JPH05294787A - Method and device for crystal growth - Google Patents

Method and device for crystal growth

Info

Publication number
JPH05294787A
JPH05294787A JP10278092A JP10278092A JPH05294787A JP H05294787 A JPH05294787 A JP H05294787A JP 10278092 A JP10278092 A JP 10278092A JP 10278092 A JP10278092 A JP 10278092A JP H05294787 A JPH05294787 A JP H05294787A
Authority
JP
Japan
Prior art keywords
molecular beam
group
growth
sample
beam source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10278092A
Other languages
Japanese (ja)
Inventor
Moichi Izumi
茂一 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10278092A priority Critical patent/JPH05294787A/en
Publication of JPH05294787A publication Critical patent/JPH05294787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the crystal defects caused by the irradiation with a group V source molecular beam and to improve crystallinity in the molecular beam epitaxy (MBE) of III/V compd. semiconductor. CONSTITUTION:In the molecular beam epitaxy (MBE) of a III/V compd. semiconductor, a group V molecular beam source 13 of direct irradiation converged into the opening of a crucible 7a and having strong directivity, and a group V molecular beam source 14 provided to another opening of the crucible and having a shutter in front of the opening with a gap in between are arranged in a growth chamber 1a. The growth sample 5a is directly irradiated 16 with a molecular beam from the molecular beam source 13, the sample 5a is not irradiated directly with the molecular beam from the source 14 but irradiated 15 with the molecular beam to increase the group V vapor pressure at the periphery of the sample, and a crystal is grown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、III /V族化合物半
導体の分子線エピタキシャル(MBE)成長における結
晶成長方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method and apparatus for molecular beam epitaxial (MBE) growth of III / V group compound semiconductors.

【0002】[0002]

【従来の技術】図5は従来技術によるIII /V族化合物
半導体の分子線エピタキシャル(MBE)成長における
結晶成長方法及びその装置を説明する概念図である。図
において、1は成長室、2は基板加熱部、3は基板加熱
用ヒータ、4は成長室1の壁内に具えられた液体窒素シ
ュラウド、5は成長用試料、6は通常のV族用分子線
源、7はルツボ、8はヒータ線、9は通常のV族用分子
線源6のルツボ開口部に設けられた可動式シャッタ、10
はIII 族用分子線源、11は通常のV族用分子線源6によ
る通常照射のV族分子線、12はIII 族用分子線源10によ
り照射されたIII 族分子線を示す。
2. Description of the Related Art FIG. 5 is a conceptual diagram for explaining a crystal growth method and apparatus for molecular beam epitaxial (MBE) growth of a III / V group compound semiconductor according to the prior art. In the figure, 1 is a growth chamber, 2 is a substrate heating unit, 3 is a heater for heating a substrate, 4 is a liquid nitrogen shroud provided in the wall of the growth chamber 1, 5 is a sample for growth, and 6 is for a normal V group. Molecular beam source, 7 is a crucible, 8 is a heater wire, 9 is a movable shutter provided at a crucible opening of a general V-group molecular beam source 6, 10
Indicates a group III molecular beam source, 11 indicates a group V molecular beam which is normally irradiated by the ordinary group V molecular beam source 6, and 12 indicates a group III molecular beam irradiated by the group III molecular beam source 10.

【0003】従来のIII /V族化合物半導体の分子線エ
ピタキシャル(MBE)成長は上記のように構成された
結晶成長装置により次のようにして行われる。すなわ
ち、高真空中の成長室1内において、例えばV族源であ
るAs及びIII 族源が、それぞれ、通常のAs用分子線
源6及びIII 族用分子線源10のルツボ7の中で加熱され
てAs分子線11およびIII 族分子線12となり、これらの
分子線が基板加熱用ヒータ3によって加熱された成長用
試料5に照射される。ここで、照射されるAs分子線の
状態密度の制御はAs用分子線源6におけるルツボ7開
口部のシャッタ9の開閉と加熱されたルツボ7温度とに
より行われる。
Molecular beam epitaxial (MBE) growth of a conventional III / V group compound semiconductor is carried out as follows by the crystal growth apparatus having the above-mentioned structure. That is, in the growth chamber 1 in a high vacuum, for example, the group V sources As and III sources are heated in the crucible 7 of the ordinary As molecular beam source 6 and group III molecular beam source 10, respectively. As a result, the As molecular beam 11 and the group III molecular beam 12 are formed, and these molecular beams are applied to the growth sample 5 heated by the substrate heating heater 3. Here, the state density of the As molecular beam to be irradiated is controlled by opening / closing the shutter 9 at the opening of the crucible 7 in the As molecular beam source 6 for As and the temperature of the heated crucible 7.

