0004]

【従来の技術】図6には光海底ケーブル伝送システムに
おける給電システムの構成例が示される。この光海底ケ
ーブル伝送システムは、4台の海中分岐装置BU1〜B
U4を用いてA〜Fの6局の陸揚局を接続するものであ
り、この例ではA局・F局間が主回線となり、他の局へ
の回線はこの主回線から分岐される分岐回線となってい
る。
2. Description of the Related Art FIG. 6 shows a configuration example of a power feeding system in an optical submarine cable transmission system. This optical submarine cable transmission system consists of four submarine branching devices BU1-B
U4 is used to connect six landing stations A to F. In this example, the main line is between A and F stations, and the lines to other stations are branched from this main line. It is a line.

【0005】この給電システムでは、A局・F局間の直
列定電流給電によりその間の光海底中継器REPに給電
して陸揚局からの減衰した信号を中継器REPで増幅・
再生させるものであり、それ以外の局(すなわちB、
C、D、E局)からのその回線上の中継器REPへの給
電は、海中分岐装置の海中アースを経由し海水を帰路と
して行われる。
In this power feeding system, a series constant current power feeding between stations A and F feeds an optical submarine repeater REP between them to amplify the attenuated signal from the landing station by the repeater REP.
The other stations (ie B,
Power is supplied from the stations C, D, and E) to the repeater REP on the line via seawater of the undersea branching device with seawater as a return route.

【0006】ここで、海中分岐装置BU2とBU4は3
方向切替え(Switchable for 3 direction)形のものであ
り、いずれかの海底ケーブルに障害が発生した時にその
障害ケーブルを切り離してそれ以外の海底ケーブルでネ
ットワークを構成できるように、給電路を海中分岐装置
内で3方向に切り替えることができるようになってい
る。例えば、海中分岐装置BU4では、仮にF局側の海
底ケーブルが切断した場合、海中分岐装置BU4のリレ
ー動作により、F局側の海底ケーブルを切り離してA局
・E局間で給電を再開し、システムの全断を防止できる
ようになっている。
[0006] Here, the submarine branching units BU2 and BU4 are 3
It is a switchable for 3 direction type, and if a fault occurs in any of the submarine cables, the faulty cable can be disconnected and the network can be configured with other submarine cables. You can switch to 3 directions within. For example, in the undersea branching device BU4, if the undersea cable on the F station side is disconnected, the relay operation of the undersea branching device BU4 disconnects the undersea cable on the F station side to restart power supply between stations A and E, It is designed to prevent the system from being completely disconnected.

【0007】一方、海中分岐装置BU1とBU3は、そ
の給電路が非給電切替え(Non-Switchable) 形のもので
あって上述の切替え機能を有しておらず、単に光ファイ
バを分岐し、分岐回線側の給電路に対して海中アースを
設けて給電路を確保するためのものである。
On the other hand, the submarine branching units BU1 and BU3 have a non-switchable type power supply path and do not have the above-mentioned switching function, and simply branch an optical fiber to branch the power. This is to secure an electric power supply line by providing an underwater ground to the electric power supply line on the line side.

【0008】図7には非給電切替え形の海中分岐装置B
U1の構成例が示される。なお海中分岐装置BU3も同
様な構成である。図7において、10はB局へ接続され
る分岐回線側の給電回路、20はA局へ接続される主回
線側の給電回路である。また光ファイバは増幅・再生等
は行わずにスルーでそのままA局、B局、海中分岐装置
BU2へ分岐される。
FIG. 7 illustrates a non-power-supply switching type submarine branching device B.
A configuration example of U1 is shown. The underwater branching device BU3 has the same configuration. In FIG. 7, 10 is a feeder circuit on the branch line side connected to the B station, and 20 is a feeder circuit on the main line side connected to the A station. Further, the optical fiber is directly branched to the stations A, B, and the underwater branching unit BU2 without being amplified or regenerated.

【0009】分岐回線側の給電回路10は、自己保持用
のリレー1、インダクタンス11、12、抵抗器13〜
16、避雷器17、定電圧ダイオード18等を含み構成
されており、インダクタンス11、12、抵抗器13、
14を経る経路が海中分岐装置内における分岐回線側の
給電路となる。この給電路中の定電圧ダイオード18に
並列にリレー1の励磁コイルが接続され、この給電路は
さらにリレー1の常開接点rc1と後述のリレー2の接点
rc2の並列接続回路を通って海中アースされる。
The feeder circuit 10 on the branch line side includes a self-holding relay 1, inductances 11 and 12, and resistors 13 to 13.
16, a lightning arrester 17, a constant voltage diode 18, etc., and are configured to include inductances 11, 12, a resistor 13,
The route passing through 14 serves as a power feeding line on the branch line side in the underwater branching device. The exciting coil of the relay 1 is connected in parallel to the constant voltage diode 18 in this power feeding path, and this power feeding path is further connected to the normally open contact rc1 of the relay 1 and the contact of the relay 2 described later.
It is grounded in the sea through the parallel connection circuit of rc2.