【0004】成長用試料5におけるIII /V族化合物半
導体の結晶成長は、その結晶成長速度がIII 族照射によ
り律速されるのでAs蒸気過剰な状態にて行われる。こ
のため、As分子線11は図5に示されるように成長室1
内全域に広がり、その一部が結晶成長源として成長用試
料5に供給される。
The crystal growth of the III / V group compound semiconductor in the growth sample 5 is performed in a state in which As vapor is excessive because the crystal growth rate is controlled by the group III irradiation. Therefore, the As molecular beam 11 is generated in the growth chamber 1 as shown in FIG.
It spreads all over the inside, and a part of it is supplied to the growth sample 5 as a crystal growth source.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来のII
I /V族化合物半導体の分子線エピタキシャル(MB
E)結晶成長方法では、V族源として例えば金属Asを
用いた場合、III 族元素に比べてAsの成長用試料5へ
の付着効率が小さいため、As蒸気過剰の状態で照射さ
れる。このため、結晶成長に使われない余分のAs蒸気
は成長室1内全域に広がる傾向が強く、成長室1内に設
置された液体窒素シュラウド4の表面や成長室1の内壁
がAs分子線11に叩かれてダストを発生し、該ダストが
成長用試料5にまで到達すると、これが結晶欠陥の発生
原因になるという問題点があった。
[Problems to be Solved by the Invention] Conventional II as described above
Molecular beam epitaxy of I / V group compound semiconductors (MB
E) In the crystal growth method, when metal As, for example, is used as the group V source, the efficiency of attachment of As to the sample 5 for growth is smaller than that of the group III element, and therefore irradiation with As vapor excess is performed. For this reason, the excess As vapor not used for crystal growth has a strong tendency to spread throughout the growth chamber 1, and the surface of the liquid nitrogen shroud 4 installed in the growth chamber 1 and the inner wall of the growth chamber 1 are As molecular beam 11 There was a problem in that when the dust was struck by to generate dust and the dust reached the growth sample 5, this caused crystal defects.

【0006】これらの現象は、As化合物の結晶成長に
特有の問題ではなく、V族元素を含むP化合物や他の化
合物の結晶成長においても重要な問題となる。
[0006] These phenomena are not a problem peculiar to the crystal growth of the As compound, but an important problem also in the crystal growth of the P compound containing the group V element and other compounds.

【0007】この発明は、かかる問題点を解決するため
になされたものであり、III /V族化合物半導体の分子
線エピタキシャル(MBE)結晶成長において、V族分
子線照射によって生ずる結晶欠陥を低減した結晶成長を
行う方法とその装置を提供する事を目的としている。
The present invention has been made to solve the above problems, and reduced crystal defects caused by group V molecular beam irradiation in the molecular beam epitaxial (MBE) crystal growth of group III / V compound semiconductors. It is an object of the present invention to provide a crystal growth method and apparatus.

【0008】[0008]

【課題を解決するための手段】この発明に係わるIII /
V族化合物半導体の分子線エピタキシャル(MBE)成
長における結晶成長方法は、指向性の強いV族用分子線
源によって成長用試料に対し直接分子線照射を行い、同
時に前記分子線源と異なる他のV族用分子線源により該
成長用試料を照射せずに該成長用試料近辺にある前記直
接照射V族分子線の外周部を照射して、結晶成長を行
う。
MEANS FOR SOLVING THE PROBLEM III /
In the crystal growth method in the molecular beam epitaxial (MBE) growth of a group V compound semiconductor, the sample for growth is directly irradiated with the molecular beam for the group V molecular beam source having a strong directivity, and at the same time, another method different from the molecular beam source is used. The crystal growth is performed by irradiating the peripheral portion of the direct irradiation group V molecular beam in the vicinity of the growth sample without irradiating the growth sample with the group V molecular beam source.