【0010】主回線側の給電回路20は、分岐回線側給
電路オン/オフ用のリレー2、インダクタンス21、2
2、抵抗器23〜26、避雷器27、定電圧ダイオード
28、全波整流器29を含み構成されており、インダク
タンス21、22、抵抗器23、24、整流器29を経
る経路が海中分岐装置内における主回線側の給電路とな
る。リレー2はその励磁コイルが主回線側給電路中の定
電圧ダイオード28に並列に接続され、その常開接点rc
2が前述したようにリレー1の接点rc1に並列に接続さ
れている。
The power feeding circuit 20 on the main line side includes a relay 2 for turning on / off the power feeding path on the branch line side, inductances 21 and 2.
2. The resistors 23 to 26, the lightning arrester 27, the constant voltage diode 28, and the full-wave rectifier 29 are included, and the route passing through the inductances 21 and 22, the resistors 23 and 24, and the rectifier 29 is the main in the undersea branching device. It becomes the power supply line on the line side. In the relay 2, its exciting coil is connected in parallel with the constant voltage diode 28 in the power supply path on the main line side, and its normally open contact rc
2 is connected in parallel to the contact rc1 of the relay 1 as described above.

【0011】この給電回路の動作を説明する。無給電時
には給電回路10、20内のリレー1、2は励磁されて
いないため、その接点rc1、接点rc2は共に開いてお
り、したがって分岐回線側の給電路は海中アースから切
り離されて開放された状態にある。したがってこの状態
で、分岐回線側の給電路に対して直流絶縁試験を行うこ
とができる。
The operation of this power supply circuit will be described. Since the relays 1 and 2 in the power supply circuits 10 and 20 are not excited when the power is not supplied, both the contacts rc1 and rc2 are open, and therefore the power supply path on the branch line side is disconnected from the undersea ground and opened. Is in a state. Therefore, in this state, the DC insulation test can be performed on the feeder line on the branch line side.

【0012】一方、システムを運用する際には、主回線
側の給電路にA局・F局間で直流給電を行う。すると、
給電回路20内のリレー2が作動されてその接点rc2が
閉じられる。これにより分岐回線側の給電路は海中分岐
装置において海中アースされる。この状態でB局から給
電をかけると、給電回路10内のリレー1が作動され接
点rc1が閉じて自己保持状態となり、以降、主回線側の
給電路の給電が断になっても分岐回線側の給電路は給電
を維持できるようになる。
On the other hand, when the system is operated, DC power is fed between the stations A and F on the power feeding path on the main line side. Then,
The relay 2 in the power feeding circuit 20 is activated and its contact rc2 is closed. As a result, the power supply path on the branch line side is grounded in the sea in the undersea branching device. When power is supplied from the B station in this state, the relay 1 in the power supply circuit 10 is operated and the contact rc1 is closed to be in the self-holding state. After that, even if the power supply to the power supply path on the main line side is cut off, the branch line side The power supply path can maintain the power supply.

【0013】[0013]

【発明が解決しようとする課題】上述の海中分岐装置の
給電回路には、次のような問題点がある。 (a) 給電システムの給電電圧としては、海底ケーブ
ル伝送システムではケーブル長が長いため高電圧が必要
となり、最大で約20kVまで上昇する。このため、海
中分岐装置に使用するリレー1、2および主回線側給電
回路と分岐回線側給電回路の間の絶縁構造は、この最大
電圧に耐えられることが要求される。しかしながら、水
深8000mの海底に設置する海中分岐装置のきょう体
の限られた容積の中で、20kVという高電圧に耐えう
るリレーおよび絶縁構造設計は技術的に非常に難しく、
またコストもかかり、大きな問題となっている。
The power supply circuit of the above-mentioned submarine branching device has the following problems. (A) As the power supply voltage of the power supply system, a high voltage is required because the cable length is long in the submarine cable transmission system, and the maximum voltage rises to about 20 kV. Therefore, the relays 1 and 2 used for the undersea branching device and the insulating structure between the main line side power feeding circuit and the branch line side power feeding circuit are required to withstand this maximum voltage. However, it is technically very difficult to design a relay and an insulating structure capable of withstanding a high voltage of 20 kV in the limited volume of the body of the undersea branching device installed on the seabed at a depth of 8000 m.
In addition, the cost is high, which is a big problem.

【0014】(b) 従来の給電回路は、多数の部品を
必要とし、かつ消費電力も大きいことから、発熱が大き
く、したがって部品の使用温度が高くなり、システムの
信頼度を低下させている。
(B) Since the conventional power supply circuit requires a large number of parts and consumes a large amount of power, it generates a large amount of heat and therefore the operating temperature of the parts becomes high, which lowers the reliability of the system.

【0015】(c) 従来の給電回路では、分岐回線側
の給電路のオン/オフの操作は主回線側の給電路のオン
/オフに依存している。つまり、例えばB局からの分岐
回線側給電路のオン/オフの操作はA局・F局間の給電
路の給電をオン/オフすることに依存する。この結果、
例えば海底ケーブル伝送システムが運用開始した後に、
分岐回線側のケーブルの敷設または修復を行う場合で
も、主回線側(A局・F局間回線)を停止しなければな
らず、サービスが低下する。
(C) In the conventional power supply circuit, on / off operation of the power supply path on the branch line side depends on on / off of the power supply path on the main line side. That is, for example, the on / off operation of the branch line side power supply path from the B station depends on turning on / off the power supply of the power supply path between the A station and the F station. As a result,
For example, after the submarine cable transmission system started operation,
Even when laying or repairing the cable on the branch line side, the main line side (line between A station and F station) must be stopped, and service will be degraded.

【0016】本発明はかかる問題点に鑑みてなされたも
のであり、その目的とするところは、絶縁構造設計等が
容易で部品点数の少なく発熱も少ない構成の信頼性が高
い給電回路を提供することにある。また本発明は、主回
線側給電路と分岐回線側給電路の給電オン/オフ操作を
分離独立させることで操作性を向上させることも目的の
一つとする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable power supply circuit having a structure such as an insulating structure that is easy to design, has a small number of components, and generates little heat. Especially. Another object of the present invention is to improve the operability by separating and independently performing the power feeding on / off operation of the main line side power feeding line and the branch line side power feeding line.

【0017】[0017]

【課題を解決するための手段】図1は本発明に係る原理
説明図である。本発明の海中分岐装置の給電回路は、第
1の形態として、分岐回線用給電路100に、無給電時
に給電路を海中アースから切り離し運用時に海中アース
して給電路を形成するためのリレー101の自己保持用
接点102を挿入し、その自己保持用接点102に並列
に放電管103を接続したことを特徴とするものであ
る。
FIG. 1 is an explanatory view of the principle of the present invention. As a first embodiment, the power supply circuit for an undersea branching device of the present invention is a relay 101 for forming a power supply path in a power supply path 100 for a branch line by disconnecting the power supply path from the undersea ground when there is no power supply and grounding it in the sea during operation. The self-holding contact 102 is inserted, and the discharge tube 103 is connected in parallel to the self-holding contact 102.

【0018】また本発明の海中分岐装置の給電回路は、
第2の形態として、分岐回線用給電路に、運用時に順方
向バイアス、絶縁抵抗試験時に逆方向バイアスされる極
性のダイオードを1段または複数段直列に接続したこと
を特徴とするものである。
The power supply circuit of the underwater branching device of the present invention is
A second mode is characterized in that a diode having a polarity that is forward biased during operation and reverse biased during an insulation resistance test is connected in series to the power supply path for the branch line in one or more stages.

【0019】また本発明の海中分岐装置の給電回路は、
第3の形態として、分岐回線用給電路に、無給電時に該
給電路を海中アースから切り離し運用時に海中アースし
て給電路を形成するためのリレーの自己保持用接点を挿
入し、その自己保持用接点に並列に、運用時に順方向バ
イアス、絶縁抵抗試験時に逆方向バイアスされる極性の
ダイオードを1段または複数段直列に接続した回路を接
続したことを特徴とするものである。上記ダイオードに
は高抵抗の抵抗器を並列接続してもよい。
The power supply circuit of the underwater branching device of the present invention is
As a third form, a self-holding contact of a relay is inserted into a branch line power supply line to separate the power supply line from the undersea ground when there is no power supply and to ground the sea in the sea during operation to form a power supply line, and to self-hold the contact. It is characterized in that a circuit in which one or more stages of diodes having polarities that are forward biased during operation and reverse biased during an insulation resistance test are connected in series is connected in parallel to the contact for use. A high resistance resistor may be connected in parallel to the diode.

【0020】また本発明の海中分岐装置の給電回路は、
第4の形態として、主回線用給電路に発熱体を挿入し、
この発熱体の発生する熱で動作する感熱動作スイッチを
設け、分岐回線用給電路に、無給電時に該給電路を海中
アースから切り離し運用時に海中アースして給電路を形
成するためのリレーの自己保持用接点を挿入し、その自
己保持用接点に並列に上記感熱動作スイッチのメーク接
点を接続したことを特徴とするものである。
The power supply circuit of the underwater branching device of the present invention is
As a fourth mode, a heating element is inserted in the power supply path for the main line,
A heat-sensitive switch that operates with the heat generated by this heating element is provided, and the power supply line for the branch line is separated from the undersea ground when there is no power supply, and the relay self is grounded in the sea during operation to form the power supply line. The holding contact is inserted, and the make contact of the heat-sensitive operation switch is connected in parallel to the self-holding contact.

【0021】[0021]

【作用】第1の形態の給電回路においては、分岐回路用
給電路100に印加される電圧が放電開始電圧未満の場
合には、放電管103が放電しないので、分岐回路用給
電路100はリレー接点102により海中アースから切
り離されて開放状態にある。したがってこの状態で絶縁
抵抗試験を行うことができる。一方、放電開始電圧以上
の電圧が給電路100に印加された時には、放電管10
3の放電によりリレー101が動作してその自己保持用
接点102を閉じ、それにより自己保持回路が形成され
て分岐回線用給電路100が自己保持用接点102を通
って海中アースされる。
In the power supply circuit of the first embodiment, when the voltage applied to the branch circuit power supply path 100 is less than the discharge start voltage, the discharge tube 103 does not discharge, so the branch circuit power supply path 100 is a relay. It is separated from the undersea ground by the contact 102 and is in an open state. Therefore, the insulation resistance test can be performed in this state. On the other hand, when a voltage higher than the discharge start voltage is applied to the power supply path 100, the discharge tube 10
By the discharge of 3, the relay 101 operates to close the self-holding contact 102, thereby forming a self-holding circuit, and the branch line power supply path 100 is grounded under the sea through the self-holding contact 102.

【0022】第2の形態の給電回路においては、分岐回
線用給電路に給電を行う場合には、ダイオードに対して
順方向に通電を行う。一方、絶縁抵抗試験を行う場合に
は、ダイオードに対して逆方向に直流電圧を印加して行
う。この場合、分岐回線用給電路はダイオードによって
実質的に海中アースから切り離された状態になるので、
絶縁抵抗試験を行うことができる。
In the power supply circuit of the second embodiment, when power is supplied to the power supply path for the branch line, the diode is energized in the forward direction. On the other hand, when performing an insulation resistance test, a DC voltage is applied to the diode in the opposite direction. In this case, the power supply path for the branch line is practically disconnected from the undersea ground by the diode,
An insulation resistance test can be performed.