【0009】また、その結晶成長装置として、成長室
に、ルツボ開口部の絞り込まれたV族用分子線源と、ル
ツボ開口部前方に間隙を設けて配したシャッタ板を有す
るV族用分子線源とを配置する。
As the crystal growth apparatus, a group V molecular beam source having a crucible opening narrowed down in the crucible opening and a shutter plate provided with a gap in front of the crucible opening is used as a crystal growth apparatus. Place the source.

【0010】[0010]

【作用】この発明によるIII /V族化合物半導体の分子
線エピタキシャル(MBE)結晶成長方法においては、
成長用試料表面でのV族元素の供給が指向性の強いV族
用分子線源からの照射によるV族分子線のみによって行
われ、また、同時に行われる別のV族用分子線源による
V族分子線照射が該成長用試料に照射される前記直接照
射V族分子線の低V族蒸気圧力側への極端な逃げを防
ぎ、V族分子線照射における成長用試料照射と成長用試
料外周部照射とを明確に区別する。
In the method of growing a molecular beam epitaxial (MBE) crystal of a III / V group compound semiconductor according to the present invention,
The group V element is supplied to the surface of the growth sample only by the group V molecular beam irradiated by the group V molecular beam source having a strong directivity, and at the same time by another group V molecular beam source. Irradiation of the direct irradiation group V molecular beam irradiated to the growth sample by the group molecular beam irradiation to the extreme side toward the low group V vapor pressure side to prevent the growth sample irradiation and the growth sample outer periphery in the group V molecular beam irradiation. Clearly distinguish from partial irradiation.

【0011】また、成長室に配置された、少なくとも2
本のV族用分子線源のうち、ルツボ開口部の絞り込まれ
たV族用分子線源は成長用試料表面のみを照射し、一
方、ルツボ開口部前方に間隙を設けて配したシャッタ板
を有する別のV族用分子線源は前記直接照射V族分子線
の成長用試料外周部近辺を照射する。
Further, at least two, which are arranged in the growth chamber,
Of the V-group molecular beam sources of this book, the V-group molecular beam source with the narrowed crucible opening irradiates only the surface of the sample for growth, while the shutter plate provided with a gap in front of the crucible opening is used. The other group V molecular beam source has a direct irradiation group V molecular beam in the vicinity of the outer peripheral portion of the sample for growth.

【0012】[0012]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1は本発明の実施例に用いた装置の概略図であ
り、図において、13はクラッカー付きの試料直接照射A
s用分子線源、14は試料外周部照射As用分子線源、15
は試料外周部照射As分子線、16は試料直接照射As分
子線を示し、図5と同一または相当する部分は同じ記号
を用いて示してある。また、図2は図1におけるクラッ
カー付きの試料直接照射As用分子線源13の詳細図を示
したものであり、17はクラッカー部、18はクラッカー部
17内に設けられ、分子線のコンダクタンスを低下させて
Asクラスターを分解させるバッフルと呼ばれる交互に
挿入された板、19はクラッカー部17のヒータ線、20はル
ツボ7a加熱用ヒータ線を示す。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an apparatus used in an example of the present invention, in which 13 is a sample directly irradiated with a cracker A
Molecular beam source for s, 14 is a molecular beam source for As irradiated on the outer periphery of the sample, 15
Represents the As molecular beam irradiated to the outer periphery of the sample, 16 represents the As molecular beam directly irradiated to the sample, and the same or corresponding portions as in FIG. Further, FIG. 2 shows a detailed view of the molecular beam source 13 for sample direct irradiation As with a cracker in FIG. 1, where 17 is a cracker part and 18 is a cracker part.
Plates that are provided inside 17 and are alternately inserted called baffles that lower the conductance of the molecular beam to decompose As clusters, 19 are heater wires of the cracker section 17, and 20 is a heater wire for heating the crucible 7a.