【0023】第3の形態の給電回路においては、分岐回
線用給電路に給電を行う場合には、ダイオードに対して
順方向に通電を行う。このダイオードを通る電流により
リレーが動作してその自己保持用接点を閉じ、それによ
り自己保持回路が形成されて給電路が自己保持用接点を
通って海中アースされる。一方、絶縁抵抗試験を行う場
合には、ダイオードに対して逆方向に直流電圧を印加し
て行う。この場合、分岐回線用給電路はリレー接点とダ
イオードによって実質的に海中アースから切り離された
状態になるので、絶縁抵抗試験を行うことができる。
In the third embodiment of the power supply circuit, when power is supplied to the branch line power supply path, the diode is energized in the forward direction. The current through this diode actuates the relay to close its self-holding contact, thereby forming a self-holding circuit and grounding the feed line through the self-holding contact. On the other hand, when performing an insulation resistance test, a DC voltage is applied to the diode in the opposite direction. In this case, since the power supply path for the branch line is substantially separated from the undersea ground by the relay contact and the diode, the insulation resistance test can be performed.

【0024】なお上記ダイオードに並列に高抵抗の抵抗
器を接続すると、絶縁抵抗試験時に海中分岐装置におけ
る絶縁抵抗値をその抵抗器の抵抗値によってほぼ正確に
決めることができるので、ケーブル絶縁抵抗の測定精度
が向上する。
When a high resistance resistor is connected in parallel with the diode, the insulation resistance value in the undersea branching device can be determined almost accurately by the resistance value of the resistor during the insulation resistance test. Measurement accuracy is improved.

【0025】第4の形態の給電回路においては、分岐回
線用給電路に給電する場合には、主回線用給電路に給電
することによりその発熱体を発熱させ、それにより感熱
動作スイッチのメーク接点を閉じてリレーを動作させ、
その自己保持用接点を閉じる。それにより自己保持回路
が形成されて分岐回線用給電路が自己保持用接点を通っ
て海中アースされる。絶縁抵抗試験を行う場合には、主
回線用給電路に給電を行わなければ、感熱動作スイッチ
のメーク接点は開いているので、分岐回路用給電路はリ
レー接点により海中アースから切り離されて開放状態に
あり、したがって絶縁抵抗試験を行うことができる。
In the power feeding circuit of the fourth aspect, when power is fed to the branch line power feeding path, the heating element is caused to generate heat by feeding power to the main line power feeding path, whereby the make contact of the heat sensitive operation switch. To close and activate the relay,
The self-holding contact is closed. As a result, a self-holding circuit is formed, and the power supply path for the branch line is grounded in the sea through the self-holding contact. When performing an insulation resistance test, the make contact of the heat-sensitive switch is open unless power is supplied to the power supply path for the main line, so the power supply path for the branch circuit is disconnected from the undersea ground by the relay contact and is in an open state. Therefore, an insulation resistance test can be performed.

【0026】[0026]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図2には本発明の一実施例としての海中分岐装置
の給電回路が示される。この実施例の海中分岐装置は、
前述の図6の海底ケーブル伝送システムにおける海中分
岐装置BU1の位置に挿入されるものであり、したがっ
て非給電切替え形のものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a power supply circuit of an undersea branching device as an embodiment of the present invention. The underwater branching device of this embodiment is
It is inserted into the position of the submarine branching unit BU1 in the above-mentioned submarine cable transmission system of FIG. 6, and is therefore of the non-feed switching type.

【0027】図2において、主回線側の給電回路20’
は入出力端子が直結されており、したがって分岐回線側
給電路オン/オフ用のリレー2はない。分岐回線側の給
電回路10は図7で説明したものと同じ構成である。相
違点として、分岐回線側の給電路の接点rc1には、リレ
ー2の接点rc2に換えて放電管3が並列に接続されてい
る。
In FIG. 2, the power supply circuit 20 'on the main line side.
The input / output terminals are directly connected to each other, and therefore there is no relay 2 for turning on / off the feeder line on the branch line side. The feeder circuit 10 on the branch line side has the same configuration as that described in FIG. 7. As a difference, the discharge tube 3 is connected in parallel to the contact rc1 of the power supply path on the branch line side, instead of the contact rc2 of the relay 2.

【0028】この放電管3としては、その放電開始電圧
が分岐回線側ケーブルの絶縁抵抗測定電圧よりも高いも
の(例えば100V〜500V程度)が選ばれる。その
ために複数個の放電管を直列に接続するものであっても
よい。この放電管3は、放電開始電圧以下の電圧では開
放状態にあり、したがって無給電時には絶縁抵抗測定が
可能である。
As the discharge tube 3, one having a discharge starting voltage higher than the insulation resistance measurement voltage of the branch line side cable (for example, about 100 V to 500 V) is selected. Therefore, a plurality of discharge tubes may be connected in series. The discharge tube 3 is in an open state at a voltage equal to or lower than the discharge starting voltage, so that the insulation resistance can be measured when no power is supplied.