【0013】図1においてIII 族用分子線源は省略して
描いてある。ここでは、V族元素としてAsの分子線照
射を中心にして以下に実施例の説明を行い、また、成長
用試料5aに対する直接As分子線16照射は、クラッキ
ング作用を有する試料直接照射As用分子線源13によっ
て行っている。すなわち、成長用試料5a表面へのAs
分子線の直接照射は、図2に示すようにクラッカー部17
におけるAs分子線の出口を絞り込む事によって行わ
れ、また、Asクラスターの発生は加熱によりルツボ7
a内に生じたAsクラスターがクラッカー部17を通過す
る際に加熱されたバッフル18に衝突して熱分解される事
により抑制され、このようにしてAsクラスターの低減
した分子線が直接試料に照射される。ここでバッフル材
としては、タンタル,モリブデン,パイロライティック
ボロンナイトライド(Pyrolytic Boron Nitride 略し
てPBN)などが用いられる。
In FIG. 1, the group III molecular beam source is omitted. Here, the following description will be made on the examples focusing on the molecular beam irradiation of As as the V group element, and the direct As molecular beam 16 irradiation to the growth sample 5a is the sample direct irradiation As molecule having a cracking action. The radiation source 13 is used. That is, As on the surface of the growth sample 5a
Direct irradiation of molecular beam is performed by the cracker part 17 as shown in FIG.
Is performed by narrowing down the exit of the As molecular beam at, and the As clusters are generated by heating in the crucible 7.
The As clusters generated in a collide with the heated baffle 18 when passing through the cracker part 17 and are suppressed by being thermally decomposed, and thus the molecular beam with reduced As clusters is directly irradiated to the sample. To be done. Here, as the baffle material, tantalum, molybdenum, Pyrolytic Boron Nitride (PBN for short) or the like is used.

【0014】一方、成長室1a内では、成長用試料5a
への直接As分子線照射と同時に、前記直接照射As用
分子線源13と異なる別のルツボ開口部前方に間隙を設け
て配したシャッタ板を有するAs用分子線源14によりA
s分子線の照射が行われる。このような照射は、成長用
試料5aに対してAs分子線照射を行わず、該成長用試
料近辺部にある試料直接照射As分子線16に対してAs
蒸気圧力を供給する試料外周部照射As分子線15とな
り、前記試料直接照射As分子線16の低As蒸気圧力側
への逃げを防止する。
On the other hand, in the growth chamber 1a, the growth sample 5a
Simultaneously with the direct As molecular beam irradiation to the As, the As molecular beam source 14 for As having a shutter plate provided with a gap in front of another crucible opening different from the direct irradiation As molecular beam source 13
Irradiation of s molecular beam is performed. In such irradiation, As molecular beam irradiation is not performed on the growth sample 5a, and As is applied to the sample direct irradiation As molecular beam 16 in the vicinity of the growth sample.
The As molecular beam 15 irradiated with vapor pressure on the outer periphery of the sample becomes the As molecular beam 15, and the direct irradiation of the sample As molecular beam 16 is prevented from escaping to the low As vapor pressure side.

【0015】また、分子線出口の絞り込まれたクラッカ
ー付きの試料直接照射As用分子線源13は、自身による
指向性の強い分子線照射作用とともに、別のAs用分子
線源14による試料外周部照射As分子線15によって生ず
るAs蒸気圧助長作用を受けて、成長用試料5aのみを
照射し、さらに、別のAs用分子線源14による照射は、
たとえ成長室1aの内壁をAs分子線で叩いてダストを
発生させても、該分子線が成長用試料5aへの照射を行
わないので、該ダストにより成長用試料5aを汚染させ
ない。
The sample direct irradiation As molecular beam source 13 with a cracker having a narrow molecular beam outlet has a molecular beam irradiating action with a strong directivity by itself, and another sample molecular beam source 14 has a peripheral portion of the sample. Irradiation of only the growth sample 5a under the As vapor pressure promotion effect generated by the irradiation As molecular beam 15, and irradiation by another As molecular beam source 14
Even if dust is generated by hitting the inner wall of the growth chamber 1a with an As molecular beam, the growth sample 5a is not contaminated by the dust because the molecular beam does not irradiate the growth sample 5a.

【0016】上記のような結晶成長方法によって、成長
用試料5a表面上でダストによって汚染される事がなく
III /V族化合物半導体の分子線エピタキシャル(MB
E)結晶成長が行われる。
By the crystal growth method as described above, the surface of the growth sample 5a is prevented from being contaminated by dust.
Molecular beam epitaxy of group III / V compound semiconductors (MB
E) Crystal growth is performed.

【0017】実施例2.図3及び4に本発明による他の
実施例を説明する概念図を示す。図において、図1、2
及び5と同一または相当する部分は同じ記号を用いて示
してある。
Embodiment 2. 3 and 4 are conceptual diagrams illustrating another embodiment according to the present invention. In the figure,
Portions which are the same as or correspond to 5 and 5 are indicated using the same symbols.

【0018】図3においてIII 族用分子線源は省略して
描いてある。ここでは、V族元素としてAsによる分子
線源を中心に、また、成長用試料5aに対する直接As
分子線16a照射はクラッキング作用を有する試料直接照
射As用分子線源13aによって、以下に実施例の説明を
行う。図3に示すように成長装置1a内に、As用分子
線源として、成長用試料5aに対し直接照射するクラッ
キング作用を有する少なくとも1本のAs用分子線源13
aと、少なくとも1本の試料外周部照射As用分子線源
14aとが配置されている。ここで、As分子線照射とし
て、成長用試料5aへの直接照射と成長用試料5a外周
部への照射との明確な分離と、直接照射される分子線照
射の径を成長用試料5aの径にほぼ等しくする事が重要
であり、これらは、以下に説明する構成からなる2種類
のAs用分子線源を成長室1aに配置する事により実現
される。
In FIG. 3, the group III molecular beam source is omitted. Here, the molecular beam source of As as the V group element is mainly used, and the direct As to the growth sample 5a is used.
The irradiation of the molecular beam 16a will be described below with reference to the sample direct irradiation As molecular beam source 13a having a cracking action. As shown in FIG. 3, in the growth apparatus 1a, as a molecular beam source for As, at least one molecular beam source for As 13 having a cracking effect of directly irradiating the sample for growth 5a is irradiated.
a and a molecular beam source for at least one sample outer peripheral irradiation As
14a and 14a are arranged. Here, as the As molecular beam irradiation, a clear separation between the direct irradiation of the growth sample 5a and the irradiation of the outer periphery of the growth sample 5a and the diameter of the molecular beam irradiation directly irradiated are defined as the diameter of the growth sample 5a. It is important to make them substantially equal to each other, and these are realized by arranging two types of molecular beam sources for As having the configurations described below in the growth chamber 1a.

【0019】すなわち、一つは、ルツボ開口部前方に間
隙を設けて配したシャッタ板を有するAs用分子線源14
aを成長室1aに配置する事であり、間隙としてのルツ
ボ開口面とシャッタ間の距離は5乃至10mm程度あれば
十分である。該分子線源14aによって、As分子線がシ
ャッタ板に遮断されてルツボ開口部の円周部から放出さ
れ成長用試料5a外周部照射が行われる。
That is, one is a molecular beam source 14 for As having a shutter plate arranged with a gap in front of the opening of the crucible.
Since a is disposed in the growth chamber 1a, it is sufficient that the distance between the crucible opening surface as a gap and the shutter is about 5 to 10 mm. By the molecular beam source 14a, the As molecular beam is blocked by the shutter plate and is emitted from the circumferential portion of the opening of the crucible to irradiate the outer peripheral portion of the growth sample 5a.

【0020】また、直接照射されるAs分子線照射径を
成長用試料5aの径に等しくするために、直接照射As
用分子線源13aのクラッカー部17aの開口径を適切に選
ぶ事とバッフル18aの枚数をできるだけ少なくする必要
があり、例えば次ぎのように選ばれる。すなわち、As
分子線の出口となるクラッカー部17aの径φcとルツボ
7bの径φr及びルツボ7bの径φrとルツボ7bと成
長用試料5a間の距離Rとに関して、2φc≦φr≦3
φc、および、12φr≦R≦20φrの関係にある事
が望ましい。これは、例えば、2φc>φr、12φr
>Rの場合には装置上の制約を受け、また、3φc<φ
r、20φr<Rの場合にはAs用ルツボの温度を高く
する必要がありAsクラスターのクラッキングが困難と
なるなどの不都合が生ずるためである。また、バッフル
は最低2枚あればその効果を有し、分子線のコンダクタ
ンスとの兼ね合いで増す事になる。
Further, in order to make the diameter of the As molecular beam to be directly irradiated equal to the diameter of the growth sample 5a, the direct irradiation As is used.
It is necessary to properly select the opening diameter of the cracker portion 17a of the molecular beam source 13a for use and to reduce the number of baffles 18a as much as possible. For example, the following selection is made. That is, As
Regarding the diameter φc of the cracker portion 17a serving as the outlet of the molecular beam, the diameter φr of the crucible 7b, the diameter φr of the crucible 7b, and the distance R between the crucible 7b and the growth sample 5a, 2φc ≦ φr ≦ 3
It is desirable that φc and 12φr ≦ R ≦ 20φr. This is, for example, 2φc> φr, 12φr
In case of> R, there are restrictions on the equipment, and 3φc <φ
This is because when r and 20φr <R, it is necessary to raise the temperature of the As crucible and it becomes difficult to crack As clusters. In addition, if there are at least two baffles, the effect will be obtained, and it will be increased in consideration of the conductance of the molecular beam.