【0029】この実施例装置により給電を行う場合に
は、B局から給電電圧を上昇させると、やがて放電管3
の放電開始電圧を超えて放電管3が放電を開始し、その
放電電流により分岐回線側給電路に電流が流れて、給電
回路10内のリレー1が動作し、それによりその接点rc
1が閉じて自己保持回路が形成され、以降、分岐回線側
の給電が可能となる。
When electric power is supplied by the device of this embodiment, when the power supply voltage is increased from the station B, the discharge tube 3 is eventually released.
The discharge tube 3 starts to discharge beyond the discharge start voltage, and the discharge current causes a current to flow in the branch line side power supply path, causing the relay 1 in the power supply circuit 10 to operate, thereby causing its contact point rc.
1 is closed to form a self-holding circuit, and thereafter, power can be supplied to the branch line side.

【0030】図3には本発明の他の実施例が示される。
図3において、主回線側の給電回路20’は前述の実施
例のものと同じで、入出力端子が直接接続されている。
分岐回線側の給電回路30は、ダイオード31と高抵抗
(数百M〜数GΩ)の抵抗器32の並列回路をn段にわ
たり直列接続した回路からなり、その一端は海中アース
される。ダイオード311 〜31n の極性は、a2(海
中アース)→b1(B局)方向に給電をかけた時に順方
向となるよう接続される。
FIG. 3 shows another embodiment of the present invention.
In FIG. 3, the power supply circuit 20 'on the main line side is the same as that of the above-described embodiment, and the input / output terminals are directly connected.
The power supply circuit 30 on the branch line side is composed of a circuit in which a parallel circuit of a diode 31 and a resistor 32 having a high resistance (several hundreds of M to several GΩ) is connected in series over n stages, and one end thereof is grounded under the sea. The polarities of the diodes 31 1 to 31 n are connected so as to be in the forward direction when power is supplied in the direction of a2 (undersea ground) → b1 (station B).

【0031】この実施例装置の動作を説明すると、分岐
回線側の給電路に給電を行う場合には、a2→b1方向
に給電をかける。一方、分岐回線側の直流絶縁抵抗試験
を行う場合には、b1→a2方向にダイオード31の逆
方向電圧を印加することで、分岐回線側のケーブル絶縁
抵抗を測定できる。
The operation of the apparatus of this embodiment will be described. When power is supplied to the power supply path on the side of the branch line, power is supplied in the a2 → b1 direction. On the other hand, when performing the DC insulation resistance test on the branch line side, the cable insulation resistance on the branch line side can be measured by applying the reverse voltage of the diode 31 in the direction of b1 → a2.

【0032】なお、この場合の絶縁抵抗測定値は、抵抗
値32とダイオード31の逆電圧特性とで制限を受ける
が、その測定精度を上げるために、抵抗器とダイオード
の直列接続段数nを増加させればよい。逆にいえば、抵
抗値とダイオードの逆電圧特性が十分なものであれば、
並列回路の段数は1段であってもよい。また並列接続抵
抗器321 〜32n を使用しないものであってもよい
が、ダイオードの逆電圧特性は測定電圧で変化するの
で、その分、測定精度が落ちうる。
The insulation resistance measurement value in this case is limited by the resistance value 32 and the reverse voltage characteristic of the diode 31, but in order to improve the measurement accuracy, the number n of series connection of the resistor and the diode is increased. You can do it. Conversely, if the resistance value and the reverse voltage characteristic of the diode are sufficient,
The number of stages of the parallel circuit may be one. Further, although the parallel-connected resistors 32 1 to 32 n may not be used, the reverse voltage characteristic of the diode changes depending on the measurement voltage, so that the measurement accuracy may be reduced accordingly.

【0033】図4には本発明のまた他の実施例が示され
る。図4において、主回線側の給電回路20’は前述同
様に直接接続したものである。分岐回線側の給電回路1
0は図2の実施例と同様のものである。相違点として、
分離回線側給電路におけるリレー接点rc1には、放電管
3に換えて、図3の実施例で説明したところのダイオー
ドと抵抗器の並列回路をn段直列接続した回路が、並列
に接続されている。
FIG. 4 shows another embodiment of the present invention. In FIG. 4, the power supply circuit 20 'on the main line side is directly connected as described above. Power supply circuit 1 on the branch line side
0 is the same as in the embodiment of FIG. The difference is that
Instead of the discharge tube 3, the relay contact rc1 in the separated line side power supply line is connected in parallel with a circuit in which n stages of parallel circuits of a diode and a resistor described in the embodiment of FIG. 3 are connected in series. There is.

【0034】この実施例の動作は図3で説明したとほぼ
同じであるが、この実施例では給電開始後の正常給電時
には、リレー1が動作して接点rc1を閉じ自己保持回路
を形成することにより、給電電流が接点rc1側を通るよ
うにしており、それによりダイオードの消費電力を零と
して、海中分岐装置内の温度上昇を抑えることができる
ようになっている。またリレー接点rc1とダイオード3
1を用意することで回路の冗長性を持たせる構成となっ
ているので、例えばリレー1が故障して動かなくなった
場合でも、ダイオード31だけでも初期の目的を達成す
ることができる。このようにこの実施例では信頼性のさ
らなる向上が期待できる。
The operation of this embodiment is almost the same as that described with reference to FIG. 3, but in this embodiment, during normal power supply after the start of power supply, the relay 1 operates to close the contact rc1 and form a self-holding circuit. As a result, the power supply current passes through the contact rc1 side, whereby the power consumption of the diode is reduced to zero and the temperature rise in the undersea branching device can be suppressed. In addition, relay contact rc1 and diode 3
Since the circuit redundancy is provided by preparing the circuit 1, the initial purpose can be achieved only by the diode 31 even if the relay 1 fails and does not operate. As described above, further improvement in reliability can be expected in this embodiment.