【0021】上記のようなIII /V族化合物半導体の分
子線エピタキシャル(MBE)結晶成長装置によって、
As分子線の照射に関して、成長用試料5a表面のみと
該成長用試料5a近辺にある試料直接照射As分子線16
aの外周部とを区別して照射する事が出来る。
By using the molecular beam epitaxial (MBE) crystal growth apparatus for the III / V group compound semiconductor as described above,
Regarding the irradiation of As molecular beam, only the surface of the growth sample 5a and the sample directly irradiated in the vicinity of the growth sample 5a As molecular beam 16
Irradiation can be performed separately from the outer peripheral portion of a.

【0022】以上の実施例は本発明を制限するものでは
ない。すなわち、実施例ではV族源としてAsに関して
説明したが、他のV族源としてPやその他の元素に変更
してもよい。また、実施例では試料に対し分子線を照射
する指向性の強いV族用分子線源としてクラッキング作
用を有するV族用分子線源を用いて説明したが、同様の
クラッキング作用を有する他のV族用分子線源に変更し
てもよい。
The above embodiments do not limit the present invention. That is, although As has been described as the V-group source in the embodiment, P or another element may be used as another V-group source. Further, in the embodiment, the description has been given by using the group V molecular beam source having a cracking action as the group V molecular beam source having a strong directivity for irradiating the sample with the molecular beam, but another V having a similar cracking action is used. It may be changed to a family molecular beam source.

【0023】[0023]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0024】III /V族化合物半導体の分子線エピタキ
シャル(MBE)結晶成長において、指向性の強いV族
用分子線源により成長用試料に対してのみのV族分子線
の直接照射と、同時に前記分子線源と異なる別のV族用
分子線源により該成長用試料近辺にある直接照射V族分
子線の外周部のV族分子線照射を行う事により、液体窒
素シュラウドの表面や成長室内壁からのダストが成長用
試料に到達せず、該ダストが発生原因となる結晶欠陥が
低減されて結晶性が向上する。
In the molecular beam epitaxial (MBE) crystal growth of a III / V group compound semiconductor, a group V molecular beam source having a strong directivity is directly irradiated with a group V molecular beam only on a growing sample, and at the same time, By directly irradiating the peripheral portion of the group V molecular beam directly irradiated with the sample for growth with a group V molecular beam source different from the molecular beam source, the surface of the liquid nitrogen shroud or the growth chamber inner wall Does not reach the sample for growth, crystal defects that cause the generation of dust are reduced, and the crystallinity is improved.

【0025】成長装置に、ルツボ開口部の絞り込まれた
V族用分子線源と、ルツボ開口部前方に間隙を設けて配
したシャッタ板を有するV族用分子線源とを配置する事
により、成長用試料のみのV族分子線直接照射と該成長
用試料を照射せず該成長用試料の近辺にある前記直接照
射V族分子線の外周部照射とを分離して行う事を可能と
する。
By arranging a group V molecular beam source with a narrowed crucible opening and a group V molecular beam source having a shutter plate provided with a gap in front of the crucible opening in the growth apparatus, It is possible to separate the direct irradiation of the group V molecular beam of only the growth sample and the irradiation of the peripheral portion of the direct irradiation group V molecular beam in the vicinity of the growth sample without irradiation of the growth sample. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を説明する概念図。FIG. 1 is a conceptual diagram illustrating a first embodiment of the present invention.

【図2】この発明の実施例1を説明する概念図。FIG. 2 is a conceptual diagram illustrating Embodiment 1 of the present invention.

【図3】この発明の実施例2を説明する概念図。FIG. 3 is a conceptual diagram illustrating a second embodiment of the present invention.

【図4】この発明の実施例2を説明する概念図。FIG. 4 is a conceptual diagram illustrating a second embodiment of the present invention.

【図5】従来の発明を説明する概念図。FIG. 5 is a conceptual diagram illustrating a conventional invention.

【符号の説明】[Explanation of symbols]

1 成長室 5 成長用試料 7 ルツボ 9 シャッタ 13 クラッカー付きの試料直接照射As用分子線源 14 試料外周部照射As用分子線源 15 試料外周部照射As分子線 16 試料直接照射As分子線 1 growth chamber 5 growth sample 7 crucible 9 shutter 13 sample with cracker direct irradiation molecular beam source for As 14 molecular beam source for peripheral sample irradiation 15 molecular beam source for peripheral sample irradiation As molecular beam 16 sample direct irradiation As molecular beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 III /V族化合物半導体の分子線エピタ
キシャル(MBE)成長方法において、指向性の強いV
族用分子線源によって成長用試料にV族分子線を直接照
射し、同時に前記分子線源と異なるV族用分子線源によ
って該成長用試料を照射せずに該成長用試料近辺にある
前記直接照射V族分子線の外周部を照射する事を特徴と
する結晶成長方法。
1. A method of growing a group III / V compound semiconductor by a molecular beam epitaxy (MBE) method, wherein V having a strong directivity is used.
The growth sample is directly irradiated with the group V molecular beam by the group molecular beam source, and at the same time, the growth sample is not irradiated with the group V molecular beam source different from the molecular beam source, and the growth sample is present in the vicinity of the growth sample. Directly irradiating a crystal growth method characterized by irradiating an outer peripheral portion of a group V molecular beam.
【請求項2】 III /V族化合物半導体の分子線エピタ
キシャル(MBE)成長装置において、成長室に、ルツ
ボ開口部の絞り込まれたV族用分子線源と、ルツボ開口
部前方に間隙を設けて配したシャッタ板を有するV族用
分子線源とを配置した事を特徴とする結晶成長装置。
2. A III / V compound semiconductor molecular beam epitaxial (MBE) growth apparatus comprising a group V molecular beam source with a narrowed crucible opening and a gap in front of the crucible opening in the growth chamber. A crystal-growing device, characterized in that a group V molecular beam source having an arranged shutter plate is arranged.
JP10278092A 1992-04-22 1992-04-22 Method and device for crystal growth Pending JPH05294787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10278092A JPH05294787A (en) 1992-04-22 1992-04-22 Method and device for crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10278092A JPH05294787A (en) 1992-04-22 1992-04-22 Method and device for crystal growth

Publications (1)

Publication Number Publication Date
JPH05294787A true JPH05294787A (en) 1993-11-09

Family

ID=14336663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10278092A Pending JPH05294787A (en) 1992-04-22 1992-04-22 Method and device for crystal growth

Country Status (1)

Country Link
JP (1) JPH05294787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079736A (en) * 1995-05-03 2011-04-21 Veeco Compound Semiconductor Inc Unibody crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079736A (en) * 1995-05-03 2011-04-21 Veeco Compound Semiconductor Inc Unibody crucible

Similar Documents

Publication Publication Date Title
EP1061155B1 (en) Vacuum processing apparatus
US6150265A (en) Apparatus for forming materials
JPH05238881A (en) Gas source molecular beam epitaxy device
JP3493880B2 (en) Radiant heating device and heating method
EP0418554B1 (en) Chemical vapor deposition apparatus
GB2282825A (en) Chemical vapour deposition apparatus
Fan et al. Zone‐melting recrystallization of 3‐in.‐diam Si films on SiO2‐coated Si substrates
JPH05294787A (en) Method and device for crystal growth
JP4639563B2 (en) Silicon carbide semiconductor manufacturing equipment
JPS60189927A (en) Vapor phase reactor
JPH02208925A (en) Formation of semiconductor film
JP2004134620A (en) Gallium nitride epitaxy method
JP3253701B2 (en) Vacuum deposition equipment
JPH0360114A (en) Molecular beam epitaxy device
JPS6132414A (en) Thin film forming equipment
JP3068341B2 (en) Vapor phase growth equipment
JP4364378B2 (en) Horizontal vapor deposition equipment
JP2556211B2 (en) Apparatus for growing semiconductor crystal layer and method for growing the same
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPH0644553B2 (en) Optical vapor deposition method and optical vapor deposition apparatus
JPS6065792A (en) Molecular beam crystal growth apparatus
JPS61146790A (en) Molecular beam epitaxial growth method
JPH0636718A (en) X-ray tubular bulb for diffraction
JPH035050B2 (en)
KR20110075352A (en) Apparatus for depositing thin layer