【0035】図5には本発明のさらに他の実施例が示さ
れる。図5において、主回線側の給電回路40には、そ
の給電路に直列に抵抗体等のヒータ41が接続されてお
り、このヒータ41の近傍にバイメタルスイッチ等の感
熱動作スイッチ4を設置する。またこのヒータ41には
定電圧ダイオード42を並列接続する。分岐回線側の給
電回路10は図2で述べたものと同じであるが、リレー
接点rc1には、放電管3に換えて、上記感熱動作スイッ
チ4のメーク接点を並列に接続する。
FIG. 5 shows still another embodiment of the present invention. In FIG. 5, a heater 41 such as a resistor is connected in series to the power supply circuit 40 of the power supply circuit 40 on the main line side, and a thermosensitive operation switch 4 such as a bimetal switch is installed near the heater 41. A constant voltage diode 42 is connected in parallel with the heater 41. The power supply circuit 10 on the branch line side is the same as that described in FIG. 2, but the make contact of the heat-sensitive operation switch 4 is connected in parallel to the relay contact rc1 instead of the discharge tube 3.

【0036】この実施例装置の動作を説明する。主回線
側の給電を開始すると、ヒータ41の発生する熱によ
り、感熱動作スイッチ4が動作してその接点を閉じる。
この結果、B局から給電を開始することで給電回路10
内のリレー1が動作し接点rc1を閉じて自己保持回路を
形成することになり、以降、給電路が維持される。この
実施例では、分岐回線側のケーブル絶縁抵抗の測定は、
主回線側の給電を停止した状態で行う。
The operation of the apparatus of this embodiment will be described. When power supply to the main line side is started, heat generated by the heater 41 causes the heat-sensitive operation switch 4 to operate and close its contact.
As a result, by starting power feeding from station B, power feeding circuit 10
The relay 1 therein operates to close the contact rc1 to form a self-holding circuit, and thereafter, the power feeding path is maintained. In this embodiment, the measurement of the cable insulation resistance on the branch line side is
Perform with the main line power supply stopped.

【0037】以上に述べた各実施例の効果をまとめると
以下にようになる。 図2の実施例の場合 〔信頼性の向上〕 主回線側給電回路が直結構造となったため、電力消
費されるのは分岐回線側給電回路だけとなり、したがっ
て消費電力が半減されて温度上昇を低減できる。 主回線側給電回路が直結構造となったため、部品数
が半減し、特に高電圧リレーが分岐回線側給電回路に1
個で済む。 〔コストの低減〕 部品数の半減により大幅なコストダウンができる。 高耐電圧設計が容易となり、構造が簡易化できる。 〔操作性向上〕 主回線側と分岐回線側の給電オン/オフを独立して
操作できるため、分岐回線側の給電オン/オフのために
主回線側を断としなくてもよくなり、操作性およびサー
ビス性が向上する。
The effects of the above-described embodiments are summarized as follows. In the case of the embodiment of FIG. 2 [improvement in reliability] Since the main line side power supply circuit has a direct connection structure, only the branch line side power supply circuit consumes power, so that the power consumption is halved and the temperature rise is reduced. it can. Since the main circuit side power supply circuit has a direct connection structure, the number of parts has been halved.
Only need one. [Cost reduction] The cost can be significantly reduced by halving the number of parts. High withstand voltage design becomes easy and the structure can be simplified. [Improvement of operability] Since the power on / off on the main line side and the branch line side can be operated independently, it is not necessary to disconnect the main line side to turn on / off the power supply on the branch line side. And serviceability is improved.

【0038】図3の実施例の場合 〔信頼性の向上〕 主回線側給電回路が直結構造となり、また分岐回線
側給電回路もダイオードとなるので、消費電力を大幅に
減少することができ、温度上昇を低減できる。 主回線側給電回路が直結構造となったため部品数が
減となり、また分岐回線側給電回路は使用部品を固体化
でき、また高電圧リレーが不要となるので、信頼性が上
がる。 〔コストの低減〕 部品数の減により大幅なコストダウンができる。 高耐電圧設計が容易となり、構造が簡易化できる。 〔操作性向上〕 主回線側と分岐回線側の給電オン/オフを独立して
操作できるため、分岐回線側の給電オン/オフのために
主回線側を断としなくてもよくなり、操作性およびサー
ビス性が向上する。
In the case of the embodiment shown in FIG. 3 [Improvement of reliability] Since the main line side power supply circuit has a direct connection structure and the branch line side power supply circuit is also a diode, the power consumption can be greatly reduced and the temperature can be reduced. The rise can be reduced. The number of parts is reduced because the power supply circuit on the main line side is directly connected, and the parts used for the power supply circuit on the branch line side can be solidified, and a high-voltage relay is not required, thus improving reliability. [Cost reduction] A significant cost reduction can be achieved by reducing the number of parts. High withstand voltage design becomes easy and the structure can be simplified. [Improvement of operability] Since the power on / off on the main line side and the branch line side can be operated independently, it is not necessary to disconnect the main line side to turn on / off the power supply on the branch line side. And serviceability is improved.

【0039】図4の実施例の場合 〔信頼性の向上〕 主回線側給電回路が直結構造となったため、電力消
費されるのは分岐回線側給電回路だけとなり、したがっ
て消費電力が半減されて温度上昇を低減できる。 主回線側給電回路が直結構造となったため、部品数
が減少し、特に高電圧リレーが分岐回線側給電回路に1
個で済む。 〔コストの低減〕 部品数の減により大幅なコストダウンができる。 高耐電圧設計が容易となり、構造が簡易化できる。 〔操作性向上〕 主回線側と分岐回線側の給電オン/オフを独立して
操作できるため、分岐回線側の給電オン/オフのために
主回線側を断としなくてもよくなり、操作性およびサー
ビス性が向上する。
In the case of the embodiment shown in FIG. 4 [Improvement of reliability] Since the main circuit side power supply circuit has a direct connection structure, only the branch line side power supply circuit consumes power, so that the power consumption is halved and the temperature is reduced. The rise can be reduced. The main circuit side power supply circuit has a direct connection structure, so the number of parts is reduced.
Only need one. [Cost reduction] A significant cost reduction can be achieved by reducing the number of parts. High withstand voltage design becomes easy and the structure can be simplified. [Improvement of operability] Since the power on / off on the main line side and the branch line side can be operated independently, it is not necessary to disconnect the main line side to turn on / off the power supply on the branch line side. And serviceability is improved.

【0040】図5の実施例の場合 〔信頼性の向上〕 主回線側給電回路が直結構造となったため、電力消
費されるのは分岐回線側給電回路だけとなり、したがっ
て消費電力が半減されて温度上昇を低減できる。 主回線側給電回路が直結構造となったため、部品数
が半減し、特に高電圧リレーが分岐回線側給電回路に1
個で済む。 〔コストの低減〕 部品数の半減により大幅なコストダウンができる。
In the case of the embodiment shown in FIG. 5 [Improvement of reliability] Since the main circuit side power feeding circuit has a direct connection structure, only the branch line side power feeding circuit consumes power, so that the power consumption is halved and the temperature is reduced. The rise can be reduced. Since the main circuit side power supply circuit has a direct connection structure, the number of parts has been halved, and especially high voltage relays have a branch circuit side power supply circuit.
Only need one. [Cost reduction] The cost can be significantly reduced by halving the number of parts.

【0041】[0041]

【発明の効果】以上に説明したように、本発明によれ
ば、部品点数を大幅に減少させて消費電力も大幅に減少
させることができ、それにより使用部品の温度上昇が抑
えられる。また必要な高電圧リレーの数を削減または無
くすことにより、高耐電圧設計を容易にし、装置構造を
簡易化することができる。これらにより装置の信頼性の
向上、コストダウンを図ることができる。
As described above, according to the present invention, the number of parts can be greatly reduced, and the power consumption can be greatly reduced, so that the temperature rise of the used parts can be suppressed. Further, by reducing or eliminating the required number of high-voltage relays, high withstand voltage design can be facilitated and the device structure can be simplified. As a result, the reliability of the device can be improved and the cost can be reduced.

【0042】また分岐回線側の給電回路と主回線側の給
電回路を基本的に分離独立した形として、それらの給電
オン/オフ操作を互いに依存しないようにすることで、
例えば分岐回線の給電オン/オフ操作のために主回線を
断とするようなことを無くして、操作性を向上させるこ
とができる。
The power supply circuit on the side of the branch line and the power supply circuit on the side of the main line are basically separated and independent so that the power supply ON / OFF operations thereof do not depend on each other.
For example, it is possible to improve operability by eliminating disconnection of the main line for turning on / off the power supply to the branch line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の一実施例としての海中分岐装置の給電
回路を示す図である。
FIG. 2 is a diagram showing a power supply circuit of an undersea branching device as one embodiment of the present invention.

【図3】本発明の他の実施例としての海中分岐装置の給
電回路を示す図である。
FIG. 3 is a diagram showing a power supply circuit of an underwater branching device as another embodiment of the present invention.

【図4】本発明のまた他の実施例としての海中分岐装置
の給電回路を示す図である。
FIG. 4 is a diagram showing a power supply circuit of an undersea branching device as another embodiment of the present invention.

【図5】本発明のさらに他の実施例としての海中分岐装
置の給電回路を示す図である。
FIG. 5 is a diagram showing a power supply circuit of an underwater branching device as still another embodiment of the present invention.

【図6】光海底ケーブル伝送システムの構成例を示す図
である。
FIG. 6 is a diagram showing a configuration example of an optical submarine cable transmission system.

【図7】海中分岐装置の給電回路の従来例を示す図であ
る。
FIG. 7 is a diagram showing a conventional example of a power supply circuit of an undersea branching device.

【符号の説明】[Explanation of symbols]

1、2 リレー 3 放電管 4 感熱動作スイッチ 10、20、30、40 給電回路 11、12、21、22 インダクタンス 13〜16、23〜26 抵抗器 17、27 避雷器 18、28 定電圧ダイオード 311 〜31n ダイオード 321 〜32n 高抵抗の抵抗器 41 ヒータ1, 2 Relay 3 Discharge tube 4 Thermosensitive operation switch 10, 20, 30, 40 Power supply circuit 11, 12, 21, 22 Inductance 13 to 16, 23 to 26 Resistor 17, 27 Lightning arrester 18, 28 Constant voltage diode 31 1 to 31 n diode 32 1 to 32 n high resistance resistor 41 heater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 分岐回線用給電路(100)に、無給電
時に該給電路を海中アースから切り離し運用時に海中ア
ースして給電路を形成するためのリレー(101)の自
己保持用接点(102)を挿入し、その自己保持用接点
に並列に放電管(103)を接続したことを特徴とする
海中分岐装置の給電回路。
1. A self-holding contact (102) of a relay (101) for forming a power supply path by disconnecting the power supply path from a subsea ground when no power is supplied to the branch line power supply path (100) to form a power supply path. ) Is inserted, and the discharge tube (103) is connected in parallel to the contact for self-holding.
【請求項2】 分岐回線用給電路に、運用時に順方向バ
イアス、絶縁抵抗試験時に逆方向バイアスされる極性の
ダイオードを1段または複数段直列に接続したことを特
徴とする海中分岐装置の給電回路。
2. A power supply for a submarine branching device, characterized in that one or more stages of diodes having polarities that are forward biased during operation and reverse biased during an insulation resistance test are connected in series to a power supply path for a branch line. circuit.
【請求項3】 分岐回線用給電路に、無給電時に該給電
路を海中アースから切り離し運用時に海中アースして給
電路を形成するためのリレーの自己保持用接点を挿入
し、その自己保持用接点に並列に、運用時に順方向バイ
アス、絶縁抵抗試験時に逆方向バイアスされる極性のダ
イオードを1段または複数段直列に接続した回路を接続
したことを特徴とする海中分岐装置の給電回路。
3. A self-holding contact of a relay for forming a power feeding path by disconnecting the power feeding path from the undersea ground when no power is supplied and forming the power feeding path in the branch line power feeding path when the power is not fed. A power supply circuit for an undersea branching device, comprising a circuit in which a diode having a polarity that is forward-biased during operation and reverse-biased during an insulation resistance test is connected in series in one or more stages in parallel with the contact.
【請求項4】 該ダイオードに並列に高抵抗の抵抗器を
接続したことを特徴とする請求項2または3記載の海中
分岐装置の給電回路。
4. A power supply circuit for an undersea branching device according to claim 2, wherein a high resistance resistor is connected in parallel with said diode.
【請求項5】 主回線用給電路に発熱体を挿入し、この
発熱体の発生する熱で動作する感熱動作スイッチを設
け、分岐回線用給電路に、無給電時に該給電路を海中ア
ースから切り離し運用時に海中アースして給電路を形成
するためのリレーの自己保持用接点を挿入し、その自己
保持用接点に並列に上記感熱動作スイッチのメーク接点
を接続したことを特徴とする海中分岐装置の給電回路。
5. A heat-generating element is inserted into the power supply path for the main line, and a heat-sensitive operation switch that operates by the heat generated by this heat-generating element is provided, and the power supply path for the branch line is connected to the undersea ground when no power is supplied. A submarine branching device characterized in that a self-holding contact of a relay for grounding the sea to form a power supply path during disconnection operation is inserted, and the make contact of the heat-sensitive switch is connected in parallel to the self-holding contact. Power supply circuit.
JP4128053A 1992-04-21 1992-04-21 Power feeding circuit for submarine branch device Withdrawn JPH05300057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128053A JPH05300057A (en) 1992-04-21 1992-04-21 Power feeding circuit for submarine branch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128053A JPH05300057A (en) 1992-04-21 1992-04-21 Power feeding circuit for submarine branch device

Publications (1)

Publication Number Publication Date
JPH05300057A true JPH05300057A (en) 1993-11-12

Family

ID=14975330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128053A Withdrawn JPH05300057A (en) 1992-04-21 1992-04-21 Power feeding circuit for submarine branch device

Country Status (1)

Country Link
JP (1) JPH05300057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273466A (en) * 1998-02-19 1999-10-08 Alcatel Cit High-voltage direct current power cable and sea bottom laying method for powder cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273466A (en) * 1998-02-19 1999-10-08 Alcatel Cit High-voltage direct current power cable and sea bottom laying method for powder cable

Similar Documents

Publication Publication Date Title
US5214312A (en) Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
JP3694053B2 (en) Branch device for submarine communication system
US6166836A (en) Power switching of optical fibre cable branching units
US5196984A (en) Submarine telecommunications systems
JPH11186959A (en) Feeder connection circuit and optical transmission system
US6714394B1 (en) Electric power feeding line switching method, electric power feeding line switching apparatus and electric power feeding line switching system
BR102014028219A2 (en) branch unit for a telecommunication optical connection, telecommunication optical connection and method for configuring the branch unit
JP3341245B2 (en) Power supply line switching circuit
US4462058A (en) Switching apparatus for devices for alternating current parallel remote feed
JPH05300057A (en) Power feeding circuit for submarine branch device
US5412716A (en) System for efficiently powering repeaters in small diameter cables
EP1949568B1 (en) Repeater surge coil and diode chain design
EP1294113B1 (en) Branching unit for an optical transmission system
US7067940B2 (en) Submarine branching unit having asymmetrical architecture
JP2805197B2 (en) Power supply switching method for submarine relay transmission line
JP2632905B2 (en) Transmission line feeder switching circuit
EP1220468B1 (en) Submarine cable branching unit with current limiter
JPH11506894A (en) Branching equipment for optical fiber transmission systems
US6765775B2 (en) Submarine cable branching unit with current limiter
JPH0253332A (en) Feeder switching circuit
JP3341246B2 (en) Power supply line switching circuit
JP2665544B2 (en) Power supply switching circuit for submarine cable transmission line
JP2552165B2 (en) Submarine optical cable power supply branch device
JPH07118669B2 (en) Power supply path switching circuit for undersea branching device and power supply method for undersea cable communication system
JPH0470128A (en) Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706